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Abstract: The chloromethyl-functionalized polystyrene is the most commonly used ammonium cation
precursor for making anion exchange resins (AER) and membranes (AEM). However, the chloromethylation
of polystyrene or styrene involves highly toxic and carcinogenic raw materials (e.g., chloromethyl ether) and
the resultant ammonium cation structural motif is not stable enough in alkaline media. Herein, we present
a novel self-pored amine-functionalized polystyrene, which may provide a safe, convenient, and green
process to make polystyrene-based AER and AEM. It is realized by hydrolysis of the copolymer
obtained via random copolymerization of N-vinylformamide (NVF) with styrene (St). The composition
and structure of the NVF-St copolymer could be controlled by monomeric ratio, and the copolymers
with high NVF content could form bicontinuous morphology at sub-100 nm levels. Such bicontinuous
morphology allows the copolymers to be swollen in water and self-pored by freeze-drying, yielding a
large specific surface area. Thus, the copolymer exhibits high adsorption capacity (226 mg/g for bisphenol
A). Further, the amine-functionalized polystyrene has all-carbon backbone and hydrophilic/hydrophobic
microphase separation morphology. It can be quaternized to produce ammonium cations and would be
an excellent precursor for making AEM and AER with good alkaline stability and smooth ion transport
channels. Therefore, the present strategy may open a new pathway to develop porous alkaline
stable AER and AEM without using metal catalysts, organic pore-forming agents, and carcinogenic
raw materials.

Keywords: N-vinylformamide; free-radical polymerization; self-pored; functionalized polystyrene;
bicontinuous morphology

1. Introduction

Anion exchange resins (AER) and anion exchange membranes (AEM) have always attracted much
attention and are widely used in many fields, such as water treatment [1,2], medicine purification [3], microbial
or anion exchange membrane fuel cell [4–8], and catalysis. For many decades, benzyltrimethylammonium,
which is easily synthesized by quaternization of the chloromethyl-functionalized polystyrene, has been the
most commonly used cation in polystyrene-based AEM and AER (Scheme 1I) [7,9]. However, this structural
motif is not stable enough in alkaline media and can be degraded through β-elimination reaction at the
benzyl position [7,10]. In addition, the chloromethylation of polystyrene or styrene involves highly
toxic and carcinogenic raw materials (e.g., chloromethyl ether and dichloromethyl ether), which are not
environmentally friendly, and has caused many safety concerns [11–13]. In addition, AER and AEM
made by this method remain with a number of inherent shortcomings, including poor adjustability of
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amino-moiety, self-crosslinking side reaction, potential metal catalyst pollution, and usage of toxic and
highly inflammable porogens such as toluene, xylene, dichloroethane, and aliphatic hydrocarbons
(Scheme 1I) [12–14]. Therefore, it is necessary to develop a safe and green procedure to make AER
and AEM.
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Recently, it has been generally accepted that the all-carbon backbone and alkyltrimethylammonium
cations are still the most promising structural motifs for alkaline stable AEM [7,15]. Amine-functionalized
polystyrene (PSt-NH2) may provide an alternative way for manufacturing AEM and AER, since
the amine groups on polymer side chains can be easily quaternized. Thus, the PSt-NH2 prepared
by copolymerization of styrene (or styrene derivatives) and N-vinylformamide (NVF) may open
up a new strategy for green manufacturing of alkaline stable polystyrene-based AER and AEM.
On the one hand, NVF units in the copolymer could be easily hydrolyzed to produce amine groups,
which are on the polymer side chain and easily converted into alkyltrimethylammonium cations
by quaternization [16,17]. The manufacturing process is environmentally friendly, since it involves
no metal catalysts, toxic porogens, or carcinogenic raw materials. On the other hand, AEM made
by the PS-NH2 may have good alkaline stability because of its all-carbon backbone structure and
alkyltrimethylammonium cations. Although dimethylaminoethyl methacrylate could also provide
amine groups, the ester structure is unstable under acidic or basic conditions and the amine group
would be easily lose by the hydrolysis of the ester. Further, unlike its isomer acrylamide, NVF is a
non-toxic monomer and causes less safety concern [18,19].

Unfortunately, successful random copolymerization of NVF with styrene has rarely been reported,
although NVF has high polymerizing reactivity [20], and can randomly copolymerize with vinyl
monomers such as acrylic acid, N-vinylpyrrolidone, and acrylamide [21,22]. On the one hand,
the conjugation effect of styrene is obviously different from that of NVF. The Q values of NVF and
styrene are 1.0 and 0.29, respectively [23]. Such a large difference in Q value increases the difficulty
of copolymerization. On the other hand, the polarities of NVF and styrene are so different that only
a few solvents could dissolve both monomers and their polymers. Polystyrene microspheres with
poly(N-vinylformamide) (PNVF) shell were prepared by emulsion polymerization or suspension
polymerization [24–26]. However, there was no evidence to show random links between the NVF unit
and the styrene unit, and the NVF content in those polymer particles was low (<5%).

In this article, the free-radical copolymerization of styrene and NVF was performed using
AIBN as the initiator and DMF as the solvent. We demonstrated for the first time that NVF could
randomly copolymerize with styrene. Copolymers with adjustable monomeric composition were
successfully obtained via adjusting the monomer feed ratio and monomer concentration. Interestingly,
a bicontinuous morphology at sub-100 nm level was found in copolymers with high NVF mass
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percentage. Such bicontinuous morphology allowed NVF-St copolymers to be well swollen in water
to facilitate the exposure and hydrolysis of NVF units (Figure 1a). Thus, the porous PSt-NH2 with
different amine content was obtained by hydrolysis of NVF-St copolymers. Such PSt-NH2 could be
further quaternized to make polystyrene-based AER and AEM with all-carbon backbone structure and
alkyltrimethylammonium cations (Scheme 1II). Additionally, the preparation process did not involve
any metal catalyst, toxic porogen, or carcinogenic raw material. Therefore, the preparation of PSt-NH2

by hydrolyzing the copolymer of styrenic monomers and NVF provided a new strategy for the green
production of alkaline and stable polystyrene-based AER and AEM.
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Figure 1. Fourier transform infrared spectroscopy (FTIR) spectra (a) and nuclear magnetic resonance
spectroscopy (1H-NMR) spectra (b) of copolymerizing products.

2. Results and Discussion

2.1. Structure and Composition of the NVF-St Copolymer

Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance spectroscopy
(NMR) were conducted to reveal the structure and composition of the copolymerizing products.
As shown in Figure 1a, the spectrum of copolymerizing product (P(NVF-St)) showed a strong C = O
stretching at 1670 cm−1 and a phenyl ring C-H bending signal at 760 cm−1, which were contributed by
NVF and styrene units, respectively [27–29]. In the 1H-NMR spectra of P(NVF-St) samples (Figure 1b),
peak a at 7.5–8.1 and peak b at 6.4–7.3 ppm could be assigned to the protons (1H) of aldehyde group of
NVF units and the aromatic protons (5H) of styrene units, respectively [19,30,31]. Thus, both IR and
NMR spectra confirmed the formation of NVF-St copolymers.

Moreover, the intensity of peak a showed a positive correlation of NVF content in the copolymer
(FNVF) to the NVF monomer content in the polymerization feed (f NVF). Similarly, an increase in the
total monomer concentration led to an increase in FNVF (Figure S1). Therefore, copolymers with
different NVF content could be obtained by adjusting the f NVF and total monomer concentration.
The FNVF was quantitatively calculated according to the intensity of the characteristic peaks a and b in
the NMR spectra. As shown in Table 1, although the FNVF was always smaller than f NVF for all the
recipes investigated, the FNVF increased alongside the increase of the f NVF, suggesting a statistical
model or random style of the copolymerization (Figure S2). The monomer reactivity, r1 (NVF) and r2

(St) were roughly estimated to be 0.34 and 10.1, respectively, based on the fitting plot of FNVF against
f NVF (Figure S2). According to the Q and e values of the two monomers, the theoretically predicted
reactivity r1 and r2 were 0.34 and 2.76, respectively [23]. The real monomer reactivity showed some
difference from that calculated using Q and e values.

Furthermore, the glass transition temperature (Tg) of the obtained copolymers was measured
by differential scanning calorimetry (DSC), which could be used to distinguish random copolymers
from polymer blends and block copolymers. Generally, only a single Tg could be detected for the
homo-polymer or random copolymer, while two or more Tg values could be observed for blended
polymers or block copolymers [32]. As shown in Figure 2a, the homo-polystyrene (PSt) exhibited a
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glass transition around 95 ◦C, while the PNVF was around 142 ◦C. There were two Tg values at about
95 and 142 ◦C in the DSC curve of the PNVF/PSt blend (Figure 2a), corresponding to PSt and PNVF,
respectively. Notably, Figure 2b and Figure S3 show that only one Tg appeared in each DSC curve of
the copolymer samples. These results obtained from glass transition measurement confirmed random
architecture of the NVF-St copolymers. Table 1 provides all Tg values of the copolymers, showing
that the Tg of the copolymer increased with the increase of the FNVF. Thus, the Fox equation [32,33],
which is an empirical formula to describe the linear dependence of the glass transition temperature of
a random copolymer on its composition, was used to reveal the relationship between the Tg and the
composition of the NVF-St copolymers.

1
Tg

=

(
1

TgA
−

1
TgB

)
ωA +

1
TgB

(1)

where, TgA, TgB, and Tg are the glass transition temperatures of PNVF (142 ◦C), PSt (95 ◦C), and NVF-St
copolymer, respectively, andωA is the mass percentage of NVF unit in the copolymers (FNVF). Figure 2c
presents the plot of Tg

−1 against the ωA(FNVF). The experimental plot showed good linearity (with a
correlation coefficient of 0.9906) and was close to the plot using the Fox equation. This result well
demonstrated random architecture of the NVF and St units composing the copolymer. Notably, the Tg

of NVF-St copolymer was larger than that of PSt, suggesting a better heat resistance of the functionalized
polystyrene than the homo-polystyrene. In the future, we may prepare copolymers with higher glass
transition temperature and good heat resistance through copolymerization of styrene derivatives
and NVF.

Table 1. Composition and Tg of N-vinylformamide (NVF-St) copolymers *.

No.
Molar

Ratio of
NVF/St

NVF Mass
Percentage in

Monomer Feed,
f NVF (%)

Total Monomer
Concentration

(Wt%)

NVF Mass
Percentage in
Product (by

NMR), FNVF (%)

Tg of
Product (◦C)

1 70/30 61.4 20 15.2 106
2 83/17 77.3 20 37.4 118
3 88/12 82.7 20 46.7 121
4 90/10 86.0 20 51.7 125
5 83/17 77.3 30 47.6 123
6 83/17 77.3 40 58.0 129

* The copolymerization was performed at 60 ◦C for 10 h using azodiisobutyronitrile (AIBN) as initiator.
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Figure 2. DSC curves of (a) PNVF/PSt blend (mass ratio 1/1) and (b) NVF-St copolymers. (c) The relationship
between Tg and NVF unit content in NVF-St copolymers. Solid triangle dot: Tg obtained by DSC
measurement; cycle dot: Tg calculated based on the composition using Fox equation.

2.2. Microphase Separation Morphology of the NVF-St Copolymer

Styrene is known as the most commonly used hydrophobic monomer, while NVF is a
hydrophilic functional monomer [21]. Thus, a hydrophobic phase (dominated by styrene units) and a
hydrophilic phase (dominated by NVF units) could be formed in an interpenetrating morphology [6].
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Similarly, phase-separated co-network morphology was observed in the case of copolymer of
poly(dimethylsiloxane)-α,ω-diacrylate and N,N-dimethylacrylamide [34]. It seems that the significant
difference in polarity of the two monomeric moieties is responsible for the immiscibility at the
microscale. To visually study the morphology of the sample, atomic force microscopy (AFM) was
used. AFM images confirmed that the NVF-St copolymer underwent phase separation and formed a
two-phase bicontinuous structure with non-long-range ordering, when the FNVF became larger than
50% (Figure 3). Note that the size of the bicontinuous morphology was sub-100 nm, which was much
smaller than the classical one formed by block copolymers or blends [35,36]. This may have been
caused by the random distribution of NVF and styrene units, which prevented the growth of both
hydrophobic and hydrophilic phases by forming an interpenetrated phase separation morphology.
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spin-coating) of (a) NVF-St-37.4 (No.2), (b) NVF-St-51.7 (No.4), and (c) NVF-St-58 (No.6).

To further verify the microphase separation structure of the copolymer, transmission electron
microscopy (TEM) was used. The copolymer samples were annealed at 120 ◦C for 3 h, and dyed by
reaction of –NH-CHO groups in NVF units with RuO4. Figure 4 shows that as the FNVF increased,
the area of the dark black zone became larger, indicating that the hydrophilic phase dominated by
NVF increased. Moreover, when the FNVF increased from 37.4% to 58.0%, the copolymer underwent
a phase transition and formed a microphase separation morphology. The NVF-St-58.0 exhibited
obvious an microphase separation phenomenon between a hydrophilic phase dominated by NVF
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units (dark black) and a hydrophobic phase dominated by styrene units (light gray) due to the
self-assembly behavior from two different kinds of incompatible segments in the copolymer. In the
TEM images, the characteristic size of the microphase separation structure was about 40 nm, which was
consistent with the results of AFM. It is worth mentioning that there were dense black spots at the
hydrophilic phase and the hydrophilic/hydrophobic phase interface, indicating that the NVF side
groups (-NH-CHO) in the copolymer could be exposed in water. Thus, the bicontinuous morphology
may have facilitated the exposure and hydrolysis of NVF units to generate amine groups, which was
essential for the preparation of amine-functionalized polystyrene. In addition, the good film-forming
performance of the NVF-St copolymer allowed it to be possible to prepare the copolymer membrane,
which could be converted into PSt-NH2 membrane by hydrolysis and further converted into AEM
through quaternization.
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2.3. Hydrolysis, Quaternization, and Potential Applications of the NVF-St Copolymer

The hydrolysis and further quaternization of the NVF-St copolymer were carried out. Comparing the
IR spectra of P(NVF-St) and PSt-NH2, it was found that a strong amine absorption peak appeared at 1452
cm−1, while the aldehyde absorption peak at 1670 cm−1 almost disappeared (Figure 5a). This indicated
that NVF-St copolymers could easily hydrolyze under basic conditions to produce PSt-NH2 (Scheme 1II).
The resultant PSt-NH2 could be quaternized using bromoethane under the mild condition, as shown
by the peak at 1114 cm−1, corresponding to the C–N bond of quaternary ammonium in the IR spectra
(Figure 5a) [28,37]. It is known that a quaternary ammonium containing benzyl is not stable under
strong alkali conditions due to β-elimination reaction [7]. Compared with ammonium cations prepared
from chloromethyl-functionalized polystyrene, the alkyltrimethylammonium cations prepared based
on the PSt-NH2 may have had better alkaline stability because the resultant quaternary ammonium
moieties did not contain benzyl group. Moreover, the all-carbon skeleton structure could also improve
the alkaline stability of AEM and AER [15]. Therefore, the PSt-NH2 could be used as the precursor for
making alkaline stable polystyrene-based AER and AEM.
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Functionalized polystyrene is a commonly used adsorbent; thus, it is worth evaluating the
adsorption performance of the NVF-St copolymers before and after hydrolysis. Bisphenol A (BPA),
which has been intensively concerned as an endocrine disruptor [38], was selected as a model pollutant.
Figure 5b,c shows that the BPA uptake (mg/g) of the NVF-St copolymer significantly increased when
the FNVF reached 50%. This is because the NVF-St copolymer underwent a phase separation and
formed a bicontinuous morphology at the specific FNVF. The bicontinuous morphology allowed the
NVF-St copolymer to be swollen in water and self-pored by freeze-drying. Therefore, the freeze-dried
copolymer provided improved adsorption performance (Figure 5b). The mechanism of self-poring by
the freeze-drying process is shown in Scheme 1. The hydrophilic phase dominated by NVF units in
the copolymer sample absorbed and swelled in water. The absorbed water was frozen and removed
during freeze drying, leading to the formation of pores. In such a case, water serves as a pore-forming
agent. Compared with organic porogens, water is a safe and cheap porogen, which may provide a
green and safe pore-forming process.
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Figure 5. (a) FTIR spectra of P(NVF-St), PSt-NH2, and quaternized sample(Q-PSt). (b) Bisphenol A
(BPA) uptake (mg/g) of NVF-St copolymers (VD: Vacuum-dried, FD: Freeze-dried, FDH: Hydrolyzed,
dialyzed, and freeze-dried) and (c) the relationship between BPA uptake and NVF unit content in
NVF-St copolymers (vacuum-dried). Adsorption condition: Copolymer 10 mg, BPA 200 mg/L, 5 mL,
pH 7, 18 h, room temperature.

Scanning electron microscopy (SEM) and Brunaner–Emmett–Teller (BET) analysis were used
to observe the formation of holes. SEM images (Figure 6) and the significant increase in specific
surface area (Table S1) also demonstrated the formation of through-holes, which was related to
the hydrophilic–hydrophobic bicontinuous morphology. According to Figure 6a,b, the sample
(No.6) prepared under vacuum-dried had smooth and continuous surface morphology, while after
freeze-drying, the morphology became porous and rough. Therefore, the specific surface area (Table S1)
of the latter (80.5 m2/g) was much larger than that of the former (3.5 m2/g). The specific surface
area directly affected the adsorption performance. In future study, the pore morphology and specific
surface area of the NVF-St copolymer may be further well controlled by adjusting the conditions
such as the freezing rate. Most importantly, the bicontinuous morphology facilitated the exposure
and hydrolysis of NVF units to generate amine groups (Figure 5a). After hydrolysis, the sample
(No.6) showed the highest BPA uptake (as high as 86 mg/g and about 8.5 times larger than that of PSt,
Figure 5b). The hydrolyzed product not only had a porous structure (Figure 6c), but also provided
an additional positive charge to interact with the phenol group in BPA. Additionally, the increase of
the BPA equilibrium concentration could further improve the BPA uptake of the sample. When the
equilibrium concentration was increased to 0.5 mmol/L, the BPA uptake of the hydrolyzed product
reaches 226 mg/g. Compared with commonly used activated carbon and polymer adsorbents (Table 2),
NVF-St copolymer had higher adsorption capacity and could be prepared in a facile way by free radical
copolymerization. Therefore, the strategy of free-radical copolymerization of NVF with styrene may
be used to obtain PSt-NH2 in a simple way. In short, the resultant PSt-NH2 was a desirable precursor
for making AER and AEM, because it had adjustable water uptake, obvious microphase separation
structure, and green and facile preparation process.
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Table 2. Comparison of BPA adsorption capacity of the copolymer with commonly used activated
carbon and polymer adsorbents reported in the literature.

Adsorbent qe (mg/g) Year/Ref.

HAP membranes 129.4 2017 [39]
β-cyclodextrin polymers on microcrystalline cellulose 34.7 2019 [40]

Magnetic vermiculite-modified by poly(trimesoyl chloride-melamine) 217.4 2019 [41]
Porous β-cyclodextrin/pillar[5]arene copolymer 78.9 2019 [42]

Porous β-cyclodextrin polymer 88 2016 [43]
Highly water stable graphene oxide-based composites 13.2 2019 [44]

Magnetic reduced graphene oxides 58.2 2015 [45]
Consumer-grade polyurethane foam 268 2015 [46]

Graphene 10 2017 [47]
Reduced graphene oxide 365 2017 [48]

Organo-acid-activated bentonite 127.7 2017 [49]
Electrospun nylon 6,6 membrane 91.3 2017 [50]

Hydrophobic magnetic montmorillonite composite material 59.2 2016 [51]
Mesoporous CaSiO3@SiO2 grafted nonwoven polypropylene fiber 55 2017 [52]

Crosslinked β-cyclodextrin polymer 113 2017 [53]
The NVF-St copolymer (containing 58% of NVF unit) 226 This work

3. Materials and Methods

3.1. Materials and Instrumentations

Materials and instrumentations are shown in the electronic supplementary information (ESI),
Sections S1 and S2. N-vinylformamide (NVF) (Aldrich) and styrene (St) (Beijing Chemical Works,
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Beijing, China) were purified by distillation under reduced pressure. The structure and composition
of the NVF-St copolymer were characterized by Fourier transform infrared spectroscopy (FTIR),
nuclear magnetic resonance spectroscopy (NMR), differential scanning calorimetry (DSC), and gel
permeation chromatography (GPC). The morphology and self-poring mechanism were revealed
by atomic force microscope (AFM), transmission electron microscope (TEM), scanning electron
microscopy (SEM), and Brunaner–Emmett–Teller (BET) analysis. The DMSO solution of NVF-St
copolymer (1–3 mg/mL) was dropped on a silicon wafer to form a film by KW4A spin coater at
3000 r/min for 60 s. Samples were annealed at 120 ◦C for three hours before testing AFM. UV-visible
spectroscopy was used to determine the concentration of BPA in solution.

3.2. Experimental Procedure

3.2.1. Copolymerization of NVF and St

The copolymerization was performed under nitrogen atmosphere at 60 ◦C in a 50-mL sealed flask
for 10 h using AIBN (1.5% of the total mass of the monomers) as the initiator and DMF as the solvent.
Different mass ratios of monomers ((NVF)/(St) were 70/30, 83/17, 88/12, 90/10, respectively) were
employed and the total monomer concentration controlled as 20%, 30%, or 40%. The copolymerizing
product was dissolved in a mixed solvent of DMSO and water in a volume ratio of DMSO/water at 3/1.
Then ethanol was added into the solution to obtain polymer precipitation. Such dissolution/precipitation
was repeated three times. The resultant final precipitate was vacuum-dried or freeze-dried until a
constant weight was reached, to obtain pure copolymer (yield 30–50%). The molecular weight of the
copolymer (No.1) was found to be around 12 kDalton (Figure S4).

3.2.2. Hydrolysis of the NVF-St Copolymer

The copolymer was hydrolyzed to obtain polyvinylamine. Typically, in a flask, 4.0 g of the copolymer
(No.6) was mixed with 15 mL of water and 35 mL of 5% aqueous NaOH solution. The mixture was
magnetically stirred and heated in a 60 ◦C oil bath for 24 h. The resultant solution was neutralized to
pH 7.0 using 1 mol/L HCl aqueous solution, followed by dialyzing and freeze-dried to obtain 2.9 g
product (the degree of hydrolysis: 85%).

3.2.3. Quaternization of the Hydrolyzed Copolymer

Typically, in a flask, 1.4 g hydrolyzed copolymer (No.6), 8.6 g bromoethane, and 6.3 g Na2CO3

were mixed with 30 mL water and 30 mL DMSO. The mixture was magnetically stirred and heated in a
60 ◦C oil bath for 8 h. The resultant solution was neutralized using 1 mol/L HCl aqueous solution.
Then ethanol was added into the mixture to obtain polymer precipitation. The polymer precipitation
was dialyzed and freeze-dried to obtain 1.2 g product.

3.2.4. Batch Adsorption Experiments

Adsorption studies were performed in 10-mL centrifuge tubes equipped with a magnetic stir
bar (the stirring rate is 150 r.p.m.) at ambient temperature. The NVF-St copolymer (10 mg) was
added into 5 mL of BPA solution (200 mg/L, pH 7) for 18 h. Then, the mixture was filtered by a
PTFE (0.2 µm) membrane, and the residual concentration of BPA in each sample was determined by
UV-visible spectroscopy. The amount of BPA bound to the copolymer (Qm) was calculated by the
following equation:

Qm =
(Co −Ce) ×V

mc
(2)

where Co and Ce are the BPA concentrations in solution before and after adsorption, respectively, V is
the volume of the solution, and mc is the mass of the copolymer.
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4. Conclusions

In summary, NVF-St copolymers with different NVF contents were synthesized via free-radical
copolymerization in a simple way by adjusting the monomer feed ratio and monomer concentration.
The bicontinuous morphology with a size at sub-100 nm level was formed in the NVF-St copolymers
with high NVF mass percentage. Such a structure allowed NVF-St copolymers to be self-pored by
water-swelling and freeze-drying, resulting in a large specific surface area. The BPA uptake of the
copolymer reached 226 mg/g, which was larger than that of the commonly used activated carbon and
polymer adsorbents, indicating the copolymer has higher adsorption capacity. Additionally, the NVF-St
copolymer was easily hydrolyzed to convert into amine-functionalized polystyrene, which could be
further quaternized to produce ammonium cations. The amine-functionalized polystyrene would be
an excellent precursor for making polystyrene-based AER and AEM with all-carbon backbone structure
and benzyl-free quaternary ammonium and smooth ion transport channels. The entire process, from the
copolymerization, hydrolysis, to the quaternization, did not involve any metal catalyst, toxic porogen,
or carcinogenic raw material. Therefore, the process may provide a safe, green, and facile way to access
AER and AEM. Prospectively, AER and AEM made by the amine-functionalized polystyrene may have
potential applications in many fields, such as anion exchange membrane fuel cell, adsorbent materials,
catalysts, water treatment, and drug separation/purification.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/24/
9404/s1.
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