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Abstract: HU is a nucleoid-associated protein expressed in most eubacteria at a high amount of
copies (tens of thousands). The protein is believed to bind across the genome to organize and
compact the DNA. Most of the studies on HU have been carried out in a simple in vitro system, and
to what extent these observations can be extrapolated to a living cell is unclear. In this study, we
investigate the DNA binding properties of HU under conditions approximating physiological ones.
We report that these properties are influenced by both macromolecular crowding and salt conditions.
We use three different crowding agents (blotting grade blocker (BGB), bovine serum albumin (BSA),
and polyethylene glycol 8000 (PEG8000)) as well as two different MgCl2 conditions to mimic the
intracellular environment. Using tethered particle motion (TPM), we show that the transition between
two binding regimes, compaction and extension of the HU protein, is strongly affected by crowding
agents. Our observations suggest that magnesium ions enhance the compaction of HU–DNA and
suppress filamentation, while BGB and BSA increase the local concentration of the HU protein by
more than 4-fold. Moreover, BGB and BSA seem to suppress filament formation. On the other hand,
PEG8000 is not a good crowding agent for concentrations above 9% (w/v), because it might interact
with DNA, the protein, and/or surfaces. Together, these results reveal a complex interplay between
the HU protein and the various crowding agents that should be taken into consideration when using
crowding agents to mimic an in vivo system.

Keywords: HU; nucleoid-associated protein; bacterial chromatin; nucleoid; crowding; protein-DNA
interaction; TPM

1. Introduction

In 1975, HU (Histone-like protein from strain U93) was discovered as one of the most abundant
proteins in Escherichia coli (E. coli) cells [1]. E. coli HU is a small (9 kDa) DNA binding protein
encoded by two different genes, hupA and hupB. The products of these genes assemble into hetero-
and homo-dimers in solution (HUαβ, HUαα and HUββ) (18 kDa) [2]. While heterodimers exist
in E. coli, homodimers are most common in other bacteria. The protein is a nucleoid-associated
protein (NAP), which is a family of proteins involved in the organization and compaction of genomic
DNA as well as the regulation of genomic DNA transactions [3–5]. HU exhibits two DNA binding
modes: a DNA bending mode [3,4] and an extension mode with HU filaments forming on DNA [6–10]
(Figure 1A,B). The structures of HU alone and HU–DNA complexes have been determined using
X-ray crystallography and NMR [3,4,11]. The protein consists of an “arm” composed of β-sheets and
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a “body” composed of α-helices. In the bending mode, the two “arms” of the dimer insert into the
minor groove of DNA [6] inducing two bends spaced by 9 bps. It is unclear how HU dimers interact in
filaments. However, it has been suggested that in filaments, one of two “arms” of a dimer interacts
across DNA with another “arm” of another dimer, and the other “arm” of each dimer interacts with
the “body” of the neighboring dimer [9] (Figure 1B). The transition between the two binding modes is
dependent on HU concentration [7,12] and potentially also on physicochemical conditions.

1A

1B

1C

Figure 1. HU exhibits different DNA binding modes with distinct structural effects. (A) Model of DNA
bending by Anabaena HU bound to a pre-distorted dsDNA substrate (X-ray structure of HU–DNA
complex, PDB code 1P71 [13]. (B) Model of an HU–DNA filament as proposed by Hammel, M. et al. [9]
(reproduced under license CC-BY-4.0: https://creativecommons.org/licenses/by/4.0/)). Pink and blue
represent HUαβ and DNA in yellow color. (C) Typical tethered particle motion (TPM) data obtained
for DNA and different types of HU–DNA complexes. Example of a time trace of x and y position of a
surface-tethered bead (top). Bare DNA and HU–DNA complexes incubated with 200 nM (bending
mode) and 1600 nM (filament formation mode) are shown respectively in black, red, and blue.

Macromolecules, usually polymeric molecules, with a molecular mass greater than a few thousand
Dalton, cause diverse effects in a space confined system. Macromolecular crowding effects arise because
of macromolecules’ occupancy of a significant fraction in the confined volume, which consequently
drives changes in the conformation of proteins [14], diffusion [15] of proteins, and protein–protein
interaction [16], concomitantly enhancing and perturbing protein binding energy and affinity to
DNA [17]. A demonstration of this effect is the seminal study by Murphy and Zimmerman [18], which
reports on the effects of macromolecular crowding on HU binding to DNA, using polyethylene glycol
(PEG8000) as a crowding agent. In their study, PEG8000 was shown to enhance the DNA binding
affinity of HU. Another nucleoid-associated protein, H-NS, has also been investigated in the presence
of PEG. That study reveals that that the binding cooperativity of H-NS proteins was increased [19].

Ionic strength also affects the binding of HU to DNA. The effects of ionic strength on proteins have
been investigated for many years [20]. Ionic strength has been shown to affect DNA binding affinity as
a consequence of charge shielding on the interaction partners [21]. In line with generic observations,
high NaCl concentration has been found to reduce HU binding affinity [22,23]. Salt conditions affect
the transition between the two binding modes of HU because filamentation requires a high HU density
on DNA, which is harder to achieve at high salt conditions.

Murphy and Zimmerman showed that the condensation of DNA by HU is significantly increased
by increasing concentrations of PEG8000 and MgCl2 [18]. Inspired by this earlier study as well
as by indications from other studies showing that different crowding agents have different effects
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on protein binding [24], we systematically investigated the effect of different crowding agents on
the binding of HU to DNA. We selected two types of crowding agents from milk, blotting grade
blocker (BGB) and bovine serum albumin (BSA), as well as polyethylene glycol 8000 (PEG8000)—a
synthetic polymer—to investigate the impact of crowding. BGB is a non-fat milk-product mixture of
predominantly casein micelles containing various large globular proteins ranging from 50 to 600 nm in
diameter [25,26]. It is commonly used to block non-specific membrane binding in Western blotting
and as a surface passivation agent in single molecule assays [10]. It consists of neutrally charged
proteins that likely do not exhibit charge interactions with DNA and HU. BSA (66.3 kDa [14]) is a
protein that is commonly used as a crowding agent in biochemical reactions. However, it exposes
negative charges on its surface, and it might interact with DNA and proteins [27]. PEG has been used
in many studies on crowding [17,19]. PEG8000 (8 kDa), used in this study, is not an ideal crowding
agent, as it is known to interact with proteins at higher concentrations [28]. In dilute conditions,
PEG8000 attains a globular shape with a neutrally charged surface [29]. However, it is unknown
whether, and if so at which concentration, PEG8000 interactions with HU occur, and how this affects
HU. We also investigate the effect of Mg2+ in our experiments on crowding. Understanding the effects
of magnesium ions is important because of their essential role in the functionality of many proteins
and enzymes [29–34]. For our studies on HU binding to DNA, we make use of tethered particle
motion (TPM) assays, in which the x–y movement of tethered microspheres is recorded (Figure 1C–top).
The root-mean-square (RMS) displacement obtained from an x–y position distribution is used for
characterizing the physical properties of protein–DNA complexes. A decrease in RMS indicates a
compacted protein–DNA structure as in Figure 1C (red distribution), and an increase in RMS indicates
an extended protein–DNA structure as in Figure 1C (blue distribution).

2. Materials and Methods

2.1. Protein Expression and Purification

The purification was carried out as described before [35]. HU was overproduced in E. coli KA
1790. Cells were grown on LB in 0.5 L batch culture at 30 ◦C. At an OD600 of 0.6, over production
was introduced by the addition of 0.5 l LB (pre-heated to 60 ◦C), and incubation was continued at
42 ◦C. Two hours after induction, cells were collected and the pellets were frozen. Then, pellets were
resuspended in HB buffer (25 mM Tris, pH 8.0, 1 mM EDTA, 5 mM β-mercaptoethanol, 10% glycerol)
with 250 mM NaCl and further lysed by sonication. The lysate was cleared by centrifugation at
35,000 r.p.m. for 30 min at 4 ◦C. Subsequently, the supernatant was incubated for 20 min at 90 ◦C.
The lysate was cleared from heat-denatured proteins by centrifugation at 10,000 r.p.m. for 15 min.
Then, the supernatant was diluted with HB buffer to a NaCl concentration of 100 mM and loaded onto
a P11-column pre-equilibrated with the same buffer. A linear NaCl gradient up to 1 M was applied,
and HU was eluted at 400–500 mM NaCl. HU-containing fractions were pooled, diluted with HB
buffer to a NaCl concentration of 50 mM NaCl, and loaded onto a Resourse S-column pre-equilibrated
with the same buffer. A linear NaCl gradient up to 750 mM was applied and HU was eluted around
200 mM NaCl. The purity of the HU protein was verified on an SDS-PAGE gel and quantified using
BCA assay (Thermo scientific). DNA binding activity was confirmed by TPM.

2.2. DNA Substrate

An end-labeled DNA substrate of 685-bp (53% GC content) [12] was obtained by PCR using
biotin–and digoxygenin (DIG)-labeled primers and plasmid pRD118 (laboratory collection) as a
template. pRD118 was constructed by inserting a 685 bp long fragment from the S. solfataricus P2
genome into the NdeI and BamHI site of pET3-his. The plasmid and plasmid sequence are available
upon request. The PCR product was purified using the GenElute PCR Clean-up kit (Sigma-Aldrich,
Zwijndrecht, Netherlands)).
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2.3. Beads

Streptavidin-coated polystyrene beads (0.44 µm in diameter; Kisker Biotech, Steinfurt, Germany)
were diluted in 0.01% (w/v) in buffer A (10 mM Tris-HCl (pH7.5), 150 mM NaCl, 1 mM EDTA, 1 mM
DTT, and 3% (w/v) glycerol) and bath sonicated [36]. Additional DIG-coated polystyrene beads (0.9 µm
in diameter; Spherotech) [37] were added after sonication as reference beads settled on the surface.
The DIG-coated beads will bind to the surface and serve as reference beads for drift correction.

2.4. Flow Cell

Two sizes of cover glasses (30 mm and 28 mm in diameter; Thermo Fisher Scientific, Bleiswijk,
Netherlands) were first sonicated in acetone and then sonicated in ethanol for cleaning. The parafilm
strips cut by scissors were aligned using a tweezer and sandwiched between the two different sizes of
a cover glass. The parafilm in between the glasses was melted on a heating plate at 80 ◦C and formed
the channels at room temperature. A homogeneous force (200 g in weight) was applied to the flow cell
during cooling. In total, 8–9 chambers were made on each pair of cover glasses, each with a volume of
≈15 µL.

2.5. Tethered Particle Motion Experiments

For TPM, a streptavidin-coated microsphere was attached to a double-stranded DNA (dsDNA),
which was labeled separately with biotin and digoxigenin at two ends. Biotin binds to the
streptavidin-coated beads, and digoxigenin binds to the anti-digoxigenin antibodies with which
the inner surface of the flow cell was coated. The TPM instrument used and the experimental
approach were described elsewhere [36]. In short, surface-tethered beads were illuminated with an
LED, imaged using a Nikon oil immersion lens (100×) and imaged with a CCD camera. Using a bead
tracking program written in LabView [38], we determined the two-dimensional motion of the tethered
beads and we can calculate their root-mean-square (RMS) displacement. The RMS is a proxy of the
conformation of the HU–DNA complex.

Flow cells were incubated with 20 µl/mL anti-DIG antibodies (Roche) for 10 min. Passivation
of the surface was achieved by incubating buffer B (0.2% (w/v) BSA (Sigma-Aldrich, Zwijndrecht,
Netherlands) in phosphate-buffered saline (PBS) (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4, 1.8 mM
KH2PO4, pH 7.5)), then buffer C (0.5% (w/v) Pluronic (Sigma-Aldrich) in PBS), and then buffer D (buffer
A with the addition of 4% (w/v) BGB (Bio-Rad)). Each buffer incubation lasted 10 min. An amount of
100 pM DNA was introduced into flow cells after flushing buffer A and was incubated for 10 min.

Microspheres (0.44 and 0.9 µm in diameter) suspended in buffer A were introduced into flow cells
after DNA incubation, and the free DNA were flushed out with buffer D. After 10 min incubation,
free beads were removed by flushing measuring buffer in a volume of 80 µl. Then, the flow cells were
ready to be used. Samples are a titration series from 0 to 1600 nM HU using desired measuring buffers:
0.5% and 1% (w/v) BGB, 1.25%, 5%, 10% (w/v) BSA, 3%, 9%, 15% (w/v) PEG8000 in buffer I, the absence
of MgCl2, (10 mM Tris (pH 7.5), 50 mM NaCl, 1 mM EDTA), and for the experimental condition
containing MgCl2: 0.5% (w/v) BGB, 10% (w/v) BSA, and 3% (w/v) PEG in buffer II, the presence of
MgCl2, (10 mM Tris (pH 7.5), 50 mM NaCl, 8 mM MgCl2).

2.6. Data Analysis

The RMS value of the excursion of each individual bead was calculated from x- and y-coordinates
of a 40 s time trace (drift corrected by the 0.9 µm stuck beads) as:

RMS =

√
(x− x)2 + (y− y)2 (1)

where x and y are averaged over the full-time trace. The symmetry of the excursion of the tethered

beads was evaluated by calculating the anisotropic ratio a =
lmajor
lminor

from the xy-scatter plots, where lmajor
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and lminor represent the major and minor axis of the xy-scatter plot, respectively. Only tethers with
symmetry a ≤ 1.3 were selected for further analysis. For each measurement condition, RMS values
corresponding to each HU concentration were obtained from the fitting of a single Gaussian function
to the pooled RMS values of individual tethers (N > 70, see Figures S1–S5).

2.7. Quantitation of DNA Coverage and Calculation of DNA Binding Properties

To compare quantitatively the binding affinities of proteins at the different conditions, we calculated
the fractional coverage of HU on DNA, υ, as follows [39]:

υ =

√
Lp−1 −

√
Lp,bare

−1√
Lp,saturated

−1 −

√
Lp,bare

−1
(2)

where Lp represents the measured persistence length, Lp,saturated represents the minimum persistence
length at saturation, and Lp,bare represents the persistence length of bare DNA. The persistence length
is converted from RMS using the relationship determined elsewhere [12] as:

RMS = 233−
156(

1 + 0.086·Lp
)0.45

(3)

In this approach, it is assumed that each bound protein gives an equal contribution to the decrease
in DNA stiffness. To calculate binding affinities under the different conditions, the Hill function was
fitted to the fractional coverage [40,41]:

f (x) = υ0 + (υmax − υ0)
xn

xn + kn (4)

where k represents the Michaelis constant, and n represents the cooperativity factor.

3. Results

3.1. MgCl2 Enhances Compaction of DNA by HU

To investigate the effect of divalent cations on HU binding, we incubated DNA with HU in a
buffer either without or with 8 mM MgCl2. The protein was titrated over a concentration range in
which we expect to reproduce both binding regimes, as seen in earlier work [7,12]. In the absence
of magnesium ions, the root-mean-square displacement (RMS) of the movement for bare DNA was
found to be 140.8 ± 0.2 nm (N = 300, standard error of the mean (SEM)); Figure 2A gray horizontal
line). At an HU concentration of 150 nM, at which the most compacted state was reached, the RMS was
found to be 102.4 ± 0.5 nm (N = 198). In the presence of MgCl2, the RMS of bare DNA was found to be
140.3 ± 0.3 nm (N = 302), which is the same as that observed without MgCl2. However, the RMS in the
most compact state in the presence of MgCl2 was found to be 97 ± 1 nm (N = 222), which is 5% lower
than that in the absence of MgCl2 (Figure 2A). Thus, our observations suggest that MgCl2 enhances the
compaction of DNA by HU. The most compact state was observed at 150 nM HU both in the absence
and presence of MgCl2, which indicates that MgCl2 does not alter the DNA binding affinity of HU.

Interestingly, we found two RMS populations for data obtained at HU concentrations between
150 and 400 nM (Figure 2A and Figure S1). One population corresponds to the reported compact
state, while the other population has a high RMS close to that of bare DNA. This phenomenon was
independent of the presence of MgCl2. As HU dimers are known to bind cooperatively, it could be that
in a subset of complexes, HU–DNA fragments not covering the entire length of the DNA are formed,
thus yielding a larger RMS. Structurally, this would correspond to the co-existence of the two binding
modes; we will refer to it as the “co-existence state” (Figure 2B).
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Figure 2. TPM measurements of the effect of MgCl2 on binding of HU to DNA. (A) Root-mean-square
(RMS) as a function of HU concentration in the absence (gray) and presence (red) of MgCl2. Open
symbols correspond to the smaller subpopulation. The gray horizontal band indicates the RMS of bare
DNA in both the absence and presence of MgCl2. Error is the standard error of the mean. (B) Illustration
of the nature of heterogeneous complexes. Depending on the ratio between the binding of individual
DNA bending proteins and filament formation, the RMS data exhibit one or two populations.

3.2. BGB Increases Local HU Concentration

We investigated the effect of BGB on HU binding at various conditions: 0.5% and 1% (w/v) of BGB
in the absence of MgCl2, and 0.5% BGB in the presence of MgCl2. In the presence of BGB, gradual
compaction and de-compaction over the tested concentration range are observed (Figure 3A), which is
in contrast with the much more abrupt switching between binding regimes in buffer without BGB.
The compaction of HU–DNA becomes notable at 12.5 nM HU concentration in both BGB crowding
environments, and the RMS of the tethered beads reduced gradually with increasing HU concentration.
In contrast, the decrease in RMS in crowder-free conditions without MgCl2 occurs abruptly at a
concentration of 150 nM HU. This suggests that BGB increases the local concentration of HU dimer,
stimulating HU binding to and the subsequent bending of DNA at much lower HU concentrations.
Moreover, in both BGB conditions, the RMS of the most compact HU–DNA state goes down to
99 ± 1 nm (N = 173; 0.5% (w/v) of BGB) and 97.0 ± 0.5 nm (N = 191; 1% (w/v) BGB), which is ≈4% lower
than in the crowder-free case (102.4 ± 0.5 nm). This reduction suggests that BGB also slightly enhances
the extent of HU–DNA compaction.

There are some notable differences between the impact of the two BGB concentrations as well.
First, the maximal compaction is reached at a lower HU concentration (25 nM versus 100 nM) in
low BGB concentration compared to the higher BGB concentration. This observation suggests that
there is a balance between the crowding effect on binding energy and on diffusion i.e., it might be
that too much crowding by BGB hinders HU access to DNA. Second, at higher HU concentrations
where HU forms filaments along the DNA, the RMS increases less in the presence of BGB compared to
conditions without BGB. Moreover, the impact on filament formation in 1% BGB is stronger than in
0.5% BGB; see the difference in slope in Figure 3A in the filamentation regimes. BGB might inhibit
HU filamentation. This could be due to changes in the size of BGB, which increases the repulsive
force between the protein and crowding agent [42], and it consequently reduces the probability that
multiple HU dimers bind to DNA at the same time. The repression of filamentation by BGB might also
explain why we do not observe the two populations as found in the condition without crowding agent
(Figure 2A).

When we compare the effects of this crowding agent in the presence of MgCl2, we observe that the
most compact state appears at 200 nM with an RMS of 90.3 ± 0.4 (N = 220) nm, which is a reduction
by 7% compared to the RMS without BGB (97 ± 1 nm, N = 222) (Figure 3B). Moreover, given that
the compaction of DNA by HU in the presence of MgCl2 is already enhanced (see Figure 2A), it can
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be concluded that MgCl2 works synergistically with BGB enhancing DNA compaction. At low HU
concentration, the trend in reduction of RMS in 0.5% BGB with MgCl2 is similar to that in 0.5% BGB
without MgCl2. At high HU concentration, double the HU concentration is needed in the presence
of MgCl2 to reach the same level of filament formation, indicating that BGB with MgCl2 suppresses
filament formation.
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Figure 3. TPM measurements of the effect of blotting grade blocker (BGB) and MgCl2 on the binding of
HU to DNA. (A) RMS as a function of HU concentration in different crowding conditions. Horizontal
lines represent the RMS of bare DNA in the absence of BGB (gray), 1% BGB (brown), and 0.5% BGB
(light blue) in the absence of MgCl2. (B) RMS as a function of HU concentration in different crowding
conditions and MgCl2 concentrations. Horizontal lines represent the RMS of bare DNA in the absence
of BGB and in the presence of MgCl2 (gray), with 0.5% BGB in the absence of MgCl2 (pink) and with
0.5% BGB in the absence of MgCl2 (light blue). The second population in RMS both in the absence and
presence of MgCl2 is removed in (A,B). Error is the standard error of the mean.

3.3. BSA Increases Local HU Concentration

To investigate the impact of BSA on HU binding, we used three concentrations (1.25%, 5% and
10% (w/v)) of BSA in the absence of MgCl2, and 10% BSA in the presence of MgCl2. In the presence
of BSA, compaction and de-compaction occur across a larger concentration range compared to the
condition without BSA (Figure 4A). The compaction becomes visible at 6.25 nM HU in 1.25% and 5%
BSA, and at 12.5 nM HU in 10% BSA, whereas the reduction in RMS in crowder-free condition occurs
abruptly at 150 nM HU. This suggests that BSA increases the local concentration of HU dimer. In 5%
and 10% BSA conditions, the most compact states are 101.8 ± 0.5 nm (N = 441) and 101 ± 1 nm (N = 224)
at 50 nM HU while at 1.25% BSA, it is 105 ± 1 nm (N = 183) at 25 nM HU. Based on these observations,
we can conclude the following: (1) the most compact state attained in the presence of BSA does not
show a significant difference compared to that in absence of BSA. (2) A too high BSA concentration
(above 5%) is less effective in increasing the local HU concentration. As mentioned above in Section 3.2,
the crowding agent may interfere with HU binding either by steric hindrance or by interacting with
HU and/or the DNA [27], thus indirectly affecting the binding affinity of HU to DNA. Finally, as is
the case for BGB, BSA also suppresses the co-existence of two states in the intermediate concentration
range (Figure 4A). Moreover, increasing the concentration of BSA from 1.25% to 5% suppresses the
filamentation, as seen for BGB. In general, the regulation of filament formation occurs in different ways:
it can be modulated by the buffer environment but also by the DNA substrate [43]. Since BSA can
potentially interact with DNA [44], the properties of DNA might in our case be affected, reducing the
ability of HU to form filaments.

Next, we compare the effects of this crowding agent in the presence of MgCl2. In the presence
of MgCl2 and 10% BSA, the most compact state has an RMS of 86.8 ± 0.3 (N = 284) nm at 800 nM,
which is a reduction of ≈11% compared to the RMS in presence of MgCl2 without BSA (97.3 ± 0.8 nm,
N = 222) (Figure 4B). In addition to the enhanced compaction, the most compacted state occurs at a
higher HU concentration. This phenomenon cannot be explained as due to the impact of MgCl2 or
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BSA alone; BSA together with MgCl2 yields more stable compaction, which is achieved at higher HU
concentration. The effect of salt concentration, NaCl, on BSA has been investigated by Yoshikawa
et al. [27], who showed that the size of BSA increases in low salt. Thus, in our experiments with MgCl2,
BSA could be reduced in size, resulting in a lower effective volume exclusion effect. However, the BSA
change in terms of size and surface charge can still possibly inhibit filamentation by interacting with
the DNA and thus preventing multiple HU dimers to bind in a filament on DNA.
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Figure 4. TPM measurements of the effect of bovine serum albumin (BSA) and MgCl2 on the binding of
HU to DNA. (A) RMS as a function of HU concentration in different crowding conditions. Horizontal
lines represent the RMS of bare DNA in the absence of BSA (gray), 1.25% BSA (blue), 5% BSA (orange),
and 10% BSA (red) in the absence of MgCl2. (B) RMS as a function of HU concentration in different
crowding conditions and MgCl2 concentrations. Horizontal lines represent the RMS of bare DNA in
the absence of BSA and in the presence of MgCl2 (gray), with 10% BSA in the absence of MgCl2 (pink)
and with 10% BSA in the absence of MgCl2 (light blue). The second population in RMS both in the
absence and presence of MgCl2 is removed in (A,B). Error is the standard error of the mean.

3.4. PEG8000 Enhances HU Compaction

In order to investigate the impact of PEG8000 on HU binding, we used three concentrations (3%,
9%, and 15% (w/v)) of PEG8000 in the absence of MgCl2 and 3% PEG8000 in the presence of MgCl2.
The presence of PEG8000 causes gradual compaction and de-compaction across a larger concentration
range compared to the condition without PEG8000 (Figure 5A). The compaction starts at 12.5 nM HU
in 15% PEG, 50 nM HU in 9% PEG, and 100 nM HU in 3% PEG, whereas the reduction in RMS in
crowding-free condition occurs at 150 nM HU. This suggests that with a high enough concentration,
PEG8000 is able to increase the local HU concentration. We observed no significant effect on the value
of the lowest RMS along the titration curve in 3% and 9% PEG, but 15% PEG yields a dramatic 30%
decrease in RMS (71 ± 1 nm, N = 210) compared to the crowder-free condition. It has been observed
that PEG8000 polymers interact with themselves in a high concentration [45]. These polymers can form
a larger ball-shape structure: the hydrophobic chains of polymers face inward, and the hydrophilic
OH ends of the chains face outward. It is possible that the DNA gets covered by PEG8000, leading to
an extended configuration; the RMS of bare DNA in 15% PEG8000 is higher compared to the condition
without PEG8000 (Figure 5A, pink horizontal line). This extended DNA may favor HU binding,
meaning that more HU dimers can bind and cause stronger compaction.

Next, we investigated the effect of this crowding agent in the presence of MgCl2. HU dimer was
diluted in the buffer containing 8 mM MgCl2 and 3% PEG8000. In these conditions, the most compact
state appears at an RMS of 90 ± 2 (N = 229) nm at 100 nM, which is a reduction by 7% compared to the
RMS in the presence of MgCl2 without PEG8000 (97 ± 1 nm, N = 222) (Figure 5B). In contrast, the most
compact state in the absence of MgCl2 does not change regardless of the PEG8000 concentration.
These results indicate that MgCl2 works synergistically with PEG8000 in enhancing DNA compaction.
Moreover, the PEG and MgCl2 combination seems to increase the local HU concentration with the
most compact state appearing at 100 nM HU.
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Figure 5. TPM measurements of the effect of PEG8000 and MgCl2 on binding of HU to DNA. (A) RMS
as a function of HU concentration in different crowding conditions. Horizontal lines represent the RMS
of bare DNA in the absence of PEG8000 (gray), 3% PEG8000 (blue), 9% PEG8000 (green), and 15%
PEG8000 (pink) in the absence of MgCl2. (B) RMS as a function of HU concentration in different
crowding conditions and MgCl2 concentrations. Horizontal lines represent the RMS of bare DNA in
the absence of PEG8000 and in the presence of MgCl2 (gray), with 3% PEG8000 in the absence of MgCl2
(pink) and with 10% BSA in the absence of MgCl2 (light blue). The second population in RMS both in
the absence and presence of MgCl2 is removed in (A,B). Error is the standard error of the mean.

Note that the RMS of bare DNA in 9% and 15% PEG show significantly higher values (Figure 5A,
green and pink horizontal lines) compared to the bare DNA in the absence of MgCl2 and crowder-free
condition (Figure 5A, gray horizontal line). This suggests that PEG8000 at high concentrations interacts
with DNA (Table S4). It was noted by Zhou et al. [46] that PEG8000 cannot be described quantitatively
in terms of excluded volume alone; its effects on different proteins differ strongly. Moreover, in the
presence of PEG, we observe often two tether populations (Figure 5B). The appearance of these
populations is similar to what we observe in crowding-free conditions (Figure S4A–C). Finally, at high
PEG8000 and high HU concentration, DNA tethered beads get stuck on the channel surface. Taken all
the observations at a high concentration of PEG8000 together, we conclude that PEG8000 might not
simply exclude volume but also interact with the DNA, protein, and/or surfaces.

3.5. HU Binding Cooperativity in Crowded Conditions

To compare the effect of all the different crowding agents and the impact of MgCl2, we plotted the
RMS values of the most compact state as a function of HU concentration in Figure 6. BSA (solid circles)
yields the strongest effect in volume exclusion; even low amounts of BSA strongly increase the local
HU concentration on the DNA, which directly results in DNA compaction. For all the experimental
crowding conditions, the most compact state is shifted to higher HU concentration in the presence
of MgCl2. The trend that the RMS becomes lower when a higher HU concentration is needed to
achieve maximum compaction (Figure 6) suggests that the combination of MgCl2 and crowding agents
suppresses filament formation/propagation, increasing the opportunity for HU to bend and compact
the DNA more. The combination of MgCl2 and BSA yields the largest degree of compaction for all
conditions tested. It is known that MgCl2 influences the surface charge and the size of BSA and thus,
in the presence of MgCl2, it seems the strongest in preventing multiple HU dimers to form filaments,
yielding the most compacted HU–DNA complexes.

To get more insight into how HU dimers induce stronger compaction in the presence of MgCl2
and crowders, we estimate the amount of bound protein, which we calculate from the fraction of DNA
covered by HU [39] using the apparent persistence length (Lp), which is derived for each RMS value
using a numerical approximation by simulation [12] (see Materials and Methods). We found that HU
coverage, the fraction of DNA that is covered by protein, in the absence of crowding agent shows a
sharp transition in the compaction mode. The fraction of DNA covered by HU increased from 10% to
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100% when increasing HU concentration from 100 to 150 nM (Figure S6). DNA coverage in crowding
conditions more gradually increases with increasing HU concentration.
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Figure 6. The most compact state in all experimental conditions. Experimental conditions are labeled
1–13. Numbers 1 to 3 are in the presence of BSA in 1.25, 5, and 10% (v/w) concentration; 4 and 5 are
in the presence of 0.5 and 1% (v/w) BGB; and 6 to 8 are in the presence of PEG8000 in 3, 9, 15% (v/w),
respectively. Both 9 and 10 are crowder-free and in the absence and presence of MgCl2, respectively,
while 11 to 13 with the empty symbols represent MgCl2 conditions with the addition of 0.5% BGB,
10% BSA, and 3% polyethylene glycol 8000 (PEG8000), respectively. Error is the standard error of
the mean.

Then, we obtain the cooperativity of HU binding [39] from these coverage data. We extracted
this binding parameter by fitting a Hill function [40] to the curves of fractional coverage of DNA as
a function of HU concentration. Using the Hill function here is not to pursue an accurate number
but rather to facilitate comparison. We divided the binding curves into a compaction regime and
an extension regime using the most compact state as the boundary between the two regimes. Next,
we analyzed both regimes independently. In both the presence and absence of MgCl2 in crowder-free
conditions, the compaction regime exhibits an extremely sharp transition (Figure 2A). It is not possible
to obtain a Hill curve fit from the limited number of data points. Therefore, we implement three sets of
fitting curves (Figure S6E) as a reference and estimate the cooperativity of HU in the presence and
absence of MgCl2 in the compaction regime. The estimated cooperativity is above 20. For 10% BSA in
the presence of MgCl2, we obtained the estimated value using the same method due to the limited
number of data points (Figure 7, bottom empty diamond). In the presence of nearly all crowding agents,
this sharp transition is suppressed, i.e., crowding agents make compaction a less cooperative process.
Compared to the low cooperativity in the compaction regime (Figure 7, top), enhanced cooperativity
in the extension regime is found in the presence of MgCl2 (Figure 7, bottom).

PEG8000 affects the DNA compaction and extension dynamics in a manner distinctly different
from BSA and BGB. In fact, PEG8000 likely acts directly on the DNA as well as on the tethered beads
and chamber surface. This might affect the DNA configuration measurement and dramatically lower
the RMS values. Based on its anomalous behavior, we propose that PEG8000 is not a suitable crowding
agent for studying HU–DNA interactions.
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Figure 7. Binding cooperativity in both the compaction and extension regimes. Values are obtained by
fitting with the Hill function (Materials and Methods). Values at 0 and 8 Mg2+ in compaction mode are
shown for reference. Each Mg label represents the experimental condition containing MgCl2. Error is
the standard error of the mean.

4. Discussion and Conclusions

It has been appreciated for a long time that macromolecular crowding affects cellular processes,
but it is difficult to reproduce these crowding conditions in an in vitro setting. One approach is to use
cell extracts [47], but while these may be more “physiological” in terms of composition, composition is
often less well defined. Thus, reconstitution with purified components and added, defined crowding
agents is an important complementary approach. So far, there is still no universal crowding agent to
appropriately mimic intracellular crowding conditions for different types of protein systems. As a
result of the size, shape, concentration [46,48], and surface charge of crowding agents, crowding agents
are not always generating “pure” crowding effects on the proteins of interest. Based on our TPM
studies, we reveal that three types of crowding agents (BGB, BSA, PEG8000) have a distinct impact on
the dual-binding modes of HU (compaction and extension/filament formation). Our results indicate
that inside a cell, due to the crowded environment, regarding the binding of individual HU dimers,
promoting compaction is biased over filament formation along DNA, which would not contribute to
DNA compaction in any obvious manner.

We have observed an enhanced condensation of HU–DNA in the presence of MgCl2, but we did
not observe an increased affinity/stability of HU binding to DNA as detected using SDS–polyacrylamide
electrophoresis [18]. We attribute more value to our observations using TPM in which a stable buffer
environment with a constant amount of MgCl2 is present, whereas due to the nature of electrophoresis
experiments, the environment experienced by protein and DNA is poorly defined in electrophoresis.

We have observed that two states co-exist in the transition phase between condensation and
extension in crowder-free conditions. These two distinct populations are absent under crowding
conditions. To our knowledge, these two populations are not observed in previous studies. These two
populations correspond to either complexes dominated by HU in its bending mode (lower RMS) or
complexes dominated by HU forming filaments (higher RMS).

The addition of MgCl2 in the presence of crowding agents promotes compaction. This suggests
that MgCl2 in the presence of crowding agents more specifically suppresses filament formation possibly
by changing HU conformation and the structure of crowding agents, leaving more space on DNA for
the HU dimer to bend.

To conclude, over the last three decades, in vitro protein studies have mostly been carried out
under simple experimental conditions without considering the macromolecular environment. That this
environment plays an important role is becoming increasingly clear. Hence, the study of useful
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crowding agents that mimic such conditions when studying proteins is gaining prominence. Here,
we conclude that BGB is a good crowding agent for studying HU–DNA interactions in the presence
and absence of MgCl2; i.e., it seems the most suitable crowder to increase the HU–DNA interaction.
Nevertheless, we showed that the presence of different crowding agents in different buffer conditions
can result in vastly different outcomes. Hence, defining suitable crowding conditions to mimic the
crowded cellular environment is very hard and probably protein-dependent and thus should be done
with utmost care.

An actual intracellular environment is not only crowded but also contains different ions to
interact with proteins. Therefore, it will be worthwhile to examine the effect of charged crowding
agents interacting with DNA. We have tested how three crowding agents affect one type of protein.
This represents only a first step to study the crowding effects in a system. The crowding agent,
BGB, is the one that shows a clear volume exclusion effect and is the least influenced by MgCl2
in the buffer solution among the crowding agents we have measured. BSA and PEG8000 under
certain concentration and ionic conditions can still be an option for mimicking a crowded intracellular
environment, but particular care is needed about the effect on the biological functionality of the
molecules studies. Resolving the mechanisms underlying all the interactions between crowding
agents, proteins, and DNA requires further investigation related to their independent physical and
chemical properties.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/24/
9553/s1. Figure S1 Distribution of RMS values obtained at different HU concentration in the absence of MgCl2.
Figure S2 Distribution of RMS values obtained at different HU concentration in the presence of 0.5 % (w/v) BGB
in the absence of MgCl2. Figure S3 Distribution of RMS values obtained at different HU concentration in the
presence of 1.25 % (w/v) BSA in the absence of MgCl2. Figure S4 Distribution of RMS values obtained at different
HU concentration in the presence of 3 % (w/v) PEG8000 in the absence of MgCl2 Figure S5 Distribution of RMS
values obtained at different HU concentration in the presence of 0.5 % (w/v) BGB in the presence of MgCl2. Figure
S6 The fractional coverage as a function of HU concentration fitted by Hill function. Table S1 The RMS values of
HU-DNA in presence and absence of MgCl2. Table S2 The RMS values of HU-DNA in presence of BGB in buffer
containing and absence of Mg2+. Table S3 The RMS values of HU-DNA in presence of BSA in buffer containing
and absence of Mg2+. Table S4 The RMS values of HU-DNA in presence of PEG8000 in buffer containing and
absence of MgCl2. Table S5 Fitting values of Hill function.
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