Gangliosides in Podocyte Biology and Disease
Abstract
:1. An Overview of Sphingolipid and Glycosphingolipid Metabolism
2. Podocytes: A Complex Structure and a Singular Membrane Organization
3. Gangliosides in Podocytes
3.1. O-Acetylated GD3
3.2. GM3 and GD3
3.3. GM2
3.4. GA1
4. Lessons from APOL1 Genetic Variants
5. A Word by Ceramides
6. The Role of the Immune System
7. A Call for Deep Analysis
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
APOL1 | Apolipoprotein L1 |
Asah1 | Lysosomal acid ceramidase |
CMIP | lC-maf inducing protein |
DN | Diabetes-associated nephropathy |
EGF | Epidermal growth factor |
eGFR | Estimated glomerular filtration rate |
ESI | Electrospray ionization |
FSGS | Focal and segmental glomerulosclerosis |
Flt1 | Vascular endothelial growth factor receptor 1 |
GalNAc | N-acetylgalactosamine |
GlcCer | Glucosylceramide |
GA | Asialo gangliosides |
GD | Di-sialo gangliosides |
GM | Mono-syalo gangliosides |
GP | Penta-sialo gangliosides |
GQ | Quadri-sialo gangliosides |
GSL-1 | Glycosphingolipid-1 |
GT | Tri-sialo gangliosides |
HDL | High density lipoproteins |
HPTLC | High performance thin layer chromatography |
INS | Idiopathic nephrotic syndrome |
LacCer | Lactosylceramide |
MALDI | Matrix assisted laser desorption ionization |
MCNS | Minimal change nephotic syndrome |
NEU | Neuraminidase |
PAN | Puromycin aminonucleoside nephropathy |
ST8Sia1 | Ganglioside D3 synthase |
SMPDL3b | Sphingomyelinase-like phosphodiesterase 3b |
ST3Gal1 | alpha-2,3-sialyltransferase |
ST3Gal5 | Ganglioside M3 synthase |
SLE | systemic lupus erythematosus |
TCR | T-cell receptor |
VEGF | Vascular endothelial growth factor |
References
- Mauri, L.; Sonnino, S.; Prinetti, A. Chemical and physicochemical properties of gangliosides. In Gangliosides; Humana Press: New York, NY, USA, 2018; Volume 1804, pp. 1–17. [Google Scholar]
- Glebov, O.O.; Nichols, B.J. Lipid raft proteins have a random distribution during localized activation of the T-cell receptor. Nat. Cell Biol. 2004, 6, 238–243. [Google Scholar] [CrossRef]
- Inokuchi, J.; Inamori, K.-I.; Kabayama, K.; Nagafuku, M.; Uemura, S.; Go, S.; Suzuki, A.; Ohno, I.; Kanoh, H.; Shishido, F. Biology of GM3 ganglioside. Prog. Mol. Biol. Transl. Sci. 2018, 156, 151–195. [Google Scholar]
- Simons, K.; Gerl, M.J. Revitalizing membrane rafts: New tools and insights. Nat. Rev. Mol. Cell Biol. 2010, 11, 688–699. [Google Scholar] [CrossRef]
- Julien, S.; Bobowski-Gerard, M.; Steenackers, A.; Le Bourhis, X.; Delannoy, P. How do gangliosides regulate RTKs signaling? Cells 2013, 2, 751–767. [Google Scholar] [CrossRef] [Green Version]
- Jin, J.; Sison, K.; Li, C.; Tian, R.; Wnuk, M.; Sung, H.-K.; Jeansson, M.; Zhang, C.; Tucholska, M.; Jones, N.; et al. Soluble FLT1 binds lipid microdomains in podocytes to control cell morphology and glomerular barrier function. Cell 2012, 151, 384–399. [Google Scholar] [CrossRef] [Green Version]
- Oniszczuk, J.; Sendeyo, K.; Chhuon, C.; Savas, B.; Cogné, E.; Vachin, P.; Hénique, C.; Guerrera, I.C.; Astarita, G.; Frontera, V.; et al. CMIP is a negative regulator of T cell signaling. Cell. Mol. Immunol. 2020, 17, 1026–1041. [Google Scholar] [CrossRef]
- Valsecchi, M.; Cazzetta, V.; Oriolo, F.; Lan, X.; Piazza, R.; Saleem, M.A.; Singhal, P.C.; Mavilio, D.; Mikulak, J.; Aureli, M. APOL1 polymorphism modulates sphingolipid profile of human podocytes. Glycoconj. J. 2020, 37, 729–744. [Google Scholar] [CrossRef]
- Nishi, S.; Ozawa, H.; Arakawa, M. A cytochemical study of glycocalyx and the membrane cholesterol of rat glomerular podocytes. Arch. Histol. Cytol. 1990, 53, 371–379. [Google Scholar] [CrossRef] [Green Version]
- Schermer, B.; Benzing, T. Lipid-protein interactions along the slit diaphragm of podocytes. J. Am. Soc. Nephrol. 2009, 20, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Huber, T.B.; Schermer, B.; Benzing, T. Podocin organizes ion channel-lipid supercomplexes: Implications for mechanosensation at the slit diaphragm. Nephron Exp. Nephrol. 2007, 106, e27–e31. [Google Scholar] [CrossRef]
- Simons, M.; Schwarz, K.; Kriz, W.; Miettinen, A.; Reiser, J.; Mundel, P.; Holthofer, H. Involvement of lipid rafts in nephrin phosphorylation and organization of the glomerular slit diaphragm. Am. J. Pathol. 2001, 159, 1069–1077. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, K.; Simons, M.; Reiser, J.; Saleem, M.A.; Faul, C.; Kriz, V.; Shaw, A.S.; Holzman, L.B.; Mundel, P. Podocin, a raft-associated component of the glomerular slit diaphragm, interacts with CD2AP and nephrin. J. Clin. Investig. 2001, 108, 1621–1629. [Google Scholar] [CrossRef]
- Yuan, H.; Takeuchi, E.; Salant, D.J. Podocyte slit-diaphragm protein nephrin is linked to the actin cytoskeleton. Am. J. Physiol. Renal. Physiol. 2002, 282, F585–F591. [Google Scholar] [CrossRef] [Green Version]
- Huber, T.B.; Simons, M.; Hartleben, B.; Sernetz, L.; Schmidts, M.; Gundlach, E.; Saleem, M.A.; Walz, G.; Benzing, T. Molecular basis of the functional podocin-nephrin complex: Mutations in the NPHS2 gene disrupt nephrin targeting to lipid raft microdomains. Hum. Mol. Genet. 2003, 12, 3397–3405. [Google Scholar] [CrossRef] [Green Version]
- Roselli, S.; Moutkine, I.; Gribouval, O.; Benmerah, A.; Antignac, C. Plasma membrane targeting of Podocin through the classical exocytic pathway: Effect of NPHS2 mutations. Traffic 2003, 5, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.Y.; Anderson, M.; Wilson, C.; Hagmann, H.; Benzing, T.; Dryer, S.E. NOX2 interacts with podocyte TRPC6 channels and contributes to their activation by diacylglycerol: Essential role of podocin in formation of this complex. Am. J. Physiol. Physiol. 2013, 305, C960–C971. [Google Scholar] [CrossRef] [Green Version]
- Merscher, S.; Fornoni, A. Podocyte pathology and nephropathy—Sphingolipids in glomerular diseases. Front. Endocrinol. 2014, 5, 127. [Google Scholar] [CrossRef] [Green Version]
- Fornoni, A.; Merscher, S.; Kopp, J.B. Lipid biology of the podocyte--new perspectives offer new opportunities. Nat. Rev. Nephrol. 2015, 10, 379–388. [Google Scholar] [CrossRef] [Green Version]
- Holthofer, H.; Reivinen, J.; Miettinen, A. Nephron segment and cell-type specific expression of gangliosides in the developing and adult kidney. Kidney Int. 1994, 45, 123–130. [Google Scholar] [CrossRef] [Green Version]
- Reivinen, J.; Holthofer, H.; Miettinen, A. A cell-type specific ganglioside of glomerular podocytes in rat kidney: An O-acetylated GD3. Kidney Int. 1992, 42, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Nayak, R.C.; Attawia, M.A.; Cahill, C.J.; King, G.L.; Ohashi, H.; Moromisato, R. Expression of a monoclonal antibody (3G5) defined ganglioside antigen in the renal cortex. Kidney Int. 1992, 41, 1638–1645. [Google Scholar] [CrossRef] [Green Version]
- Coers, W.; Reivinen, J.; Miettinen, A.; Huitema, S.; Vos, J.T.; Salant, D.J.; Weening, J.J. Characterization of a rat glomerular visceral epithelial cell line. Exp. Nephrol. 1996, 4, 184–192. [Google Scholar]
- Breiden, B.; Sandhoff, K. Ganglioside metabolism and its inherited diseases. Methods Mol. Biol. 2018, 1804, 97–141. [Google Scholar]
- Aguilar, R.P.; Genta, S.; Sanchez, S. Renal gangliosides are involved in lead intoxication. J. Appl. Toxicol. 2008, 28, 122–131. [Google Scholar] [CrossRef]
- Holthöfer, H.; Reivinen, J.; Solin, M.L.; Haltia, A.; Miettinen, A. Decrease of glomerular disialogangliosides in puromycin nephrosis of the rat. Am. J. Pathol. 1996, 149, 1009–1015. [Google Scholar]
- Pereira, R.L.; Reis, V.O.; Semedo, P.; Buscariollo, B.N.; Donizetti-Oliveira, C.; Cenedeze, M.A.; Soares, M.F.; Pacheco-Silva, A.; Savage, P.B.; Câmara, N.O.; et al. Invariant natural killer T cell agonist modulates experimental focal and segmental glomerulosclerosis. PLoS ONE 2012, 7, e32454. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, T.; Tsubakihara, Y.; Fushimi, H.; Yamaguchi, S.; Takabatake, Y.; Rakugi, H.; Kawakami, H.; Isaka, Y. Histochemical and immunoelectron microscopic analysis of ganglioside GM3 in human kidney. Clin. Exp. Nephrol. 2014, 19, 403–410. [Google Scholar] [CrossRef]
- Grimbert, P.; Valanciute, A.; Audard, V.; Pawlak, A.; Le Gouvello, S.; Lang, P.; Niaudet, P.; Bensman, A.; Guellaën, G.; Sahali, D. Truncation of C-mip (Tc-mip), a new proximal signaling protein, induces c-maf Th2 transcription factor and cytoskeleton reorganization. J. Exp. Med. 2003, 198, 797–807. [Google Scholar] [CrossRef]
- Inokuchi, J. GM3 and diabetes. Glycoconj. J. 2014, 31, 193–197. [Google Scholar] [CrossRef]
- Tagami, S.; Ji, J.-I.I.; Kabayama, K.; Yoshimura, H.; Kitamura, F.; Uemura, S.; Ogawa, C.; Ishii, A.; Saito, M.; Ohtsuka, Y.; et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 2001, 277, 3085–3092. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.-J.; Nakayama, K.-I.; Hikita, T.; Handa, K.; Hakomori, S. Epidermal growth factor receptor tyrosine kinase is modulated by GM3 interaction with N-linked GlcNAc termini of the receptor. Proc. Natl. Acad. Sci. USA 2006, 103, 18987–18991. [Google Scholar] [CrossRef] [Green Version]
- Kabayama, K.; Sato, T.; Saito, K.; Loberto, N.; Prinetti, A.; Sonnino, S.; Kinjo, M.; Igarashi, Y.; Inokuchi, J.-I. Dissociation of the insulin receptor and caveolin-1 complex by ganglioside GM3 in the state of insulin resistance. Proc. Natl. Acad. Sci. USA 2007, 104, 13678–13683. [Google Scholar] [CrossRef] [Green Version]
- Ene, C.D.; Penescu, M.; Anghel, A.; Neagu, M.; Budu, V.; Nicolae, I. Monitoring diabetic nephropathy by circulating gangliosides. J. Immunoass. Immunochem. 2015, 37, 68–79. [Google Scholar] [CrossRef]
- Vukovic, I.; Ljubicic, S.; Kurir, T.T.; Bozic, J.; Markotic, A. The missing link—Likely pathogenetic role of GM3 and other gangliosides in the development of diabetic nephropathy. Kidney Blood Press. Res. 2015, 40, 306–314. [Google Scholar] [CrossRef]
- Zador, I.Z.; Deshmukh, G.D.; Kunkel, R.; Johnson, K.; Radin, N.S.; Shayman, J.A. A role for glycosphingolipid accumulation in the renal hypertrophy of streptozotocin-induced diabetes mellitus. J. Clin. Investig. 1993, 91, 797–803. [Google Scholar] [CrossRef] [Green Version]
- Kwak, N.H.; Rho, Y.I.; Kwon, O.D.; Ahan, S.H.; Song, J.H.; Choo, Y.K.; Kim, S.J.; Choi, B.K.; Jung, K.Y. Decreases of ganglioside GM3 in streptozotocin-induced diabetic glomeruli of rats. Life Sci. 2003, 72, 1997–2006. [Google Scholar] [CrossRef]
- Novak, A.; Mužinić, N.R.; Čulić, V.; Čikeš, V.; Božić, J.; Kurir, T.T.; Ferhatović, L.; Puljak, L.; Markotić, A. Renal distribution of ganglioside GM3 in rat models of types 1 and 2 diabetes. J. Physiol. Biochem. 2013, 69, 727–735. [Google Scholar] [CrossRef]
- Grove, K.J.; Voziyan, P.A.; Spraggins, J.M.; Wang, S.; Paueksakon, P.; Harris, R.C.; Hudson, B.G.; Caprioli, R.M. Diabetic nephropathy induces alterations in the glomerular and tubule lipid profiles. J. Lipid Res. 2014, 55, 1375–1385. [Google Scholar] [CrossRef] [Green Version]
- Nowling, T.K.; Mather, A.R.; Thiyagarajan, T.; Hernández-Corbacho, M.J.; Powers, T.W.; Jones, E.E.; Snider, A.J.; Oates, J.C.; Drake, R.R.; Siskind, L. Renal glycosphingolipid metabolism is dysfunctional in lupus nephritis. J. Am. Soc. Nephrol. 2014, 26, 1402–1413. [Google Scholar] [CrossRef] [Green Version]
- Nowling, T.K.; Rodgers, J.; Thiyagarajan, T.; Wolf, B.; Bruner, E.; Sundararaj, K.; Molano, I.; Gilkeson, G. Targeting glycosphingolipid metabolism as a potential therapeutic approach for treating disease in female MRL/lpr lupus mice. PLoS ONE 2020, 15, e0230499. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, T.; Hashiramoto, A.; Haluzik, M.; Mizukami, H.; Beck, S.; Norton, A.; Kono, M.; Tsuji, S.; Daniotti, J.L.; Werth, N.; et al. Enhanced insulin sensitivity in mice lacking ganglioside GM3. Proc. Natl. Acad. Sci. USA 2003, 100, 3445–3449. [Google Scholar] [CrossRef] [Green Version]
- Hasbal, N.B.; Caglayan, F.B.; Sakaci, T.; Ahbap, E.; Koc, Y.; Sevinc, M.; Ucar, Z.A.; Unsal, A.; Basturk, T. Unexpectedly high prevalence of low alpha-galactosidase A enzyme activity in patients with focal segmental glomerulosclerosis. Clinics 2020, 75, e1811. [Google Scholar] [CrossRef]
- Ryckman, A.E.; Brockhausen, I.; Walia, J.S. Metabolism of glycosphingolipids and their role in the pathophysiology of lysosomal storage disorders. Int. J. Mol. Sci. 2020, 21, 6881. [Google Scholar] [CrossRef]
- Tatematsu, M.; Imaida, K.; Ito, N.; Togari, H.; Suzuki, Y.; Ogiu, T. Sandhoff disease. Pathol. Int. 1981, 31, 503–512. [Google Scholar] [CrossRef]
- Najafian, B.; Svarstad, E.; Bostad, L.; Gubler, M.-C.; Tøndel, C.; Whitley, C.B.; Mauer, M. Progressive podocyte injury and globotriaosylceramide (GL-3) accumulation in young patients with Fabry disease. Kidney Int. 2011, 79, 663–670. [Google Scholar] [CrossRef] [Green Version]
- Masson, E.A.Y.; Wiernsperger, N.; Lagarde, M.; El Bawab, S. Glucosamine induces cell-cycle arrest and hypertrophy of mesangial cells: Implication of gangliosides. Biochem. J. 2005, 388, 537–544. [Google Scholar] [CrossRef] [Green Version]
- Nilavan, E.; Sundar, S.; Shenbagamoorthy, M.; Narayanan, H.; Nandagopal, B.; Srinivasan, R. Identification of biomarkers for early diagnosis of diabetic nephropathy disease using direct flow through mass spectrometry. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 2073–2078. [Google Scholar] [CrossRef]
- Kumar, V.; Paliwal, N.; Ayasolla, K.; Vashistha, H.; Jha, A.; Chandel, N.; Chowdhary, S.; Saleem, M.A.; Malhotra, A.; Chander, P.N.; et al. Disruption of APOL1-miR193a axis induces disorganization of podocyte actin cytoskeleton. Sci. Rep. 2019, 9, 3582. [Google Scholar] [CrossRef]
- Lan, X.; Jhaveri, A.; Cheng, K.; Wen, H.; Saleem, M.A.; Mathieson, P.W.; Mikulak, J.; Aviram, S.; Malhotra, A.; Skorecki, K.; et al. APOL1 risk variants enhance podocyte necrosis through compromising lysosomal membrane permeability. Am. J. Physiol. Physiol. 2014, 307, F326–F336. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Kidd, J.; Kaspar, C.; Dempsey, S.; Bhat, O.M.; Camus, S.; Ritter, J.K.; Gehr, T.W.B.; Gulbins, E.; Li, P.L. Podocytopathy and nephrotic syndrome in mice with podocyte-specific deletion of the Asah1 gene: Role of ceramide accumulation in glomeruli. Am. J. Pathol. 2020, 190, 1211–1223. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Kamal, M.; Dahan, K.; Pawlak, A.; Ory, V.; Desvaux, D.; Audard, V.; Candelier, M.; BenMohamed, F.; Matignon, M.; et al. c-mip impairs podocyte proximal signaling and induces heavy proteinuria. Sci. Signal 2010, 3, ra39. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H.; Schuchman, E.H. Acid ceramidase and human disease. Biochim. Biophys. Acta 2006, 1758, 2133–2138. [Google Scholar] [CrossRef] [Green Version]
- Janecke, A.R.; Xu, R.; Steichen-Gersdorf, E.; Waldegger, S.; Entenmann, A.; Giner, T.; Krainer, I.; Huber, L.A.; Hess, M.W.; Frishberg, Y.; et al. Deficiency of the sphingosine-1-phosphate lyase SGPL1 is associated with congenital nephrotic syndrome and congenital adrenal calcifications. Hum. Mutat. 2017, 38, 365–372. [Google Scholar] [CrossRef]
- Lovric, S.S.; Gonçalves, S.; Gee, H.Y.; Oskouian, B.; Srinivas, H.; Choi, W.-I.; Shril, S.; Ashraf, S.; Tan, W.; Rao, J.; et al. Mutations in sphingosine-1-phosphate lyase cause nephrosis with ichthyosis and adrenal insufficiency. J. Clin. Investig. 2017, 127, 912–928. [Google Scholar] [CrossRef] [Green Version]
- Prasad, R.; Hadjidemetriou, I.; Maharaj, A.; Meimaridou, E.; Buonocore, F.; Saleem, M.; Hurcombe, J.; Bierzynska, A.; Barbagelata, E.; Bergadá, I.; et al. Sphingosine-1-phosphate lyase mutations cause primary adrenal insufficiency and steroid-resistant nephrotic syndrome. J. Clin. Investig. 2017, 127, 942–953. [Google Scholar] [CrossRef] [Green Version]
- Schümann, J.; Grevot, A.; Ledieu, D.; Wolf, A.; Schubart, A.; Piaia, A.; Sutter, E.; Côté, S.; Beerli, C.; Pognan, F.; et al. Reduced activity of sphingosine-1-phosphate lyase induces podocyte-related glomerular proteinuria, skin irritation, and platelet activation. Toxicol. Pathol. 2015, 43, 694–703. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.R.; Lim, J.H.; Kim, M.Y.; Kim, E.N.; Kim, Y.; Choi, B.S.; Kim, Y.-S.; Kim, H.W.; Lim, K.-M.; Park, C.W. Adiponectin receptor agonist AdipoRon decreased ceramide, and lipotoxicity, and ameliorated diabetic nephropathy. Metabolism 2018, 85, 348–360. [Google Scholar] [CrossRef]
- Boini, K.M.; Xia, M.; Abais, J.M.; Xu, M.; Li, C.X.; Li, P.L. Acid sphingomyelinase gene knockout ameliorates hyperhomocysteinemic glomerular injury in mice lacking cystathionine-beta-synthase. PLoS ONE 2012, 7, e45020. [Google Scholar] [CrossRef]
- Yoo, T.-H.; Pedigo, C.E.; Guzman, J.; Correa-Medina, M.; Wei, C.; Villarreal, R.; Mitrofanova, A.; Leclercq, F.; Faul, C.; Li, J.; et al. Sphingomyelinase-like phosphodiesterase 3b expression levels determine podocyte injury phenotypes in glomerular disease. J. Am. Soc. Nephrol. 2014, 26, 133–147. [Google Scholar] [CrossRef] [Green Version]
- Fornoni, A.; Sageshima, J.; Wei, C.; Merscher-Gomez, S.; Aguillon-Prada, R.; Jauregui, A.N.; Li, J.; Mattiazzi, A.; Ciancio, G.; Chen, L.; et al. Rituximab targets podocytes in recurrent focal segmental glomerulosclerosis. Sci. Transl. Med. 2011, 3, 85ra46. [Google Scholar] [CrossRef] [Green Version]
- Sahali, D.; Sendeyo, K.; Mangier, M.; Audard, V.; Zhang, S.Y.; Lang, P.; Ollero, M.; Pawlak, A. Immunopathogenesis of idiopathic nephrotic syndrome with relapse. Semin. Immunopathol. 2014, 36, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Iwabuchi, K. Gangliosides in the immune system: Role of glycosphingolipids and glycosphingolipid-enriched lipid rafts in immunological functions. Methods Mol. Biol. 2018, 1804, 83–95. [Google Scholar]
- Zhang, T.; De Waard, A.A.; Wuhrer, M.; Spaapen, R.M. The role of glycosphingolipids in immune cell functions. Front. Immunol. 2019, 10, 90. [Google Scholar] [CrossRef]
- Inokuchi, J.-I.; Nagafuku, M.; Ohno, I.; Suzuki, A. Heterogeneity of gangliosides among T cell subsets. Cell. Mol. Life Sci. 2012, 70, 3067–3075. [Google Scholar] [CrossRef]
- Inokuchi, J.-I.; Nagafuku, M.; Ohno, I.; Suzuki, A. Distinct selectivity of gangliosides required for CD4+ T and CD8+ T cell activation. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2015, 1851, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Nagafuku, M.; Okuyama, K.; Onimaru, Y.; Suzuki, A.; Odagiri, Y.; Yamashita, T.; Iwasaki, K.; Fujiwara, M.; Takayanagi, M.; Ohno, I.; et al. CD4 and CD8 T cells require different membrane gangliosides for activation. Proc. Natl. Acad. Sci. USA 2012, 109, E336–E342. [Google Scholar] [CrossRef] [Green Version]
- Noguchi, M.; Kabayama, K.; Uemura, S.; Kang, B.-W.; Saito, M.; Igarashi, Y.; Inokuchi, J.-I. Endogenously produced ganglioside GM3 endows etoposide and doxorubicin resistance by up-regulating Bcl-2 expression in 3LL Lewis lung carcinoma cells. Glycobiology 2006, 16, 641–650. [Google Scholar] [CrossRef]
- Tomin, A.; Dumych, T.; Tolstyak, Y.; Kril, I.; Mahorivska, I.; Bila, E.; Stoika, R.; Herrmann, M.; Kit, Y.; Bilyy, R. Desialylation of dying cells with catalytically active antibodies possessing sialidase activity facilitate their clearance by human macrophages. Clin. Exp. Immunol. 2014, 179, 17–23. [Google Scholar] [CrossRef]
- Galeazzi, M.; Annunziata, P.; Sebastiani, G.D.; Bellisai, F.; Campanella, V.; Ferrara, G.B.; Font, J.; Houssiau, F.; Passiu, G.; Garrido, E.D.R.; et al. Anti-ganglioside antibodies in a large cohort of European patients with systemic lupus erythematosus: Clinical, serological, and HLA class II gene associations. European concerted action on the immunogenetics of SLE. J. Rheumatol. 2000, 27, 135–141. [Google Scholar]
- Labrador-Horrillo, M.; Martinez-Valle, F.; Gallardo, E.; Rojas-Garcia, R.; Ordi-Ros, J.; Vilardell, M. Anti-ganglioside antibodies in patients with systemic lupus erythematosus and neurological manifestations. Lupus 2012, 21, 611–615. [Google Scholar] [CrossRef]
- Dong, L.; Hu, S.; Chen, F.; Lei, X.; Tu, W.; Yu, Y.; Yang, L.; Sun, W.; Yamaguchi, T.; Masaki, Y.; et al. Increased expression of ganglioside GM1 in peripheral CD4+ T cells correlates soluble form of CD30 in systemic Lupus Erythematosus patients. J. Biomed. Biotechnol. 2010, 2010, 569053. [Google Scholar] [CrossRef] [Green Version]
- Jury, E.C.; Kabouridis, P.S.; Flores-Borja, F.; Mageed, R.A.; Isenberg, D.A. Altered lipid raft–associated signaling and ganglioside expression in T lymphocytes from patients with systemic lupus erythematosus. J. Clin. Investig. 2004, 113, 1176–1187. [Google Scholar] [CrossRef]
- Krishnan, S.; Nambiar, M.P.; Warke, V.G.; Fisher, C.U.; Mitchell, J.; Delaney, N.; Tsokos, G.C. Alterations in lipid raft composition and dynamics contribute to abnormal T cell responses in systemic lupus erythematosus. J. Immunol. 2004, 172, 7821–7831. [Google Scholar] [CrossRef] [Green Version]
- Seki, K.; Kikkawa, Y. Studies on Hanganutziu-Deicher antibodies in renal diseases. Nihon Jinzo Gakkai 1992, 34, 107–115. [Google Scholar]
- Matsuura, M.; Kikkawa, Y.; Akashi, K.; Kitagawa, T.; Inage, Z.; Iwamori, M.; Takimoto, T.; Iidaka, K.; Serisawa, T. Thyroid antigen-antibody nephritis: Possible involvement of Fucosyl-GM1 as the antigen. Endocrinol. Jpn. 1987, 34, 587–593. [Google Scholar] [CrossRef] [Green Version]
- Astarita, G.; Ollero, M. Lipidomics: An evolving discipline in molecular sciences. Int. J. Mol. Sci. 2015, 16, 7748–7752. [Google Scholar] [CrossRef] [Green Version]
- Scandroglio, F.; Loberto, N.; Valsecchi, M.; Chigorno, V.; Prinetti, A.; Sonnino, S. Thin layer chromatography of gangliosides. Glycoconj. J. 2009, 26, 961–973. [Google Scholar] [CrossRef]
- Ridgway, N.D. Analysis of sphingolipid synthesis and transport by metabolic labeling of cultured cells with [(3)H] Serine. Methods Mol. Biol. 2016, 1376, 195–202. [Google Scholar]
- Sarbu, M.; Robu, A.-C.; Ghiulai, R.M.; Vukelić, Ž.; Clemmer, D.E.; Zamfir, A.D. Electrospray ionization ion mobility mass spectrometry of human brain gangliosides. Anal. Chem. 2016, 88, 5166–5178. [Google Scholar] [CrossRef]
- Jackson, S.N.; Colsch, B.; Egan, T.; Lewis, E.K.; Schultz, J.A.; Woods, A.S. Gangliosides’ analysis by MALDI-ion mobility MS. Analyst 2011, 136, 463–466. [Google Scholar] [CrossRef]
- Abbas, I.; Noun, M.; Touboul, D.; Sahali, D.; Brunelle, A.; Ollero, M. Kidney lipidomics by mass spectrometry imaging: A focus on the glomerulus. Int. J. Mol. Sci. 2019, 20, 1623. [Google Scholar] [CrossRef] [Green Version]
- Yoshikawa, M.; Go, S.; Takasaki, K.; Kakazu, Y.; Ohashi, M.; Nagafuku, M.; Kabayama, K.; Sekimoto, J.; Suzuki, S.-I.; Takaiwa, K.; et al. Mice lacking ganglioside GM3 synthase exhibit complete hearing loss due to selective degeneration of the organ of Corti. Proc. Natl. Acad. Sci. USA 2009, 106, 9483–9488. [Google Scholar] [CrossRef] [Green Version]
- Natoli, T.A.; Husson, H.; Rogers, K.A.; Smith, L.A.; Wang, B.; Budman, Y.; Bukanov, N.O.; Ledbetter, S.R.; Klinger, K.W.; Leonard, J.P.; et al. Loss of GM3 synthase gene, but not sphingosine kinase 1, is protective against murine nephronophthisis-related polycystic kidney disease. Hum. Mol. Genet. 2012, 21, 3397–3407. [Google Scholar] [CrossRef] [Green Version]
Molecular Species | Pathology | Observed Changes | Reference |
---|---|---|---|
Ceramide | APOL1 associated FSGS | (podocytes) | [8] |
Proteinuria model (Asah1 KO mouse) | (lysosomes) | [51] | |
Genetic steroid resistant nephrotic syndrome | (glomeruli) | [54,55,56] | |
Glomerular sclerosis (acid sphingomyelinase overexpression) | (glomeruli) | [59] | |
GlcCer | APOL1 associated FSGS | (podocytes) | [8] |
LacCer | Lupus nephritis | (kidney) | [40] |
APOL1 associated FSGS | (podocytes) | [8] | |
GM3 | INS (CMIP overexpression) | (podocytes) | [7] |
DN (streptozotocin rat model) | (kidney) | [35,36] | |
DN (streptozotocin rat model) | (glomeruli) | [37] | |
DN (type 1 diabetes rat model) | (glomeruli) | [38] | |
DN (mouse model) | (glomeruli) | [39] | |
APOL1 associated FSGS | (podocyte rafts) | [8] | |
Lupus nephritis (mouse model) | (kidney) | [41] | |
IgA nephropathy, Henoch-Schönlein purpura nephritis, MCNS, mesangial proliferative glomerulonephritis, membranoproliferative glomerulonephritis | (antibodies) | [75] | |
GD3 | PAN nephropathy rat model | (kidney) | [26] |
O-acetylated-GD3 | Microalbuminuria associated with lead toxicity | (kidney) | [25] |
PAN nephropathy rat model | (kidney) | [26] | |
GM2 | INS (CMIP overexpression) | (podocytes) | [7] |
DN (glucosamine administration) | (mesangial cells) | [47] | |
GD2 | INS (CMIP overexpression) | (podocytes) | [7] |
GM1 | DN (glucosamine administration) | (mesangial cells) | [47] |
APOL1 associated FSGS | (podocyte rafts) | [8] | |
GD1α | APOL1 associated FSGS | (podocytes) | [8] |
APOL1 associated FSGS | (podocyte rafts) | [8] | |
GA1 | DN | Neg. correlation with eGFR | [48] |
APOL1 associated FSGS | (podocytes) | [8] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Savas, B.; Astarita, G.; Aureli, M.; Sahali, D.; Ollero, M. Gangliosides in Podocyte Biology and Disease. Int. J. Mol. Sci. 2020, 21, 9645. https://doi.org/10.3390/ijms21249645
Savas B, Astarita G, Aureli M, Sahali D, Ollero M. Gangliosides in Podocyte Biology and Disease. International Journal of Molecular Sciences. 2020; 21(24):9645. https://doi.org/10.3390/ijms21249645
Chicago/Turabian StyleSavas, Berkan, Giuseppe Astarita, Massimo Aureli, Dil Sahali, and Mario Ollero. 2020. "Gangliosides in Podocyte Biology and Disease" International Journal of Molecular Sciences 21, no. 24: 9645. https://doi.org/10.3390/ijms21249645
APA StyleSavas, B., Astarita, G., Aureli, M., Sahali, D., & Ollero, M. (2020). Gangliosides in Podocyte Biology and Disease. International Journal of Molecular Sciences, 21(24), 9645. https://doi.org/10.3390/ijms21249645