RPGR-Associated Dystrophies: Clinical, Genetic, and Histopathological Features
Abstract
:1. Introduction
2. Results
2.1. Clinical Examination
2.2. Retinal Histology
3. Discussion
4. Materials and Methods
4.1. Clinical Examination
4.2. Retinal Histology
4.3. Genetic Analysis
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
BCVA | Best-corrected visual acuity |
CD | Cone dystrophy |
CRD | Cone-rod dystrophy |
FAF | Fundus autofluorescence |
ffERG | Full-field electroretinography |
FST | Full-stimulus threshold |
GFAP | Glial fibrillary acid protein |
Hyper-AF | Hyperautofluorescent |
Hypo-AF | Hypo-autofluorescent |
IQR | Interquartile range |
RP | Retinitis pigmentosa |
RPE | Retinal pigment epithelium |
RPGR | Retinitis Pigmentosa GTPase Regulator |
SD | Standard deviation |
SD-OCT | Spectral-Domain Optical Coherence Tomography |
XLRP | X-linked retinitis pigmentosa |
References
- Hartong, D.T.; Berson, E.L.; Dryja, T.P. Retinitis pigmentosa. Lancet 2006, 368, 1795–1809. [Google Scholar] [CrossRef]
- Talib, M.; van Schooneveld, M.J.; Thiadens, A.A.; Fiocco, M.; Wijnholds, J.; Florijn, R.J.; Schalij-Delfos, N.E.; van Genderen, M.M.; Putter, H.; Cremers, F.P.M.; et al. Clinical and Genetic characteristics of Male patients with RPGR-associated Retinal Dystrophies: A long-Term Follow-up Study. RETINA 2019, 39, 1186–1199. [Google Scholar] [CrossRef] [PubMed]
- Tee, J.J.L.; Yang, Y.; Kalitzeos, A.; Webster, A.; Bainbridge, J.; Weleber, R.G.; Michaelides, M. Characterization of Visual Function, Interocular Variability and Progression Using Static Perimetry–Derived Metrics in RPGR-Associated Retinopathy. Investig. Ophthalmol. Vis. Sci. 2018, 59, 2422–2436. [Google Scholar] [CrossRef] [Green Version]
- Sharon, D.; Sandberg, M.A.; Rabe, V.W.; Stillberger, M.; Dryja, T.P.; Berson, E.L. RP2 and RPGR Mutations and Clinical Correlations in Patients with X-Linked Retinitis Pigmentosa. Am. J. Hum. Genet. 2003, 73, 1131–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, I.; Brandau, O.; Achatz, H.; Apfelstedt-Sylla, E.; Hergersberg, M.; Lorenz, B.; Wissinger, B.; Wittwer, B.r.; Rudolph, G.n.; Meindl, A.; et al. X-linked Retinitis Pigmentosa: RPGR Mutations in Most Families with Definite X Linkage and Clustering of Mutations in a Short Sequence Stretch of Exon ORF15. Investig. Ophthalmol. Vis. Sci. 2003, 44, 1458–1463. [Google Scholar] [CrossRef] [Green Version]
- Pelletier, V.; Jambou, M.; Delphin, N.; Zinovieva, E.; Stum, M.; Gigarel, N.; Dollfus, H.; Hamel, C.; Toutain, A.; Dufier, J.-L.; et al. Comprehensive survey of mutations in RP2 and RPGR in patients affected with distinct retinal dystrophies: Genotype–phenotype correlations and impact on genetic counseling. Hum. Mutat. 2007, 28, 81–91. [Google Scholar] [CrossRef]
- Bird, A.C. X-linked retinitis pigmentosa. Br. J. Ophthalmol. 1975, 59, 177. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, M.A.; Rosner, B.; Weigel-DiFranco, C.; Dryja, T.P.; Berson, E.L. Disease course of patients with X-linked retinitis pigmentosa due to RPGR gene mutations. Investig. Ophthalmol. Vis. Sci. 2007, 48, 1298–1304. [Google Scholar] [CrossRef] [Green Version]
- Nanda, A.; Salvetti, A.P.; Clouston, P.; Downes, S.M.; MacLaren, R.E. Exploring the Variable Phenotypes of RPGR Carrier Females in Assessing their Potential for Retinal Gene Therapy. Genes 2018, 9, 643. [Google Scholar] [CrossRef] [Green Version]
- Talib, M.; van Schooneveld, M.J.; Van Cauwenbergh, C.; Wijnholds, J.; ten Brink, J.B.; Florijn, R.J.; Schalij-Delfos, N.E.; Dagnelie, G.; van Genderen, M.M.; De Baere, E.; et al. The Spectrum of Structural and Functional Abnormalities in Female Carriers of Pathogenic Variants in the RPGR Gene. Investig. Ophthalmol. Vis. Sci. 2018, 59, 4123–4133. [Google Scholar] [CrossRef] [Green Version]
- Ebenezer, N.D.; Michaelides, M.; Jenkins, S.A.; Audo, I.; Webster, A.R.; Cheetham, M.E.; Stockman, A.; Maher, E.R.; Ainsworth, J.R.; Yates, J.R.; et al. Identification of Novel RPGR ORF15 Mutations in X-linked Progressive Cone-Rod Dystrophy (XLCORD) Families. Investig. Ophthalmol. Vis. Sci. 2005, 46, 1891–1898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thiadens, A.A.H.J.; Soerjoesing, G.G.; Florijn, R.J.; Tjiam, A.G.; den Hollander, A.I.; van den Born, L.I.; Riemslag, F.C.; Bergen, A.A.B.; Klaver, C.C.W. Clinical course of cone dystrophy caused by mutations in the RPGR gene. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 1527–1535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Megaw, R.D.; Soares, D.C.; Wright, A.F. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp. Eye Res. 2015, 138, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Kirschner, R.; Rosenberg, T.; Schultz-Heienbrok, R.; Lenzner, S.; Feil, S.; Roepman, R.; Cremers, F.P.M.; Ropers, H.-H.; Berger, W. RPGR Transcription Studies in Mouse and Human Tissues Reveal a Retina-Specific Isoform That Is Disrupted in a Patient With X-Linked Retinitis Pigmentosa. Hum. Mol. Genet. 1999, 8, 1571–1578. [Google Scholar] [CrossRef] [Green Version]
- Hosch, J.; Lorenz, B.; Stieger, K. RPGR: Role in the photoreceptor cilium, human retinal disease, and gene therapy. Ophthalmic Genet. 2011, 32, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yin, X.; Feng, L.; You, D.; Wu, L.; Chen, N.; Li, A.; Li, G.; Ma, Z. Novel Mutations of RPGR in Chinese Retinitis Pigmentosa Patients and the Genotype-Phenotype Correlation. PLoS ONE 2014, 9, e85752. [Google Scholar] [CrossRef]
- Demirci, F.Y.K.; Rigatti, B.W.; Wen, G.; Radak, A.L.; Mah, T.S.; Baic, C.L.; Traboulsi, E.I.; Alitalo, T.; Ramser, J.; Gorin, M.B. X-Linked Cone-Rod Dystrophy (Locus COD1): Identification of Mutations in RPGR Exon ORF15. Am. J. Hum. Genet. 2002, 70, 1049–1053. [Google Scholar] [CrossRef] [Green Version]
- Beltran, W.A.; Cideciyan, A.V.; Lewin, A.S.; Iwabe, S.; Khanna, H.; Sumaroka, A.; Chiodo, V.A.; Fajardo, D.S.; Román, A.J.; Deng, W.-T.; et al. Gene therapy rescues photoreceptor blindness in dogs and paves the way for treating human X-linked retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 2012, 109, 2132–2137. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.D.; McClements, M.E.; Martinez-Fernandez de la Camara, C.; Bellingrath, J.-S.; Dauletbekov, D.; Ramsden, S.C.; Hickey, D.G.; Barnard, A.R.; MacLaren, R.E. Codon-Optimized RPGR Improves Stability and Efficacy of AAV8 Gene Therapy in Two Mouse Models of X-Linked Retinitis Pigmentosa. Mol. Ther. 2017, 25, 1854–1865. [Google Scholar] [CrossRef] [Green Version]
- Cehajic Kapetanovic, J.; McClements, M.E.; Martinez-Fernandez de la Camara, C.; MacLaren, R.E. Molecular Strategies for RPGR Gene Therapy. Genes 2019, 10, 674. [Google Scholar] [CrossRef] [Green Version]
- Van Huet, R.A.C.; Estrada-Cuzcano, A.; Banin, E.; Rotenstreich, Y.; Hipp, S.; Kohl, S.; Hoyng, C.B.; den Hollander, A.I.; Collin, R.W.J.; Klevering, B.J. Clinical Characteristics of Rod and Cone Photoreceptor Dystrophies in Patients With Mutations in the C8orf37 Gene. Investig. Ophthalmol. Vis. Sci. 2013, 54, 4683–4690. [Google Scholar] [CrossRef] [Green Version]
- Tee, J.J.L.; Yang, Y.; Kalitzeos, A.; Webster, A.; Bainbridge, J.; Michaelides, M. Natural History Study of Retinal Structure, Progression, and Symmetry Using Ellipzoid Zone Metrics in RPGR-Associated Retinopathy. Am. J. Ophthalmol. 2019, 198, 111–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, L.H.; Burke, T.; Greenstein, V.C.; Chou, C.L.; Cella, W.; Yannuzzi, L.A.; Tsang, S.H. Progressive Constriction of the Hyperautofluorescent Ring in Retinitis Pigmentosa. Am. J. Ophthalmol. 2012, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnes, C.S.; Schuchard, R.A.; Birch, D.G.; Dagnelie, G.; Wood, L.; Koenekoop, R.K.; Bittner, A.K. Reliability of Semiautomated Kinetic Perimetry (SKP) and Goldmann Kinetic Perimetry in Children and Adults With Retinal Dystrophies. Transl. Vis. Sci. Technol. 2019, 8, 36–36. [Google Scholar] [CrossRef] [PubMed]
- Charng, J.; Cideciyan, A.V.; Jacobson, S.G.; Sumaroka, A.; Schwartz, S.B.; Swider, M.; Roman, A.J.; Sheplock, R.; Anand, M.; Peden, M.C.; et al. Variegated yet non-random rod and cone photoreceptor disease patterns in RPGR-ORF15-associated retinal degeneration. Hum Mol Genet 2016, 25, 5444–5459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagdonaite-Bejarano, L.; Hansen, R.M.; Fulton, A.B. Microperimetry in Three Inherited Retinal Disorders. Semin. Ophthalmol. 2019, 34, 334–339. [Google Scholar] [CrossRef]
- Jolly, J.K.; Xue, K.; Edwards, T.L.; Groppe, M.; MacLaren, R.E. Characterizing the Natural History of Visual Function in Choroideremia Using Microperimetry and Multimodal Retinal Imaging. Investig. Ophthalmol. Vis. Sci. 2017, 58, 5575–5583. [Google Scholar] [CrossRef]
- Dimopoulos, I.S.; Tseng, C.; MacDonald, I.M. Microperimetry as an Outcome Measure in Choroideremia Trials: Reproducibility and Beyond. Investig. Ophthalmol. Vis. Sci. 2016, 57, 4151–4161. [Google Scholar] [CrossRef] [Green Version]
- Jacobson, S.G.; Aleman, T.S.; Cideciyan, A.V.; Roman, A.J.; Sumaroka, A.; Windsor, E.A.M.; Schwartz, S.B.; Heon, E.; Stone, E.M. Defining the Residual Vision in Leber Congenital Amaurosis Caused by RPE65 Mutations. Investig. Ophthalmol. Vis. Sci. 2009, 50, 2368–2375. [Google Scholar] [CrossRef] [Green Version]
- Russell, S.; Bennett, J.; Wellman, J.A.; Chung, D.C.; Yu, Z.-F.; Tillman, A.; Wittes, J.; Pappas, J.; Elci, O.; McCague, S.; et al. Efficacy and safety of voretigene neparvovec (AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy: A randomised, controlled, open-label, phase 3 trial. Lancet 2017, 390, 849–860. [Google Scholar] [CrossRef]
- Roman, A.J.; Cideciyan, A.V.; Aleman, T.S.; Jacobson, S.G. Full-field stimulus testing (FST) to quantify visual perception in severely blind candidates for treatment trials. Physiol. Meas. 2007, 28, N51–N56. [Google Scholar] [CrossRef] [PubMed]
- Messias, K.; Jägle, H.; Saran, R.; Ruppert, A.D.P.; Siqueira, R.; Jorge, R.; Messias, A. Psychophysically determined full-field stimulus thresholds (FST) in retinitis pigmentosa: Relationships with electroretinography and visual field outcomes. Doc. Ophthalmol. 2013, 127, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Zito, I.; Downes, S.M.; Patel, R.J.; Cheetham, M.E.; Ebenezer, N.D.; Jenkins, S.A.; Bhattacharya, S.S.; Webster, A.R.; Holder, G.E.; Bird, A.C.; et al. RPGR mutation associated with retinitis pigmentosa, impaired hearing, and sinorespiratory infections. J. Med Genet. 2003, 40, 609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iannaccone, A.; Breuer, D.K.; Wang, X.F.; Kuo, S.F.; Normando, E.M.; Filippova, E.; Baldi, A.; Hiriyanna, S.; MacDonald, C.B.; Baldi, F.; et al. Clinical and immunohistochemical evidence for an X linked retinitis pigmentosa syndrome with recurrent infections and hearing loss in association with an RPGR mutation. J. Med Genet. 2003, 40, e118. [Google Scholar] [CrossRef] [Green Version]
- Van Dorp, D.B.; Wright, A.F.; Carothers, A.D.; Bleeker-Wagemakers, E.M. A family with RP3 type of X-linked retinitis pigmentosa: An association with ciliary abnormalities. Hum. Genet. 1992, 88, 331–334. [Google Scholar] [CrossRef]
- Vervoort, R.; Lennon, A.; Bird, A.C.; Tulloch, B.; Axton, R.; Miano, M.G.; Meindl, A.; Meitinger, T.; Ciccodicola, A.; Wright, A.F. Mutational hot spot within a new RPGR exon in X-linked retinitis pigmentosa. Nat. Genet. 2000, 25, 462–466. [Google Scholar] [CrossRef]
- Aguirre, G.D.; Yashar, B.M.; John, S.K.; Smith, J.E.; Breuer, D.K.; Hiriyanna, S.; Swaroop, A.; Milam, A.H. Retinal Histopathology of an XLRP Carrier with a Mutation in the RPGR Exon ORF15. Exp. Eye Res. 2002, 75, 431–443. [Google Scholar] [CrossRef]
- Huang, W.C.; Wright, A.F.; Roman, A.J.; Cideciyan, A.V.; Manson, F.D.; Gewaily, D.Y.; Schwartz, S.B.; Sadigh, S.; Limberis, M.P.; Bell, P.; et al. RPGR-associated retinal degeneration in human X-linked RP and a murine model. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5594–5608. [Google Scholar] [CrossRef] [Green Version]
- Ramon, E.; Cordomí, A.; Aguilà, M.; Srinivasan, S.; Dong, X.; Moore, A.T.; Webster, A.R.; Cheetham, M.E.; Garriga, P. Differential light-induced responses in sectorial inherited retinal degeneration. J Biol Chem 2014, 289, 35918–35928. [Google Scholar] [CrossRef] [Green Version]
- Kranich, H.; Bartkowski, S.; Denton, M.J.; Krey, S.; Dickinson, P.; Duvigneau, C.; Gal, A. Autosomal dominant ‘sector’ retinitis pigmentosa due to a point mutation predicting an Asn-15-Ser substitution of rhodopsin. Hum. Mol. Genet. 1993, 2, 813–814. [Google Scholar] [CrossRef]
- Henriksen, B.S.; Marc, R.E.; Bernstein, P.S. Optogenetics for retinal disorders. J Ophthalmic Vis Res 2014, 9, 374–382. [Google Scholar] [CrossRef] [PubMed]
- Marc, R.E.; Jones, B.W.; Watt, C.B.; Strettoi, E. Neural remodeling in retinal degeneration. Prog. Retin. Eye Res. 2003, 22, 607–655. [Google Scholar] [CrossRef]
- Jones, B.W.; Pfeiffer, R.L.; Ferrell, W.D.; Watt, C.B.; Marmor, M.; Marc, R.E. Retinal remodeling in human retinitis pigmentosa. Exp. Eye Res. 2016, 150, 149–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Huet, R.A.C.; Oomen, C.J.; Plomp, A.S.; van Genderen, M.M.; Klevering, B.J.; Schlingemann, R.O.; Klaver, C.C.W.; van den Born, L.I.; Cremers, F.P.M. The RD5000 Database: Facilitating clinical, genetic, and therapeutic studies on inherited retinal diseases. Investig. Ophthalmol. Vis. Sci. 2014, 55, 7355–7360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dagnelie, G. Technical note. Conversion of planimetric visual field data into solid angles and retinal areas. Clin. Vis. Sci. 1990, 5, 95–100. [Google Scholar]
- Bais, B.; Kubat, B.; Motazedi, E.; Verdijk, R.M. Amyloid Precursor Protein and Ubiquitin Immunohistochemistry Aid in the Evaluation of Infant Autopsy Eyes With Abusive Head Trauma. Am. J. Ophthalmol. 2015, 160, 1285–1295.e1286. [Google Scholar] [CrossRef] [PubMed]
- Roepman, R.; Bernoud-Hubac, N.; Schick, D.E.; Maugeri, A.; Berger, W.; Ropers, H.-H.; Cremers, F.P.M.; Ferreira, P.A. The retinitis pigmentosa GTPase regulator (RPGR) interacts with novel transport-like proteins in the outer segments of rod photoreceptors. Hum. Mol. Genet. 2000, 9, 2095–2105. [Google Scholar] [CrossRef] [Green Version]
Family-ID | Age | Age at Onset | Initial Symptom | DD | BCVA | SER | Lens Status | Fundus Features | Goldmann Perimetry (V4e) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
OD | OS | OD | OS | OD | OS | Optic Pallor | Attenuated Vessels | Bone-Spicules | Other Relevant Findings | Visual Field Patterns | Retinal Seeing Retinal Areas (mm2) OD|OS | ||||||
A-1 | 45 | 5 | VF loss | RP | 0.05 | 0.05 | −1.0 | −2.75 | Mild PSC | Mild PSC | Yes | Yes | Yes | Bull’s eye appearance of macula | Central island with peripheral remnant | 95.3 | 120.4 |
B-2 * | 20 | 5 | Night blindness | RP | 0.80 | 1.00 | −5.00 | −5.13 | Clear | Clear | Yes | No | Yes | Optic disc drusen | Peripheral constriction | 532.7 | 481.0 |
B-3 * | 20 | 6 | Night blindness | RP | 1.25 | 1.00 | −1.88 | −0.88 | Clear | Clear | Yes | No | Yes | Optic disc drusen | Central island with peripheral remnant | 148.8 | 158.7 |
C-4 | 30 | 5 | Night blindness | RP | 0.36 | 0.38 | −5.63 | −4.88 | Clear | Clear | Yes | Yes | Yes | Macular atrophy | Central islands | 84.6 | 73.8 |
D-5 | 33 | 13 | VF loss | RP | 0.66 | 0.52 | −5.75 | −4.38 | Clear | Clear | Yes | Yes | Yes | Patches of preserved RPE | Central island with peripheral remnant | 279.5 | 247.6 |
E-6 | 22 | 5 | Night blindness | RP | 0.50 | 0.40 | −4.13 | −4.50 | Clear | Clear | Yes | Yes | Yes | Epiretinal membrane | Central island with peripheral remnant | 115.2 | 101.83 |
F-7 | 18 | 5 | Night blindness | RP | 0.70 | 1.00 | −8.88 | −7.50 | Clear | Clear | Yes | Yes | Yes | RPE alterations | Midperipheral scotoma | 632.2 | 669.5 |
G-8 | 36 | 5 | Night blindness | RP | 0.10 | 0.10 | −3.63 | −3.25 | Clear | Clear | Yes | Yes | Yes | Macular atrophy | Central island | 24.8 | 39.2 |
H-9 | 49 | 48 | VA loss | CRD | 0.80 | 0.72 | −3.25 | −1.50 | Clear | Clear | Yes | No | No | Bull’s eye appearance of macula | Central scotoma | 1213.32 | 782.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, X.-T.-A.; Talib, M.; van Schooneveld, M.J.; Brinks, J.; ten Brink, J.; Florijn, R.J.; Wijnholds, J.; Verdijk, R.M.; Bergen, A.A.; Boon, C.J.F. RPGR-Associated Dystrophies: Clinical, Genetic, and Histopathological Features. Int. J. Mol. Sci. 2020, 21, 835. https://doi.org/10.3390/ijms21030835
Nguyen X-T-A, Talib M, van Schooneveld MJ, Brinks J, ten Brink J, Florijn RJ, Wijnholds J, Verdijk RM, Bergen AA, Boon CJF. RPGR-Associated Dystrophies: Clinical, Genetic, and Histopathological Features. International Journal of Molecular Sciences. 2020; 21(3):835. https://doi.org/10.3390/ijms21030835
Chicago/Turabian StyleNguyen, Xuan-Thanh-An, Mays Talib, Mary J. van Schooneveld, Joost Brinks, Jacoline ten Brink, Ralph J. Florijn, Jan Wijnholds, Robert M. Verdijk, Arthur A. Bergen, and Camiel J.F. Boon. 2020. "RPGR-Associated Dystrophies: Clinical, Genetic, and Histopathological Features" International Journal of Molecular Sciences 21, no. 3: 835. https://doi.org/10.3390/ijms21030835
APA StyleNguyen, X. -T. -A., Talib, M., van Schooneveld, M. J., Brinks, J., ten Brink, J., Florijn, R. J., Wijnholds, J., Verdijk, R. M., Bergen, A. A., & Boon, C. J. F. (2020). RPGR-Associated Dystrophies: Clinical, Genetic, and Histopathological Features. International Journal of Molecular Sciences, 21(3), 835. https://doi.org/10.3390/ijms21030835