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Abstract: The durability of reinforced concrete structures is closely related to moisture state in
cement-based materials. Therefore, it is crucial to develop moisture models that can accurately predict
moisture state in the materials. However, many studies reported anomalous moisture transport in
cement-based materials that cannot be well simulated by the conventional models. Several reasons
have been investigated in the literature, such as the complex pore structure, chemical reactions
with water, dimensional changes of the tested specimen, etc. Nevertheless, only a few models are
able to capture the anomaly of moisture transport. This study viewed the main moisture transport
coefficient—permeability—as a kinetic variable that depends on both the degree of moisture saturation
and the contact time. The time-dependence was formulated by the decay (for drying) or growth
(for wetting) functions. The saturation-dependence was calculated by the van Genuchten–Mualem
(VGM) model. These functions were then implemented into a moisture transport model that was
developed in previous studies. The proposed model was validated by experimental data and showed
a good agreement for cement pastes that were dried or wetted in the hygroscopic range. Numerical
simulation results were also compared with the simplified solutions to a fractional derivative model
(FDM) of anomalous diffusion and the empirical Weibull function. We found that the solutions to the
FDM cannot provide appropriate results. Weibull function performs as well as the proposed model,
but the empirical function lacks physical meanings.

Keywords: moisture transport; anomalous; cementitious materials; time-dependent permeability;
drying and wetting; sorption isotherm

1. Introduction

Concrete is the most widely used man-made material in the world. In 2018, the global cement
production was about 4.1 billion tons [1], equivalent to more than a half ton per person. Concrete
is a mixture of cement, water, aggregates, and sometimes additives used to adjust the properties.
When cement is mixed with water, the chemical reaction (so-called hydration) starts immediately,
and eventually, the mixture becomes a dense solid, which contains a large number of pores whose
sizes range from nm to mm. The presence of these pores can lead to the deterioration of concrete and
corrosion of reinforcing steel bars (rebars). In most natural conditions, pores are partially filled with
water depending on the surrounding environment. During the freeze/thaw process in the winter time,
all pores in concrete are eventually filled with water. Damage to concrete, such as cracking and spilling,
can occur in the sequential freeze/thaw process because of the volume expansion of freezing water.
The most serious damage to the reinforced concrete structures is corrosion of rebars that leads to the
function loss of reinforced concrete [2], such as structure collapse. In general, rebars are well protected
by the passive layer due to the alkaline environment in concrete. However, CO2 in the atmosphere
can diffuse into concrete, and reduce pH of pore solution; thus, the rebar would lose its protective
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environment. Partially saturated concrete favors carbonation as there are enough empty pores for
CO2 diffusion and sufficient water for the reaction with the alkali ions. Another type of commonly
mentioned corrosion is the chloride-induced corrosion. When the chloride content at the rebar surface
exceeds a certain level (known as the critical chloride content) [3], the passive layer on the steel surface
is destroyed, and pitting corrosion can happen. Chloride penetrates concrete with liquid water [3–6].
The process is accelerated in the drying-wetting condition [7].

Clearly, all above-mentioned degradation mechanisms of reinforced concrete structures are
dependent on moisture in concrete [8]. Therefore, the appropriate moisture transport models are
essential for predicting structures’ durability. Conventionally, a moisture transport model based on
Fick’s law of diffusion, Darcy’s law or Richards’ equation is used to predict the moisture state in
cement-based materials [9–13]. While these models can capture the main features of moisture transport
for some materials, the derivations from these models for the cement-based materials are often reported
in the literature. For instance, the anomalous moisture transport is found [14–17], which cannot be
simulated by the conventional models [14,15,18,19].

In the early literature, the anomalous moisture transport was often reported for water capillary
imbibition [14,15,20], in which one side of the specimen contacts with liquid water so liquid water is sucked
into the porous material due to the capillary forces. If the measured mass change curve (∆m vs. square root of
time t1/2) does not obey a linear relation, it is viewed as anomalous capillary imbibition. When the moisture
transport occurs in the hygroscopic range, the case that the measured mass change curves do not follow the
curves calculated by Fick’s law has been also termed as anomalous moisture transport [16,17]. It needs to
be emphasized that the diffusion coefficient in the commonly mentioned Fick’s law is generally treated
as a constant. Anomalous moisture transport in cement-based materials can result from various reasons.
Cement-based materials have a broad pore size distribution, ranging from micropores to macropores (0.5 nm
to several hundred µm), which are classified as interlayer pores, gel pores, and large and small capillary
pores [21]. Nevertheless, most of the moisture transport models are developed based on the single-porosity
concept. To interpret anomalous moisture transport in cement-based materials, the concept of dual-porosity
was introduced [19]. The calculated curves successfully captured the shapes of various anomalous mass
loss curves. This concept was further extended to a dual-permeability model, which improves simulation
results compared with the single permeability model [18]. Chemical interactions of water with hydration
products could also be one reason. For liquid water imbibition, Hall et al. [14] argued that the anomalous
water absorption in cement-based materials is caused by re-hydration of unreacted cement and dehydrated
components of hardened cement pastes. Zeng and Xu [22] assumed reaction kinetics occurring along
with moisture transport in cement pastes and employed a fractional kinetic model to represent anomalous
drying. The third most mentioned reason is the change of microstructure of hydration products (mainly
C-S-H (In cement chemistry: C-S-H = calcium silicate hydrate; CH = calcium hydroxide.)) during moisture
transport. The macroscopically observed drying shrinkage is induced by the microscopic damages of
pores due to the relatively large capillary force established during water evaporation [23]. The swelling
associated with the water uptake was observed by either the environmental scanning electron microscope
(ESEM) [14] or nuclear magnetic resonance (NMR) [24]. Both shrinkage and swelling result in the changes
of pore structures.

Since the conventional models cannot describe the anomalous moisture transport, models
developed on the basis of more sound theoretical backgrounds are needed. Two approaches are
generally used to develop a mathematical model, phenomenological and mechanistic. The former one
mostly employs the empirical equations to fit the experimental data. For instance, the above-mentioned
two models (the dual-porosity model [19] and the fractional kinetic model [22]), which provide a
certain physical meaning for the fitted parameters but are not developed with basis on the transport
mechanisms. The mechanistic approach starts with the fundamental physical analysis of the studied
phenomena, such as the Richards’ equation for moisture transport in unsaturated porous materials.
The dual-permeability model is one example which was developed based on the different transport
mechanisms in large and small pores [18]. To work for the anomalous capillary imbibition, models
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that are built based on Richards’ equation must be combined with empirical functions for the transport
coefficients (diffusivity or permeability).

The fractional or fractal derivative (FDM) of diffusion models were reported to be able to well simulate
anomalous water transport in soils [25,26]. However, in these models, the diffusivity is assumed to be
constant (independent from water content), which is certainly not the case for cement-based materials.
A recent study [27] employed an analytical solution of a simplified fractional derivative diffusion model,
which was originally developed for the drying of foods [28] to fit the measured drying kinetics of concretes
exposed to different drying conditions. In fact, this analytical solution is a variant of Weibull function with a
scale factor (will be discussed later). This means that the development of such a model tried to start with the
transport mechanisms but finally ended up with the phenomenological approach. Because of the difficulty
to solve the fractional or fractal derivative models, in particular for the case that the diffusivity is not constant,
an alternative method is to introduce a time-dependent variable [29–31]. In studies [29,30], the diffusivity
was divided into two independent variables: one is a function of water content alone, and another is only
dependent on time. The authors finally chose the power function for the time-dependent variable [29]
and the exponential function for the water content-dependent variable [30]. The problems with the power
function are that the diffusivity is infinite at time zero and that it will continuously drop with time without
reaching a limited value. In a very recent study by Hall [31], an exponential time-dependent function was
introduced for permeability to describe sorptivity measured during water capillary imbibition. The concept
of time-dependent transport coefficient in these studies worked very well for capillary imbibition.

In the present study, we adopt the same concept of time-dependent transport coefficient for
modelling moisture transport in the hygroscopic range. We view the permeability as a kinetic variable,
which depends on both moisture content and contact time (see Section 4.1). These functions are then
implemented into a Richards’ equation-based moisture transport model. The proposed model is then
validated by experimental data and compared with the analytical solutions to a fractional derivative
model of anomalous diffusion and Weibull function.

2. Results

2.1. Fitted Sorption Isotherm

The measured and fitted sorption isotherms by van Genutchen equation (Equation (9) in
Section 4.1.1) are shown in Figure 1. When RH decreases from 1, the measured curve shows a
sharp drop induced by emptying the large- and over-capillary pores. The second large drop is found
between 50% and 30% RH. One argument is that this drop may be caused by measured water in
capillary pores changing to in C–S–H pores [32]. Some studies believe that this is caused by cavitation
of dissolved gas in pore solution [33,34]. However, the very steep sorption isotherm can also be caused
by pore-blocking/percolation in a narrow range of pore necks [35]. There is no solid evidence to prove
or disprove one of the hypotheses. These two drops result in the measured curve not being well fitted
by van Genutchen equation.
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2.2. Fitted Mass Change Curves

The mass change with time m(t) for the proposed moisture transport model (in 1D) was determined
by the mass difference between the initial moisture saturation and the calculated moisture saturation
at t.

m(t) = ρlφA
N∑

i=1

∣∣∣Si(t) − S0
∣∣∣∆xi (1)

where A [m2] is area of the specimen cross section; φ is the porosity; ρl [kg/m3] is the density of liquid
water; N is the total number of elements; i stands for a specified location (element number in numerical
calculation), and ∆xi is the size of element at the location i. Si(t) and S0 are the saturation at time t and
the initial saturation, respectively.

The mass change curves for two simplified solutions to the fractional derivative model (FDM)
(Equations (23) and (25)) and the Weibull function (Equation (24)) are calculated based on the calculated
MR (Equation (20) by the following equation.

m(t) = me + MR × (m0 −me) (2)

where m0, m(t) and me are the specimen masses at the initial state, during moisture transport and
the final state, respectively. It is clear that me must be determined by fitting the measured mass
change curves.

The simulated mass change curves are compared with the measured ones in Figure 2. For the
conventional model, permeability Kl is the only parameter to be determined. All curves in Figure 2 are
shown with t0.5 as the x axis so that the difference amongst compared models can be better seen since
the difference is mainly observed at the early stage of mass change.Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 5 of 17 
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conditions: (a) wetting at 50% RH from initial 60% RH; (b) wetting at 60% RH from initial 70% RH;
(c) drying at 80% RH from initial 70% RH, and (d) drying at 80% RH from initial 90% RH.
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The conventional model cannot capture the shapes of the mass change curves, except for Figure 2a.
A mass change curve shows three stages: initial stage, transition stage, and later stage. At the initial
stage, the linear curve of mass change vs. t0.5 can be seen. At the later stage, the curve reaches a plateau
if the porous material is rigid; however, if the microstructure of the material is altered, the curve may
continuously increase with a low rate. Figure 2a shows a case without significant microstructure
alteration; thus, the conventional model is able to provide good result. However, at the later stage,
the curves for the other cases continue to increase with a lower rate than the initial stage, so the
conventional model fails to simulate these curves.

The other models can well fit the late part of the curve. But for the initial part (roughly <100 s0.5),
they show very big differences. All curves fitted by Equation (23) do not pass through the origin,
which is due to the scale factor of 8/π2. If let t = 0, Equation (23) yields MR = 8/π2, which is above the
origin. In a recent study [27], the scale factor was set as free parameter that is determined by fitting the
experimental data (see Equation (25)). It indeed improves the fitting results, but there is still no rule to
force the curve to pass through the origin. The starting point of the fitted curves by Equation (25) is
either above or below the origin as shown in Figure 2. This violates the physical theory of moisture
transport. Therefore, we conclude that both simplified solutions to the FDM are not able to provide
reasonable results. If the scale factor is intentionally allowed to be 1, that is, the Weibull function, it can
ensure the fitted curve passes through the origin and thus largely improves the fitting results.

The proposed model, either using the exponential function or the reciprocal function to calculate
the time-dependent permeability Kt, is able to provide much better results than the two simplified
solutions to the FDM, even better than the dual-permeability model proposed in our previous study [18].
Figure 2 as well as parameters in Table 1 shows that two functions for the calculation of Kt provide
almost the same results, suggesting that any decay or growth functions following the similar tendency
could be used to calculate Kt.

Table 1. Fitted parameters for compared models.

Models Parameters RH50-60 RH60-70 RH80-70 RH90-80

Proposed (Exponential Kt,
Equation (13))

K1( × 10−22) 163.3 144.5 1.0 0.6
K2( × 10−22) 9.4 5.7 3.5 11.4

a 5.13 × 10−4 5.43 × 10−5 6.29 × 10−4 8.15 × 10−3

τ 4.39 3.31 8.78 0.89
R2

adj 0.9983 0.9966 0.9963 0.9988

Proposed (Reciprocal Kt,
Equation (14))

K1( × 10−22) 171.3 144.8 0.8 0.6
K2( × 10−22) 13.9 6.1 3.6 9.0

a 6.33 × 10−4 8.65 × 10−5 6.00 × 10−4 7.68 × 10−3

τ 3.10 2.57 7.96 2.24
R2

adj 0.9984 0.9966 0.9963 0.9988

Weibull (Equation (24))

me 1.01 1.00 0.79 0.94
k 8360 16134 38983 14129
β 0.71 0.61 0.77 0.45

R2
adj 0.9988 0.9996 0.9996 0.9932

Equation (23) (FDM)

me 1.00 0.97 0.73 0.90
k 11343 20532 41189 18405
β 0.91 0.83 1.15 0.60

R2
adj 0.9965 0.9931 0.9897 0.9831

D f 3.21 × 10−10 4.18 × 10−10 7.68 × 10−12 4.32 × 10−9

Equation (25) (FDM)

me 1.01 1.01 0.80 1.02
k 9250 15589 39042 9489
β 0.76 0.59 0.74 0.32
k1 0.94 1.03 1.02 1.28

R2
adj 0.9983 0.9996 0.9997 0.9964



Int. J. Mol. Sci. 2020, 21, 837 6 of 17

In Figure 2, the proposed model and Weibull function provide very similar results as both of
them can fit the experimental data well. However, Weibull function is a phenomenological model, and
parameters in this model are not associated with any physical meaning. The proposed model was
developed based on the mechanistic approach, but the drawback is that it requires more input data and
a numerical algorithm to solve nonlinear equations. Therefore, researchers and engineers can choose
the model depending on their aims. As concluded in the previous studies [18,19], if one wants to
estimate the final mass of a specimen after drying or wetting (most likely needed in sorption isotherm
measurements), the phenomenological models, such a Weibull or dual-Weibull equations [19], are the
better choice because they are easy to apply and suitable for specimens with irregular geometries.

In Table 1, the calculated Kt for wetting is higher than that for drying. This agrees with Mualem’s
theory [37] that moisture movement during wetting can be faster than that during drying. The
difference might also result from the fact that these measurements were performed on different
specimens, as the previous study [38] has concluded that even for the same cement and mixture design,
the measured permeability values on different cement paste/concrete specimens scatter in a large range,
about one order of magnitude difference. We should also bear in mind that Kt only represents the
time-dependent permeability rather than the overall permeability. To calculate the overall permeability,
Kt needs to be multiplied by the saturation-dependent permeability Ks, which decreases sharply with
the decrease of RH.

The kinetic rate constants of permeability (K2) in Equations (15) and (16) indicate how fast
permeability changes with time. It shows that K2 values of wetting from 50% RH for the exponential
function and drying from 90% RH for the reciprocal function are slightly higher than the other
conditions. The kinetic rate constant of MR (k1) in Equation (26) also shows that drying from 90% RH
has the highest kinetic rate constant. However, the fitting accuracy for this condition is low as the
curve starts at a point far below the origin. The high kinetic rate constant leads to the steep rise of the
curve, but it cannot reflect the real kinetic rate constant of the measured curve.

3. Discussion

3.1. Apparent Diffusivity

The empirical solution to the FDM is involved by the apparent diffusivity. Since the size of the
specimen is known, the apparent diffusivity D f can be calculated by rewriting Equation (22).

D f = k−β
(
π
2L

)−2
(3)

where L [m] is the thickness of the planar specimen. The fitting parameters k and β for different drying
and wetting conditions are shown in Table 1. They are used to calculate D f , which is provided in the
table as well. They are compared with the apparent diffusivity curves from the proposed model in
Figure 3. For each condition, since the fitted parameters are different, the apparent diffusivity curve for
each case can be drawn.

Figure 3 shows that the apparent diffusivity curves decrease sharply from the saturated condition.
The previous study suggested that this decrease is caused by the loss of liquid water [38]. With the
further decrease of saturation, liquid water loses its continuity and then gradually the transport of
water vapor becomes the dominant transport mode. The highlighted values of D f determined by
Equation (3) are much higher than those from the proposed model regardless the drying or wetting
condition. They may suggest that the FDM is not an appropriate model for the anomalous moisture
transport in the studied material. But since Equation (21) is a highly simplified solution to the FDM,
it may also suggest that Equation (21) cannot represent the actual solution to the FDM.
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3.2. Validation Data

It has been argued that the measured mass loss alone is not sufficient to identify parameters in
the moisture transport model, in particular for models with more than one parameter [18,39]. This is
supported by a recent study [40], which has five parameters to be determined. Therefore, it needs
at least the second set of experimental data to validate the moisture transport model, such as the
monitored relative humidity evolution at given depths [40] or measured water content profiles at
different exposure durations [18]. The remaining question is whether two sets of data are enough for a
moisture transport model with more than two unknowns. For a two-phase model (liquid and vapor),
it would be reasonable to have one parameter for each phase. If there is more than one parameter for
each phase, it may cause less robust fitted parameters. Specimens for the experimental data used in this
study were too small to measure water content profiles or to monitor RH evolution. The future study
will be focused on the larger specimens to obtain enough data to further validate the proposed model.

4. Materials and Methods

4.1. Proposed Moisture Transport with Kinetic Permeability

4.1.1. Conventional Moisture Transport Model

One of the earliest moisture transport models for unsaturated porous media is Richards’ equation
published in 1931 [41]. Richards found that Darcy’s law, which was initially developed for saturated flow
in porous media, also worked for water movement in unsaturated non-swelling soils. From the 1950s,
the development of theoretical basis models according to the multiphase transport boomed [12,42].
The principle of multiphase, including liquid water, water vapor and dry air, was also applied to
studies on mechanics and physics of porous media [10]. For moisture transport in cement-based
materials, the multiphase model can be simplified as a two-phase transport model, just including liquid
water and water vapor [11,43]. Assuming the quasi-equilibrium between liquid and vapor during the
movement of moisture, the movement of two phases can be combined into one mass balance equation
(in 1D form).

∂S
∂t

=
∂
∂x

(
Dv

1
Pv0φ

∂Pv

∂x

)
+
∂
∂x

(
Kl

1
ηlφ

∂Pl
∂x

)
(4)

where S [−] is the degree of water saturation (the volumetric ratio of water and total pore space), Dv

[m2/s] is the diffusion coefficient of water vapor in the porous material; Pv0 [Pa] is the saturated vapor
pressure; Pv [Pa] is the vapor pressure; Kl [m2] is the permeability of liquid; ηl [Pa·s] is the dynamic
viscosity of liquid water, and Pl [Pa] is the liquid pressure.
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The first term on the right-hand-side of Equation (4) represents the diffusion of water vapor which
only occurs in the empty space of the pore network that is not occupied by liquid water. Note that the
vapor diffusion in this study is different to the moisture diffusion in some literature [9,44], which did
not distinguish liquid and vapor. Instead, they viewed moisture transport as a pure diffusion process.
The second term on the right-hand-side of Equation (4) is the extended Darcy’s law where liquid water
moves under the gradient of liquid pressure. Since two phases are always at equilibrium, saturation S
and relative humidity RH (= Pv/Pv0) in the unsaturated porous media are interchangeable by using
the water vapor sorption isotherm. Therefore, Equation (4) can be written as a transport equation
similar to the standard Richards’ equation [43,44].

∂S
∂t

=
∂
∂x

(
Da
∂S
∂x

)
(5)

where Da [m2/s] is the apparent diffusion coefficient with both contributions of liquid water and water
vapor. They are separable, and then, we have [38]

Da = Dva + Dla (6)

with

Dva = −

(
Mw

ρlRT

)2

Dv
Pv0RH
φ

dPc

dS
(7)

Dla = −Kl
1
ηlφ

dPc

dS
(8)

where Dva and Dla are contributions of water vapor and liquid water to Da, respectively. Mw [g/mol] is
the molar mass of water; R [J/K/mol] is the gas constant; T [K] is the temperature, and Pc [Pa] is the
capillary pressure. For a given RH, Pc is determined by Kelvin’s equation.

To obtain sorption isotherm, the capillary pressure curve (also known as water retention curve
for soils) must be known. Amongst various equations in the literature, the one proposed by van
Genutchen [45] is often used (e.g., [11,38,46]).

S =

 1

1 + (Pc/α)1/(1−m)

m

(9)

where α [Pa] and m are two parameters, which are generally determined by fitting the measured water
vapor sorption isotherm.

The transport coefficients Dv and Kl are the two main variables that control the moisture transport.
In general, vapor diffusion contributes to the mass transport much less than liquid water. However,
if the material is exposed to low RH environment, the mass contribution of vapor significantly
increases [18,37] because liquid water loses its continuity in the pore network, and it must evaporate
and then can move to the environment in the form of vapor. Vapor diffusion depends on several factors,
such as the available empty space and the structure of the pore network. The exponential equation
or the reciprocal functions with S or RH for transport coefficients in the literature are often found to
consider the effect of water content, but they generally ignore the effect of pore structure. By extending
an expression proposed by Millington [47], we have one equation that can take into account all these
factors [36].

Dv(S) = Dv0 ·φ(1− S) ·φxD−1(1− S)xD+1 (10)

where Dv0 [m2/s] is the free vapor diffusion coefficient in air and xD [−] is a material parameter.
For soils, the value of xD is about 4/3 [47]. However, for cement-based materials, this value largely
overestimates vapor diffusion because of the high tortuosity. By calibrated with O2 and CO2 transport
data, Thiéry et al., suggested a value of 2.74 for cement pastes and mortars [48]. But for moisture
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transport, the interaction of pore network with water molecules is even stronger than O2 and CO2.
In the previous study [37], xD was determined by fitting the measured apparent diffusion coefficient for
three cement pastes with different w/c ratios. It was found that the value of xD is between 4.1 and 4.5 for
cement pastes with w/c above 0.45. In this study, we choose xD = 4.47 for all experimental conditions.
In Equation (10), the term φ(1− S) stands for the actual (unsaturated) pore space available for vapor
diffusion. The terms φxD−1 and (1− S)xD+1 represent the tortuosity [5] and the liquid connectivity
effects to some extent, respectively.

As for Kl, it is commonly assumed to be a function of S in the conventional models, but this
does not work for the anomalous moisture transport. For capillary imbibition, a time-dependent term
was introduced [29–31]. In this study, we consider that a time-dependent term can be used for the
hygroscopic moisture transport as well; thus, Kl is written in a product form [30,49].

Kl(t, S) = KtKs (11)

where Kt = Kt(t) is a function of time alone, and KS = KS(S) is a function of S alone.

4.1.2. Time-Dependent Permeability

The basic assumptions of the time-dependent permeability are that: (1) the permeability is related
to the microstructure of the porous material, and thus, if the microstructure is altered, permeability
changes as well; (2) the microstructure is altered if the moisture state in the porous material changes.
However, it is unclear how the microstructure changes with the moisture state. The most straightforward
way is to assume that this change obeys a decay function for drying and a growth function for wetting,
representing that the initial permeability decreases or increases with time and finally reaches a new
stable value.

Here is a question: when does permeability start to change? If RH in the surrounding environment
varies, the moisture state at different locations in the material does not change with the same pace.
The change always starts from the contact surface with the ambient environment and then gradually
moves towards the interior with time. For the region where moisture state does not change yet,
the microstructure is stable, and thus, permeability is still the same as the initial permeability. Therefore,
the concept of contact time was introduced by Hall to consider the time difference between different
locations in the material after the stable moisture condition is disturbed [31]. Let us define the time
when the moisture state at a given location starts to change as the initial change time tc0. The contact
time at this location is the time difference between the current time t and tc0.

tc = t− tc0 (12)

One may realize that the value of tc0 is related to the time step ∆t. Ideally, at a given location, after
the change of the moisture condition is detected (

∣∣∣S j−1
− S j

∣∣∣ > 0, j stands for the number of time step),
the time step ∆t must be reduced to satisfy

∣∣∣S j−1
− S j

∣∣∣→ 0 . Consequently, the time step must be very
close to zero ( ∆t→ 0) if the above criterion is strictly fulfilled. This will lead to an extremely slow
numerical calculation. Therefore, we intensively do not reduce the time step. Instead, the maximum
time step was set as 100 s, meaning that the maximum error of the determined tc0 is 100 s.

One example of contact time and initial change time is shown in Figure 4 for a cylindrical specimen
that is dried at two ends. The initial change time in the regions close to the boundary is very low,
indicating that moisture in these regions moves fast. Moisture must pass through these regions to
reach the inner region of the specimen; therefore, we see that tc0 quickly rises in the interior.
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Figure 4. An example of contact time and initial contact time for a cylindrical specimen dried at both
ends (x = 0 and x = 2 mm). This example is taken from the drying at 80% RH from initial 90% RH
(see Section 4 for detail) and uses the exponential function to calculate Kt.

The contact time can be then combined with a decay or growth function to calculate the change of
permeability due to the alteration of moisture state. Few functions can be used to achieve this purpose,
such as a stretched exponential function suggested in [31] or a reciprocal function.

Kt = K1 ±K2 exp
[
−

( tc

τ

)a]
(13)

Kt = K1 ±
K2

1 +
(

tc
τ

)a (14)

In both functions, τ [s] is a time constant, and a [−] is a stretched exponent. Specification of “±”
is: “+” for a drying process and “−” for a wetting process. At time zero, the initial time-dependent
permeability is K1 +K2. With the increase of time, the time-dependent permeability gradually decreases
to K1. Rewriting the above equations as the kinetics form, we have

dKt

dtc
= ±K2

[
−

a
τ

( tc

τ

)a−1]
exp

[
−

( tc

τ

)a]
(15)

dKt

dtc
= ±K2

[
−

a
τ

( tc

τ

)a−1][
1 +

( tc

τ

)a]−2
(16)

It is clear that K2 actually is the kinetic rate constant for the change of permeability with time.
As shown in Figure 5a, Kt calculated by the exponential function changes more rapidly than that

by the reciprocal function. By adjusting the parameters, the decrease of Kt can happen immediately
when the initial stable moisture state is disturbed or after a certain time, which is probably true for
some cases in which the microstructure needs time to be changed by moisture.
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time for a drying process (with K1 = 0.2 × 10−20 m2, K1 = 2 × 10−20 m2, a = 1 and τ = 10000 s); (b)
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4.1.3. Saturation-Dependent Permeability

A traditional method to calculate the saturation-dependent permeability is to use the capillary
pressure–saturation curve for unsaturated porous materials. Assuming a homogeneous porous material
that has connected pores with cylindrical shapes, Mualem proposed the following equation for the
saturation-dependent permeability KS [50].

KS = Sl


∫ S

0
1

Pc(x)
dx∫ 1

0
1

Pc(x)
dx


2

(17)

There are three implications in this equation. First, the permeability is a reciprocal function of
capillary pressure Pc in an unsaturated porous material. With the decrease of capillary pressure, KS
increases as more pores are filled with liquid water. Second, the square means that pores in the porous
material are assumed to be cylinders, and the pore body and the pore throat of each group of pores
have the same size. Third, the term Sl is a correction factor that accounts for the influence of tortuosity,
multiple interconnections, etc.

To use Equation (17), it should be combined with an equation for the capillary pressure–saturation
curves. However, Equation (17) is in an integral form which is not easy to be implemented into a
numerical model. It would be useful to turn it into a normal analytical function by choosing an
appropriate equation for the capillary pressure curve (S− Pc). In the literature, very few equations can
work in this way. The equation proposed by van Genuchten is one of them. By inserting Equation (9)
into Equation (17), we have the van Genuchten–Mualem (VGM) equation [45].

KS = Sl
[
1−

(
1− S1/m

)m]2
(18)

The parameter l may vary with different porous materials. The value of 1/2 is acceptable for most
soils [36,45] and also used for cementitious materials [11,51,52]. However, many studies argue that l
for cement-based materials is very different to soils. A study reported that −1/2 is the best value for the
three types of concretes [53]. Another study tested cement paste and mortar with four water-to-cement
ratios, and they fitted l for each of them [54]. They found that the value of l is in a narrow range from
−2.5 to −3. Therefore, we chose l = −3 for the studied cement pastes in this paper. Figure 5b shows
that when saturation decreases from 1 the saturation-dependent permeability drops sharply.
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4.2. Fractional Derivative Model (FDM) of Diffusion Model

As aforementioned, when Fick’s law with a constant diffusion coefficient does not work,
the nonlinear modelling with time-/saturation-dependent permeability/diffusivity can be used.
However, Kuntz and Lavallee [55] believed that the short-term anomaly is due to the deviation
from moisture flux-gradient proportionally, meaning that the normal derivative of Fick’s law is not
valid for moisture movement in porous media. Alternatively, in recent years, the fractal or fractional
derivatives of diffusion equations have been found effective in modelling anomalous moisture diffusion
in cement-based materials [56,57]. The normal (Fickian) diffusion of moisture follows the Brownian
motion in which the moisture content is proportional to the first power of time, while in anomalous
diffusion, the first power of time cannot be held anymore. The diffusion becomes a continuous-time
random walk, which corresponds to the fractional diffusion equations [25]. These models are of a
phenomenological description of moisture transport that may not reflect the actual physical mechanism
behind them. The diffusion equation thus can be written as

∂βS
∂tβ

= D f
∂2S
∂x2 (19)

where β [−] is a dimensionless exponent, so-called fractional order. With β = 1, Equation (19) turns into
a normal diffusion equation, β < 1 for sub-diffusion, and β > 1 for the super-diffusion. D f [m2/sβ] is
the fractional diffusion coefficient.

For a specimen with a planar geometry (e.g., a plane sheet), uniform initial moisture content and
the same external RH at both ends, the mass ratio (MR) of the specimen during moisture transport can
be calculated by an equation analogy of the solution to the normal diffusion [58].

MR =
m(t) −me

m0 −me
=

8
π2

∞∑
n=0

 1

(2n + 1)2 Eβ

−D f

(
(2n + 1)π

2L

)2

tβ
 (20)

where Eβ is the Mittag–Leffler function. If Eβ → 1 , Eβ converges to an exponential function. For the
long drying time, Equation (20) can be further reduced to the following equation [50,59].

MR =
8
π2 exp

[
−D f

(
π
2L

)2
tβ
]

(21)

Let

k =

[
D f

(
π
2L

)2
]−1/β

(22)

and then Equation (21) is written as

MR =
8
π2 exp

[
−

( t
k

)β]
(23)

Equation (23) is a version of Weibull function with a scale factor of 8/π2. The Weibull function
has been commonly used to fit the drying kinetics of irregular porous materials, such as foods [60,61]
and cement-based materials [19,42]. The standard form of the Weibull function is written as

MR = exp
[
−

( t
k

)β]
(24)
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The scale factor in the standard Weibull function is 1. For the purpose of fitting experimental data,
some studies [27] let the scale factor be a free parameter and then Equation (23) becomes

MR = k1 exp
[
−

( t
k

)β]
(25)

Presumably, Equation (25) would be able to provide better fitting results, but it is different from
Equation (21). Similar to Equation (15), the kinetic form of Equation (25) is

d MR
dt

= k1

[
−
β

τ

( t
k

)β−1]
exp

[
−

( t
k

)β]
(26)

with k1 as the kinetic rate constant of the MR changing with time.
Therefore, this study will compare five models, which are two versions of the proposed model

and three phenomenological models (two simplified solutions to the FDM in Equations (23) and (25)
and the Weibull function in Equation (24)). Parameters in these models that need to be determined by
fitting the measured data are shown in Table 1.

4.3. Experimental Data

The proposed model needs the measured sorption isotherm as input data and the measured mass
change curve (or MR curve) for the model validation. Most of anomalous moisture transport data
for the hygroscopic range reported in the literature cannot meet the requirement. Saeidpour and
Wadsö [16] reported anomalous mass change kinetics when cement paste specimens were subject to
drying or wetting in a Dynamic Vapor Sorption analyzer (DVS 1000 from Surface Measurement System
Ltd., UK). Specimens were prepared from CEM I–R32.5 R according to the European standard EN 197-1,
with 0.5 water-to-cement ratio without any admixtures. The materials mixing procedure followed
the European standard EN 196-1. The cylindrical specimens were cast in small stainless-steel tubes
(inner diameter 5.5 mm and sample length 2.0 mm) with a slight vibration. Both ends were sealed with
polyethylene films and then covered with glass chips so that the flat surfaces could be obtained [16].
Then, they were kept in a tight container at room temperature for about 3 months for curing. Drying
and wetting tests were carried out on different specimens, which may cause high data variations.

Samples for the sorption isotherm were prepared with the same cement and mix design but in
different geometry from the drying and wetting tests. The cement paste was firstly cast in the plastic
flask (diameter 7 cm and height 1 cm) and sealed for three months (see details reported in [36]). A part
of the large cylinder was crushed and vacuum saturated. A few small pieces (~30 mg in total) were
used to measure the sorption isotherm in the DVS.

4.4. Application Procedure

The moisture transport model proposed in this study was implemented by a finite differential
method [62]. The model can provide different sets of data. Here, the mass change with time m(t)
was compared with measured data. The nonlinear least squares method was used to calculate the
squares of difference between simulated and measured data. Since the decay and growth functions
(see Equations (13) and (15)) for different drying or wetting conditions vary, for each measurement,
the fitting was done separately. The minimization of the sum of squares was performed by the
Levenberg–Marquart algorithm. For the phenomenological models (Equations (23), (24), and (25)),
the equation was directly fitted with experimental curves by using the nonlinear least squares method.

The accuracy of fitting is related to the number of parameters in a model. More parameters
usually yield a higher value of determination coefficient R2 but low robustness and low sensitivity to
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parameters. To take into account the effect of the number of parameters, we use an adjusted R2 [63,64]
to assess the goodness of fitting.

R2
adj =

(n− 1)R2
− (p− 1)

n− p
(27)

where n is the number of measured data, and p is the number of parameters. For the proposed model
and Equation (26), p = 4 and for Weibull function (Equation (24)) and Equation (23), p = 3.

5. Conclusions

This study considered permeability as a kinetic variable, which can be divided into two parts,
one associated with saturation and one related to the contact time. The time-dependence can be
simply formulated by a decay or growth function. The saturation-dependence was calculated by
the VGM model. The proposed model was compared with the simplified solutions to a fractional
derivative model of anomalous diffusion and the Weibull function, which is often used to estimate the
drying kinetics of various porous materials. All these models were validated by data obtained from
experiments performed on cement pastes exposed to the hygroscopic environment. We found that:

• The proposed model can improve the simulation results compared with the conventional model
and the dual-permeability model. The main reason is that the time-dependent permeability is
used in the model.

• The time-dependent permeability can be calculated either by an exponential function or by a
reciprocal function. Both functions provided very similar results.

• The two simplified solutions to the fractional derivative model were not able to provide appropriate
mass change curves because their curves do not pass through the origin.

• Weibull function can provide results as good as the proposed model, but the empirical equation
lacks physical meanings. It may be useful for determining the final mass of a specimen when
measuring the sorption isotherm.
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