A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications
Abstract
:1. Introduction
- Osteoclast precursors are recruited from the bloodstream and form multinucleated osteoclasts (activation) [1];
- Mature osteoclasts resorb bone matrix through the acidification of the extracellular environment with the help of a proton pump [4];
- Osteoclasts undergo apoptosis, and pre-osteoblasts are recruited to the resorption site (reversal) [1];
- Deposition (formation) of fresh unmineralised matrix called osteoid by osteoblasts and subsequent mineralisation [5].
2. In Vitro Co-Culture Models of Osteoblasts and Osteoclasts
- Primary bone tissue culture—bone tissue explants are cultured in their physiological tissue architecture.
- 2D bone cell cultures—cells, extracted from bone tissue or immortalised cell lines, are cultured in 2D monolayers on plastic cell culture dishes or other flat substrates.
- 3D bone cell cultures—cells, extracted from bone tissue or immortalised cell lines, are cultured in a 3D environment by seeding them on scaffolds, matrices or as spheroids.
2.1. Bone Tissue Cultures
2.1.1. Culture Types
2.1.2. Bone Formation and Remodelling in Bone Tissue Culture Models
2.2. 2D Co-Culture Models
2.2.1. 2D Indirect Co-Culture Models
2.2.2. 2D Direct Co-Culture Models
2.3. 3D Co-Culture Models
2.3.1. Scaffold-Free
2.3.2. Matrices
2.3.3. Scaffolds
3. Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
AM EU | Additive manufacturing European Union |
US | United States |
UK | United Kingdom |
ALP | Alkaline phosphatase |
hPBMC | Human peripheral blood mononuclear cell |
MSC | Mesenchymal stem cell |
RANKL | Receptor activator of nuclear factor-kb ligand |
M-CSF | Macrophage colony-stimulating factor |
TRAP | Tartrate-resistant acid phosphatase |
hMSCs | Human mesenchymal stem cells |
ECM | Extracellular matrix |
RGD | Arginine, Glycine, Aspartate |
PTH | Parathyroid hormone |
DNA | Deoxyribonucleic acid |
sFRP-1 | Secreted frizzled-related protein 1 |
DMEM | Dulbecco's Modified Eagle Medium |
qPCR | Real-time polymerase chain reaction |
RUNX2 | Runt-related transcription factor 2 |
ELISA | Enzyme-linked immunosorbent assay |
LDH | Lactate dehydrogenase |
BMP | Bone morphogenetic protein |
References
- Clarke, B. Normal bone anatomy and physiology. Clin. J. Am. Soc. Nephrol. 2008, 3 Suppl. 3, 131–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosen, C.J. The Epidemiology and Pathogenesis of Osteoporosis. In Endotext [Internet]; Groot, L.J., Chrousos, G., Dungan, K., Perreault, L., Purnell, J., Rebar, R., Singer, F., Trence, D.L., Vinik, A., Wilson, D.P., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2017; Volume 3, pp. 112–119, 2000; Available online: https//www.ncbi.nlm.nih.gov/bo.
- Hattner, R.; Epker, B.N.; Frost, H.M. Suggested sequential mode of control of changes in cell behaviour in adult bone remodelling. Nature 1965, 206, 489–490. [Google Scholar] [CrossRef] [PubMed]
- Blair, H.C.; Teitelbaum, S.L.; Ghiselli, R.; Gluck, S. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science 1989, 245, 855–857. [Google Scholar] [CrossRef] [PubMed]
- Parfitt, A.M. Osteonal and hemi-osteonal remodeling: The spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem. 1994, 55, 273–286. [Google Scholar] [CrossRef] [PubMed]
- Ruffoni, D.; van Lenthe, G.H. 3.10 Finite Element Analysis in Bone Research: A Computational Method Relating Structure to Mechanical Function. Compr. Biomater. II 2017, 169–196. [Google Scholar]
- Hernlund, E.; Svedbom, A.; Ivergård, M.; Compston, J.; Cooper, C.; Stenmark, J.; McCloskey, E.V.; Jönsson, B.; Kanis, J.A. Osteoporosis in the European Union: Medical management, epidemiology and economic burden: A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch. Osteoporos. 2013, 8, 136. [Google Scholar] [CrossRef] [Green Version]
- IOF Broken Bones. Broken Lives. 2018. Available online: https://www.iofbonehealth.org/broken-bones-broken-livesv (accessed on 19 October 2018).
- Gennari, L.; Rotatori, S.; Bianciardi, S.; Gonnelli, S.; Nuti, R.; Merlotti, D. Appropriate models for novel osteoporosis drug discovery and future perspectives. Expert Opin. Drug Discov. 2015, 10, 1201–1216. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.K.Y.; Mason, A.; Cooper, C.; Dennison, E. Novel Advances in the Treatment of Osteoporosis. Br. Med. Bull. 2017, 119, 129–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knight, A. Systematic Reviews of Animal Experiments Demonstrate Poor Human Clinical and Toxicological Utility. ALTEX 2007, 24, 320–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FDA Osteoporosis: Nonclinical Evaluation of Drugs Intended for Treatment. Guid. Ind. 2016, 1–8.
- European Medicines Agency Guideline on the Evaluation of Medicinal Products in the Treatment of Primary Osteoporosis. Guideline 2006, 1–10.
- Komori, T. Animal models for osteoporosis. Eur. J. Pharm. 2015, 759, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Aerssens, J.; Boonen, S.; Lowet, G.; Dequeker, J. Interspecies Differences in Bone Composition, Density, and Quality: Potential Implications for in Vivo Bone Research 1. Endocrinology 1998, 139, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Martini, L.; Fini, M.; Giavaresi, G.; Giardino, R. Sheep model in orthopedic research: A literature review. Comp. Med. 2001, 51, 292–299. [Google Scholar]
- Lelovas, P.; Xanthos, T.; Thoma, S.; Lyritis, G.; Dontas, I. The Laboratory Rat as an Animal Model for Osteoporosis Research. Am. Assoc. Lab. Anim. Sci. 2013, 58, 424–430. [Google Scholar]
- Turner, A.S. Animal models of osteoporosis - Necessity and limitations. Eur. Cells Mater. 2001, 1, 66–81. [Google Scholar] [CrossRef]
- Caddeo, S.; Boffito, M.; Sartori, S. Tissue Engineering Approaches in the Design of Healthy and Pathological In Vitro Tissue Models. Front. Bioeng. Biotechnol. 2017, 5, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Chavassieux, P.; Garnero, P.; Duboeuf, F.; Vergnaud, P.; Brunner-Ferber, F.; Delmas, P.D.; Meunier, P.J. Effects of a New Selective Estrogen Receptor Modulator (MDL 103,323) on Cancellous and Cortical Bone in Ovariectomized Ewes: A Biochemical, Histomorphometric, and Densitometric Study. J. Bone Min. Res. 2001, 16, 89–96. [Google Scholar] [CrossRef]
- Ahadian, S.; Civitarese, R.; Bannerman, D.; Mohammadi, M.H.; Lu, R.; Wang, E.; Davenport-Huyer, L.; Lai, B.; Zhang, B.; Zhao, Y.; et al. Organ-On-A-Chip Platforms: A Convergence of Advanced Materials, Cells, and Microscale Technologies. Adv. Healthc. Mater. 2017, 1700506, 1700506. [Google Scholar]
- Russell, W.M.S.; Burch, R.L. The principles of humane experimental technique; HathiTrust Digital Library: London, UK, 1958. [Google Scholar]
- Rissanen, J.P.; Halleen, J.M. Models and screening assays for drug discovery in osteoporosis. Expert Opin. Drug Discov. 2010, 5, 1163–1174. [Google Scholar] [CrossRef]
- Hooijmans, C.R.; Ritskes-Hoitinga, M. Progress in Using Systematic Reviews of Animal Studies to Improve Translational Research. Plos Med. 2013, 10, e1001482. [Google Scholar] [CrossRef] [Green Version]
- Michael, H.; David, W.T.; John, L.C.; Celia, C.; Jesse, R. Clinical development success rates for investigational drugs. Nat. Biotechnol. 2014, 32, 43. [Google Scholar]
- Bussard, K.M.; Mastro, A.M. Ex-vivo analysis of the bone microenvironment in bone metastatic breast cancer. J. Mammary Gland Biol. Neoplasia 2009, 14, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Bussard, K.M.; Venzon, D.J.; Mastro, A.M. Osteoblasts Are a Major Source of Inflammatory Cytokines in the Tumor Microenvironment of Bone Metastatic Breast Cancer. J. Cell. Biochem. 2010, 111, 1138–1148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtin, P.; Youm, H.; Salih, E. Three-dimensional cancer-bone metastasis model using ex-vivo co-cultures of live calvarial bones and cancer cells. Biomaterials 2012, 33, 1065–1078. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Tian, L.; Goldstein, A.; Liu, J.; Lo, H.C.; Sheng, K.; Welte, T.; Wong, S.T.C.; Gugala, Z.; Stossi, F.; et al. Bone-in-culture array as a platform to model early-stage bone metastases and discover anti-metastasis therapies. Nat. Commun. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Salih, E. Ex-Vivo Model Systems of Cancer-Bone Cell Interactions. Bone Res. Protocols 2019, 1914, 17–240. [Google Scholar]
- Amanatullah, D.F.; Tamaresis, J.S.; Chu, P.; Bachmann, M.H.; Hoang, N.M.; Collyar, D.; Mayer, A.T.; West, R.B.; Maloney, W.J.; Contag, C.H.; et al. Local estrogen axis in the human bone microenvironment regulates estrogenreceptor-positive breast cancer cells. Breast Cancer Res. 2017, 19, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Frantzias, J.; Logan, J.G.; Mollat, P.; Sparatore, A.; Del Soldato, P.; Ralston, S.H.; Idris, A.I. Hydrogen sulphide-releasing diclofenac derivatives inhibit breast cancer-induced osteoclastogenesis in vitro and prevent osteolysis ex vivo. Br. J. Pharm. 2012, 165, 1914–1925. [Google Scholar] [CrossRef] [Green Version]
- Francesca, S.; Veronica, B.; Silvia, B.; Gianluca, G.; Annapaola, P.; Simona, C.; Matteo, C.; Lucia, M.; Mazzotti, A.; Milena, F. An in vitro 3D bone metastasis model by using a human bone tissue culture and human sex-related cancer cells. Oncotarget 2016, 7, 76966–76983. [Google Scholar]
- Matsugaki, A.; Harada, T.; Kimura, Y.; Sekita, A.; Nakano, T. Dynamic Collision Behavior Between Osteoblasts and Tumor Cells Regulates the Disordered Arrangement of Collagen Fiber/Apatite Crystals in Metastasized Bone. Int. J. Mol. Sci. 2018, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marino, S.; Bishop, R.T.; Carrasco, G.; Logan, J.G.; Li, B.; Idris, A.I. Pharmacological Inhibition of NFκB Reduces Prostate Cancer Related Osteoclastogenesis In Vitro and Osteolysis Ex Vivo. Calcif. Tissue Int. 2019, 105, 193–204. [Google Scholar] [CrossRef] [Green Version]
- Watanabe, K.; Hirata, M.; Tominari, T.; Matsumoto, C.; Fujita, H.; Yonekura, K.; Murphy, G.; Nagase, H.; Miyaura, C.; Inada, M. The MET/Vascular Endothelial Growth Factor Receptor (VEGFR)-targeted tyrosine kinase inhibitor also attenuates FMS-dependent osteoclast differentiation and bone destruction induced by prostate cancer. J. Biol. Chem. 2016, 291, 20891–20899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, L.; Mohammad, K.S.; Wu, H.; Crean, C.; Poteat, B.; Cheng, Y.; Cardoso, A.A.; Machal, C.; Hanenberg, H.; Abonour, R.; et al. Cell adhesion molecule CD166 drives malignant progression and osteolytic disease in multiple myeloma. Cancer Res. 2016, 176, 139–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schiller, K.R.; Zillhardt, M.R.; Alley, J.; Borjesson, D.L.; Beitz, A.J.; Mauro, L.J. Secretion of MCP-1 and other paracrine factors in a novel tumor-bone coculture model. BMC Cancer 2009, 9, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidson, E.H.; Reformat, D.D.; Allori, A.; Canizares, O.; Wagner, I.J.; Saadeh, P.B.; Warren, S.M. Flow perfusion maintains ex vivo bone viability: A novel model for bone biology research. J. Tissue Eng. Regen. Med. 2012, 6, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Swarup, A.; Weidner, H.; Duncan, R.; Nohe, A. The preservation of bone cell viability in a human femoral head through a perfusion bioreactor. Materials 2018, 11, 1070. [Google Scholar] [CrossRef] [Green Version]
- Houston, D.A.; Staines, K.A.; Macrae, V.E.; Farquharson, C. Culture of murine embryonic metatarsals: A physiological model of endochondral ossification. J. Vis. Exp. 2016, 2016, 1–9. [Google Scholar] [CrossRef]
- Kanczler, J.M.; Smith, E.L.; Roberts, C.A.; Oreffo, R.O.C. A novel approach for studying the temporal modulation of embryonic skeletal development using organotypic bone cultures and microcomputed tomography. Tissue Eng. Part. C Methods 2012, 18, 747–760. [Google Scholar] [CrossRef] [Green Version]
- Staines, K.A.; Brown, G.; Farquharson, C. The ex vivo organ culture of bone. Methods Mol. Biol. 2019, 1914, 199–215. [Google Scholar]
- Sloan, A.J.; Taylor, S.Y.; Smith, E.L.; Roberts, J.L.; Chen, L.; Wei, X.Q.; Waddington, R.J. A novel ex vivo culture model for inflammatory bone destruction. J. Dent. Res. 2013, 92, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Närhi, K. Embryonic Explant Culture: Studying Effects of Regulatory Molecules on Gene Expression in Craniofacial Tissues. Meth. Mol Biol. 2017, 1537, 367–380. [Google Scholar]
- Smith, E.L.; Locke, M.; Waddington, R.J.; Sloan, A.J. An ex vivo rodent mandible culture model for bone repair. Tissue Eng. Part. C Methods 2010, 16, 1287–1296. [Google Scholar] [CrossRef] [PubMed]
- Wan Hassan, W.N.; Stephenson, P.A.; Waddington, R.J.; Sloan, A.J. An ex vivo culture model for orthodontically induced root resorption. J. Dent. 2012, 40, 406–415. [Google Scholar] [CrossRef]
- Richards, R.G.; Simpson, A.E.; Jaehn, K.; Furlong, P.I.; Martin, J. Establishing a 3D Ex vivo Culture System. ALTEX 2007, 24, 56–59. [Google Scholar]
- Davies, C.M.; Jones, D.B.; Stoddart, M.J.; Koller, K.; Smith, E.; Archer, C.W.; Richards, R.G. Mechanically loaded ex vivo bone culture system “Zetos”: Systems and culture preparation. Eur. Cells Mater. 2006, 11, 57–75. [Google Scholar] [CrossRef]
- Stoddart, M.J.; Furlong, P.I.; Simpson, A.; Davies, C.M.; Richards, R.G. A comparison of non-radioactive methods for assessing viability in ex vivo cultured cancellous bone: Technical note. Eur. Cells Mater. 2006, 12, 16–25. [Google Scholar] [CrossRef]
- Elson, K.M.; Fox, N.; Tipper, J.L.; Kirkham, J.; Hall, R.M.; Fisher, J.; Ingham, E. Non-destructive monitoring of viability in an ex vivo organ culture model of osteochondral tissue. Eur. Cells Mater. 2015, 29, 356–369. [Google Scholar] [CrossRef]
- Mohammad, K.S.; Chirgwin, J.M.; Guise, T.A. Assessing new bone formation in neonatal calvarial organ cultures. Methods Mol. Biol. 2008, 455, 37–50. [Google Scholar]
- Balek, L.; Gudernova, I.; Vesela, I.; Hampl, M.; Oralova, V.; Kunova Bosakova, M.; Varecha, M.; Nemec, P.; Hall, T.; Abbadessa, G.; et al. ARQ 087 inhibits FGFR signaling and rescues aberrant cell proliferation and differentiation in experimental models of craniosynostoses and chondrodysplasias caused by activating mutations in FGFR1, FGFR2 and FGFR3. Bone 2017, 105, 57–66. [Google Scholar] [CrossRef]
- Smith, E.L.; Kanczler, J.M.; Gothard, D.; Roberts, C.A.; Wells, J.A.; White, L.J.; Qutachi, O.; Sawkins, M.J.; Peto, H.; Rashidi, H.; et al. Evaluation of skeletal tissue repair, Part 1: Assessment of novel growth-factor-releasing hydrogels in an ex vivo chick femur defect model. Acta Biomater. 2014, 10, 4186–4196. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.L.; Kanczler, J.M.; Gothard, D.; Roberts, C.A.; Wells, J.A.; White, L.J.; Qutachi, O.; Sawkins, M.J.; Peto, H.; Rashidi, H.; et al. Evaluation of skeletal tissue repair, Part 2: Enhancement of skeletal tissue repair through dual-growth-factor-releasing hydrogels within an ex vivo chick femur defect model. Acta Biomater. 2014, 10, 4197–4205. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Hales, B.F. Effects of Organophosphate Ester Flame Retardants on Endochondral Ossification in Ex Vivo Murine Limb Bud Cultures. Toxicol. Sci. 2019, 168, 420–429. [Google Scholar] [CrossRef] [PubMed]
- McElderry, J.D.P.; Zhao, G.; Khmaladze, A.; Wilson, C.G.; Franceschi, R.T.; Morris, M.D. Tracking circadian rhythms of bone mineral deposition in murine calvarial organ cultures. J. Bone Min. Res. 2013, 28, 1846–1854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassem, A.; Lindholm, C.; Lerner, U.H. Toll-Like receptor 2 stimulation of osteoblasts mediates staphylococcus aureus induced bone resorption and osteoclastogenesis through enhanced RANKL. PLoS ONE 2016, 11, 1–20. [Google Scholar] [CrossRef] [Green Version]
- David, V.; Guignandon, A.; Martin, A.; Malaval, L.; Lafage-Proust, M.H.; Rattner, A.; Mann, V.; Noble, B.; Jones, D.B.; Vico, L. Ex vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain. Tissue Eng. Part. A. 2008, 14, 117–126. [Google Scholar] [CrossRef] [Green Version]
- Winograd, J.M.; Im, M.; Kolk, C. Vander Osteoblastic and osteoclastic activation in coronal sutures undergoing fusion ex vivo. Plast. Reconstr. Surg. 1997, 100, 1103–1112. [Google Scholar] [CrossRef]
- Liu, J.; Czernick, D.; Lin, S.C.; Alasmari, A.; Serge, D.; Salih, E. Novel bioactivity of phosvitin in connective tissue and bone organogenesis revealed by live calvarial bone organ culture models. Dev. Biol. 2013, 381, 256–275. [Google Scholar] [CrossRef]
- Laitala-Leinonen, T.; Väänänen, H.K. Decreased bone resorption, osteoclast differentiation, and expression of vacuolar H+-ATPase in antisense DNA-treated mouse metacarpal and calvaria cultures ex vivo. Antisense Nucleic Acid Drug Dev. 1999, 9, 155–169. [Google Scholar] [CrossRef]
- Bodine, P.V.N.; Stauffer, B.; Ponce-de-Leon, H.; Bhat, R.A.; Mangine, A.; Seestaller-Wehr, L.M.; Moran, R.A.; Billiard, J.; Fukayama, S.; Komm, B.S.; et al. A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation. Bone 2009, 44, 1063–1068. [Google Scholar] [CrossRef]
- Liu, Y.; Bhat, R.A.; Seestaller-Wehr, L.M.; Fukayama, S.; Mangine, A.; Moran, R.A.; Komm, B.S.; Bodine, P.V.N.; Billiard, J. The orphan receptor tyrosine kinase Ror2 promotes osteoblast differentiation and enhances ex vivo bone formation. Mol. Endocrinol. 2007, 21, 376–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakajima, K.; Komiyama, Y.; Hojo, H.; Ohba, S.; Yano, F.; Nishikawa, N.; Aburatani, H.; Takato, T.; Chung, U.I. Enhancement of bone formation ex vivo and in vivo by a helioxanthin-derivative. Biochem. Biophys. Res. Commun. 2010, 395, 502–508. [Google Scholar] [CrossRef] [PubMed]
- Lie, K.K.; Moren, M. Retinoic acid induces two osteocalcin isoforms and inhibits markers of osteoclast activity in Atlantic cod (Gadus morhua) ex vivo cultured craniofacial tissues. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2012, 161, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Ben-awadh, A.N.; Delgado-Calle, J.; Tu, X.; Kuhlenschmidt, K.; Allen, M.R.; Plotkin, L.I.; Bellido, T. Parathyroid hormone receptor signaling induces bone resorption in the adult skeleton by directly regulating the RANKL gene in osteocytes. Endocrinology 2014, 155, 2797–2809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chagin, A.S.; Karimian, E.; Sundström, K.; Eriksson, E.; Sävendahl, L. Catch-up growth after dexamethasone withdrawal occurs in cultured postnatal rat metatarsal bones. J. Endocrinol. 2010, 204, 21–29. [Google Scholar] [CrossRef] [Green Version]
- El-Bialy, T.; Lam, B.; Aldaghreer, S.; Sloan, A.J. The effect of low intensity pulsed ultrasound in a 3D ex vivo orthodontic model. J. Dent. 2011, 39, 693–699. [Google Scholar] [CrossRef]
- Osyczka, A.M.; Diefenderfer, D.L.; Bhargave, G.; Leboy, P.S. Different Effects of BMP-2 on Marrow Stromal Cells from Human and Rat Bone. Cells Tissues Organs 2004, 176, 109–119. [Google Scholar] [CrossRef] [Green Version]
- Simpson, A.E.; Stoddart, M.J.; Davies, C.M.; Jaehn, K.; Furlong, P.I.; Gasser, J.A.; Jones, D.B.; Noble, B.S.; Richards, R.G. TGFb3 and loading increases osteocyte survival in human cancellous bone cultured ex vivo. Cell Biochem. Funct. 2009, 27, 23–29. [Google Scholar] [CrossRef]
- Meyer, L.A.; Johnson, M.G.; Cullen, D.M.; Vivanco, J.F.; Blank, R.D.; Ploeg, H.-L.; Smith, E.L. Combined exposure to big endothelin-1 and mechanical loading in bovine sternal cores promotes osteogenesis Luisa. Bone 2016, 85, 115–122. [Google Scholar] [CrossRef] [Green Version]
- Vivanco, J.; Garcia, S.; Ploeg, H.L.; Alvarez, G.; Cullen, D.; Smith, E.L. Apparent elastic modulus of ex vivo trabecular bovine bone increases with dynamic loading. Proc. Inst. Mech. Eng. Part. H J. Eng. Med. 2013, 227, 904–912. [Google Scholar] [CrossRef]
- Cosmi, F.; Steimberg, N.; Mazzoleni, G. A mesoscale study of the degradation of bone structural properties in modeled microgravity conditions. J. Mech. Behav. Biomed. Mater. 2015, 44, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veeriah, V.; Zanniti, A.; Paone, R.; Chatterjee, S.; Rucci, N.; Teti, A.; Capulli, M. Interleukin-1β, lipocalin 2 and nitric oxide synthase 2 are mechano-responsive mediators of mouse and human endothelial cell-osteoblast crosstalk. Sci. Rep. 2016, 6, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kogawa, M.; Khalid, K.A.; Wijenayaka, A.R.; Ormsby, R.T.; Evdokiou, A.; Anderson, P.H.; Findlay, D.M.; Atkins, G.J. Recombinant sclerostin antagonizes effects of ex vivo mechanical loading in trabecular bone and increases osteocyte lacunar size. Am. J. Physiol. Cell Physiol. 2018, 314, C53–C61. [Google Scholar] [CrossRef] [PubMed]
- Maeda, E.; Ichikawa, K.; Murase, K.; Nagayama, K.; Matsumoto, T. Ex-vivo observation of calcification process in chick tibia slice: Augmented calcification along collagen fiber orientation in specimens subjected to static stretch. J. Biomech. 2018, 78, 94–101. [Google Scholar] [CrossRef]
- Okubo, N.; Minami, Y.; Fujiwara, H.; Umemura, Y.; Tsuchiya, Y.; Shirai, T.; Oda, R.; Inokawa, H.; Kubo, T.; Yagita, K. Prolonged bioluminescence monitoring in mouse ex vivo bone culture revealed persistent circadian rhythms in articular cartilages and growth plates. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, M.; Kaneko, K.; Miyamoto, Y.; Yoshimura, K.; Suzuki, D.; Akaike, T.; Sawa, T.; Ida, T.; Fujii, S.; Ihara, H.; et al. 8-Nitro-cGMP promotes bone growth through expansion of growth plate cartilage. Free Radic. Biol. Med. 2017, 110, 63–71. [Google Scholar] [CrossRef]
- Hara, E.S.; Okada, M.; Nagaoka, N.; Hattori, T.; Iida, L.M.; Kuboki, T.; Nakano, T.; Matsumoto, T. Chondrocyte burst promotes space for mineral expansion. Integr. Biol. 2018, 10, 57–66. [Google Scholar] [CrossRef]
- Qian, N.; Ichimura, A.; Takei, D.; Sakaguchi, R.; Kitani, A.; Nagaoka, R.; Tomizawa, M.; Miyazaki, Y.; Miyachi, H.; Numata, T.; et al. TRPM7 channels mediate spontaneous Ca 2+ fluctuations in growth plate chondrocytes that promote bone development. Sci. Signal. 2019, 12, 1–14. [Google Scholar] [CrossRef]
- Smith, E.L.; Kanczler, J.M.; Roberts, C.A.; Oreffo, R.O.C. Developmental cues for bone formation from parathyroid hormone and parathyroid hormone-related protein in an ex vivo organotypic culture system of embryonic chick femora. Tissue Eng. Part. C Methods 2012, 18, 984–994. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.L.; Rashidi, H.; Kanczler, J.M.; Shakesheff, K.M.; Oreffo, R.O.C. The effects of 1α, 25-dihydroxyvitamin D3 and transforming growth factor-β3 on bone development in an ex vivo organotypic culture system of embryonic chick femora. PLoS ONE 2015, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Bernhardt, A.; Thieme, S.; Domaschke, H.; Springer, A.; Rösen-Wolff, A.; Gelinsky, M. Crosstalk of osteoblast and osteoclast precursors on mineralized collagen-towards an in vitro model for bone remodeling. J. Biomed. Mater. Res. Part. A 2010, 95, 848–856. [Google Scholar] [CrossRef] [PubMed]
- Montesi, M.; Panseri, S.; Iafisco, M.; Adamiano, A.; Tampieri, A. Coupling hydroxyapatite nanocrystals with lactoferrin as a promising strategy to fine regulate bone homeostasis. PLoS ONE 2015, 10, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Jablonski, H.; Rekasi, H.; Jäger, M. The influence of calcitonin gene-related peptide on markers of bone metabolism in MG-63 osteoblast-like cells co-cultured with THP-1 macrophage-like cells under virtually osteolytic conditions. BMC Musculoskelet. Disord. 2016, 17, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Wan, P.; Wang, W.; Yang, K.; Zhang, Y.; Han, Y. Regulation of osteogenesis and osteoclastogenesis by zoledronic acid loaded on biodegradable magnesium-strontium alloy. Sci. Rep. 2019, 9, 1–12. [Google Scholar] [CrossRef]
- Pagani, S.; Torricelli, P.; Veronesi, F.; Salamanna, F.; Cepollaro, S.; Fini, M. An advanced tri-culture model to evaluate the dynamic interplay among osteoblasts, osteoclasts, and endothelial cells. J. Cell. Physiol. 2018, 233, 291–301. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Wan, Z.; Liu, H.; Li, H.; Liu, L.; Li, R.; Guo, Y.; Chen, W.; Zhang, X. Osteoblasts subjected to mechanical strain inhibit osteoclastic differentiation and bone resorption in a Co-culture system. Ann. Biomed. Eng. 2013, 41, 2056–2066. [Google Scholar] [CrossRef]
- Schulze, S.; Wehrum, D.; Dieter, P.; Hempel, U. A supplement-free osteoclast–osteoblast co-culture for pre-clinical application. J. Cell. Physiol. 2018, 233, 4391–4400. [Google Scholar] [CrossRef]
- Takahashi, N.; Akatsu, T.; Udagawa, N.; Sasaki, T.; Yamaguchi, A.; Moseley, J.M.; Martin, T.J.; Suda, T. Osteoblastic Cells are involved in osteoclast formation. Endocrinology 1988, 123, 2600–2602. [Google Scholar] [CrossRef]
- Grano, M.; Colucci, S.; Cantatore, F.P.; Teti, A.; Zambonin Zallone, A. Osteoclast bone resorption is enhanced in the presence of osteoblasts. Boll. Soc. Ital. Biol. Sper. 1990, 66, 1051–1057. [Google Scholar]
- Kubota, K.; Sakikawa, C.; Katsumata, M.; Nakamura, T.; Wakabayashi, K. Platelet-derived growth factor BB secreted from osteoclasts acts as an osteoblastogenesis inhibitory factor. J. Bone Min. Res. 2002, 17, 257–265. [Google Scholar] [CrossRef]
- Salbach-Hirsch, J.; Ziegler, N.; Thiele, S.; Moeller, S.; Schnabelrauch, M.; Hintze, V.; Scharnweber, D.; Rauner, M.; Hofbauer, L.C. Sulfated glycosaminoglycans support osteoblast functions and concurrently suppress osteoclasts. J. Cell. Biochem. 2014, 115, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Komine, M.; Kukita, A.; Kukita, T.; Ogata, Y.; Hotokebuchi, T.; Kohashi, O. Tumor necrosis factor-α cooperates with receptor activator of nuclear factor κB ligand in generation of osteoclasts in stromal cell-depleted rat bone marrow cell culture. Bone 2001, 28, 474–483. [Google Scholar] [CrossRef]
- Tat, S.; Pelletier, J.-P. The differential expression of osteoprotegerin (OPG) and receptor activator of nuclear factor kappa B ligand (RANKL) in human osteoarthritic subchondral bone. Clin. Exp. Rheumatol. 2008, 26, 295–304. [Google Scholar]
- Yin, P.; Lv, H.; Li, Y.; Deng, Y.; Zhang, L.; Tang, P. Exosome-mediated genetic information transfer, a missing piece of osteoblast-osteoclast communication puzzle. Front. Endocrinol. 2017, 8, 1–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duncan, R.; Turner, C.H. Mechanotransduction and the Functional Response of Bone to Mechanical Strain. Calcif. Tissue Int. 1995, 57, 344–358. [Google Scholar] [CrossRef]
- Weinbaum, S.; Cowin, S.C.; Zeng, Y. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 1994, 27, 339–360. [Google Scholar] [CrossRef]
- Santos, A.; Klein-Nulend, J. The role of osteocytes in bone mechanotransduction. Curr. Opin. Orthop. 2009, 16, 316–324. [Google Scholar] [CrossRef] [Green Version]
- Fukuda, M.; Yoshizawa, T.; Karim, M.F.; Sobuz, S.U.; Korogi, W.; Kobayasi, D.; Okanishi, H.; Tasaki, M.; Ono, K.; Sawa, T.; et al. SIRT7 has a critical role in bone formation by regulating lysine acylation of SP7/Osterix. Nat. Commun. 2018, 9. [Google Scholar] [CrossRef] [Green Version]
- Simon, D.; Derer, A.; Andes, F.T.; Lezuo, P.; Bozec, A.; Schett, G.; Herrmann, M.; Harre, U. Galectin-3 as a novel regulator of osteoblast-osteoclast interaction and bone homeostasis. Bone 2017, 105, 35–41. [Google Scholar] [CrossRef]
- Angel, N.Z.; Walsh, N.; Forwood, M.R.; Ostrowski, M.C.; Cassady, A.I.; Hume, D.A. Transgenic mice overexpressing tartrate-resistant acid phosphatase exhibit an increased rate of bone turnover. J. Bone Min. Res. 2000, 15, 103–110. [Google Scholar] [CrossRef]
- Zhao, S.; Kato, Y.; Zhang, Y.; Harris, S.; Ahuja, S.S.; Bonewald, L.F. MLO-Y4 Osteocyte-Like Cells Support Osteoclast. J. Bone Min. Res. 2002, 17, 2068–2079. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.H.; You, L.; Yellowley, C.E.; Jacobs, C.R. Oscillatory fluid flow-induced shear stress decreases osteoclastogenesis through RANKL and OPG signaling. Bone 2006, 39, 1043–1047. [Google Scholar] [CrossRef] [PubMed]
- Schmid, F.V.; Kleinhans, C.; Schmid, F.F.; Kluger, P.J. Osteoclast Formation within a Human Co-Culture System on Bone Material as an In Vitro Model for Bone Remodeling Processes. J. Funct. Morphol. Kinesiol. 2018, 17. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.T.; Kang, L.; Wang, C.Z.; Huang, P.J.; Huang, H.T.; Lin, S.Y.; Chou, S.H.; Lu, C.C.; Shen, P.C.; Lin, Y.S.; et al. (−)-Epigallocatechin-3-gallate decreases osteoclastogenesis via modulation of RANKL and osteoprotegrin. Molecules 2019, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayden, R.S.; Quinn, K.P.; Alonzo, C.A.; Georgakoudi, I.; Kaplan, D.L. Quantitative characterization of mineralized silk film remodeling during long-term osteoblast-osteoclast co-culture. Biomaterials 2014, 35, 3794–3802. [Google Scholar] [CrossRef] [Green Version]
- Hayden, R.S.; Vollrath, M.; Kaplan, D.L. Effects of clodronate and alendronate on osteoclast and osteoblast co-cultures on silk-hydroxyapatite films. Acta Biomater. 2014, 10, 486–493. [Google Scholar] [CrossRef] [Green Version]
- Domaschke, H.; Biol, D.; Gelinsky, M.; Burmeister, B.; Biol, D.; Fleig, R.; Hanke, T.; Reinstorf, A.; Chem, D.; Pompe, W.; et al. In Vitro Ossification and Remodeling of Mineralized Collagen I Scaffolds. Tissue Eng. 2006, 12, 949–958. [Google Scholar] [CrossRef]
- Standring, S. Gray’s anatomy: The anatomical basis of clinical practice; Churchill Livingstone: London, UK, 2016; ISBN 9780702052309. [Google Scholar]
- Young, P.S.; Tsimbouri, P.M.; Gadegaard, N.; Meek, R.M.; Dalby, M.J. Osteoclastogenesis/osteoblastogenesis using human bone marrow-derived cocultures on nanotopographical polymer surfaces. Nanomedicine 2015, 10, 949–957. [Google Scholar] [CrossRef]
- Furuya, M.; Kikuta, J.; Fujimori, S.; Seno, S.; Maeda, H.; Shirazaki, M.; Uenaka, M.; Mizuno, H.; Iwamoto, Y.; Morimoto, A.; et al. Direct cell-cell contact between mature osteoblasts and osteoclasts dynamically controls their functions in vivo. Nat. Commun. 2018, 9, 1–12. [Google Scholar] [CrossRef]
- Baptista, D.; Teixeira, L.; van Blitterswijk, C.; Giselbrecht, S.; Truckenmüller, R. Overlooked? Underestimated? Effects of Substrate Curvature on Cell Behavior. Trends Biotechnol. 2019. [Google Scholar] [CrossRef]
- Hutmacher, D.W.; Loessner, D.; Rizzi, S.; Kaplan, D.L.; Mooney, D.J.; Clements, J.A. Can tissue engineering concepts advance tumor biology research? Trends Biotechnol. 2010, 28, 125–133. [Google Scholar] [CrossRef]
- Vicente-Manzanares, M.; Sánchez-Madrid, F. Cell polarization: A comparative cell biology and immunological view. Dev. Immunol. 2000, 7, 51–65. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Lechón, M.J.; Jover, R.; Donato, T.; Ponsoda, X.; Rodriguez, C.; Stenzel, K.G.; Klocke, R.; Paul, D.; Guillén, I.; Bort, R.; et al. Long-term expression of differentiated functions in hepatocytes cultured in three-dimensional collagen matrix. J. Cell. Physiol. 1998, 177, 553–562. [Google Scholar] [CrossRef]
- Clarke, M.S.F.; Sundaresan, A.; Vanderburg, C.R.; Banigan, M.G.; Pellis, N.R. A three-dimensional tissue culture model of bone formation utilizing rotational co-culture of human adult osteoblasts and osteoclasts. Acta Biomater. 2013, 9, 7908–7916. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, T.; Boccaccini, A.R.; Detsch, R. Biofabrication of a co-culture system in an osteoid-like hydrogel matrix. Biofabrication 2017. [Google Scholar] [CrossRef]
- Panzavolta, S.; Torricelli, P.; Casolari, S.; Parrilli, A.; Fini, M.; Bigi, A. Strontium-Substituted Hydroxyapatite-Gelatin Biomimetic Scaffolds Modulate Bone Cell Response. Macromol. Biosci. 2018, 18, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Mandatori, D.; Penolazzi, L.; Pipino, C.; Di Tomo, P.; Di Silvestre, S.; Di Pietro, N.; Trevisani, S.; Angelozzi, M.; Ucci, M.; Piva, R.; et al. Menaquinone-4 enhances osteogenic potential of human amniotic fluid mesenchymal stem cells cultured in 2D and 3D dynamic culture systems. J. Tissue Eng. Regen. Med. 2018, 12, 447–459. [Google Scholar] [CrossRef]
- Reilly, G.C.; Engler, A.J. Intrinsic extracellular matrix properties regulate stem cell differentiation. J. Biomech. 2010, 43, 55–62. [Google Scholar] [CrossRef]
- Kleinman, H.K.; Philp, D.; Hoffman, M.P. Role of the extracellular matrix in morphogenesis. Curr. Opin. Biotechnol. 2003, 14, 526–532. [Google Scholar] [CrossRef]
- Han, P.; Frith, J.E.; Gomez, G.A.; Yap, A.S.; O’Neill, G.M.; Cooper-White, J.J. Five Piconewtons: The Difference between Osteogenic and Adipogenic Fate Choice in Human Mesenchymal Stem Cells. Acs Nano 2019, 13, 11129–11143. [Google Scholar] [CrossRef]
- Zanoni, M.; Piccinini, F.; Arienti, C.; Zamagni, A.; Santi, S.; Polico, R.; Bevilacqua, A.; Tesei, A. 3D tumor spheroid models for in vitro therapeutic screening: A systematic approach to enhance the biological relevance of data obtained. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Heinemann, S.; Heinemann, C.; Wenisch, S.; Alt, V.; Worch, H.; Hanke, T. Calcium phosphate phases integrated in silica/collagen nanocomposite xerogels enhance the bioactivity and ultimately manipulate the osteoblast/osteoclast ratio in a human co-culture model. Acta Biomater. 2013, 9, 4878–4888. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Vogler, E.A.; Sosnoski, D.M.; Mastro, A.M. In vitro mimics of bone remodeling and the vicious cycle of cancer in bone. J. Cell. Physiol. 2014, 229, 453–462. [Google Scholar] [CrossRef] [PubMed]
- Bongio, M.; Lopa, S.; Gilardi, M.; Bersini, S.; Moretti, M. A 3D vascularized bone remodeling model combining osteoblasts and osteoclasts in a CaP nanoparticle-enriched matrix. Nanomedicine 2016, 11, 1073–1091. [Google Scholar] [CrossRef]
- Carmeliet, P.; Jain, R.K. Angiogenesis in cancer and other diseases. Nature 2000, 407, 249–257. [Google Scholar] [CrossRef]
- Rouwkema, J.; Koopman, B.F.J.M.; Blitterswijk, C.A.V.; Dhert, W.J.A.; Malda, J. Supply of nutrients to cells in engineered tissues. Biotechnol. Genet. Eng. Rev. 2009, 26, 163–178. [Google Scholar] [CrossRef] [Green Version]
- Skylar-Scott, M.A.; Uzel, S.G.M.; Nam, L.L.; Ahrens, J.H.; Truby, R.L.; Damaraju, S.; Lewis, J.A. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 2019, 5, eaaw2459. [Google Scholar] [CrossRef] [Green Version]
- Murphy, C.M.; Haugh, M.G.; O’Brien, F.J. The effect of mean pore size on cell attachment, proliferation and migration in collagen-glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 2010, 31, 461–466. [Google Scholar] [CrossRef]
- Tortelli, F.; Pujic, N.; Liu, Y.; Laroche, N.; Vico, L. Osteoblast and Osteoclast Differentiation in an In Vitro Three-Dimensional Model of Bone. Tissue Eng. Part. A 2009, 15, 2373–2383. [Google Scholar] [CrossRef]
- Jeon, O.H.; Panicker, L.M.; Lu, Q.; Chae, J.J.; Feldman, R.A.; Elisseeff, J.H. Human iPSC-derived osteoblasts and osteoclasts together promote bone regeneration in 3D biomaterials. Sci. Rep. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- Papadimitropoulos, A.; Scherberich, A.; Güven, S.; Theilgaard, N.; Crooijmans, H.J.A.; Santini, F.; Scheffler, K.; Zallone, A.; Martin, I. A 3D in vitro bone organ model using human progenitor cells. Eur. Cells Mater. 2011, 21, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Nakagawa, K.; Abukawa, H.; Shin, M.Y.; Terai, H.; Troulis, M.J.; Vacanti, J.P. Osteoclastogenesis on Tissue-Engineered Bone. Tissue Eng. 2004, 10, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Morelli, S.; Salerno, S.; Holopainen, J.; Ritala, M.; De Bartolo, L. Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds. J. Biotechnol. 2015, 204, 53–62. [Google Scholar] [CrossRef]
- Midha, S.; van den Bergh, W.; Kim, T.B.; Lee, P.D.; Jones, J.R.; Mitchell, C.A. Bioactive Glass Foam Scaffolds are Remodelled by Osteoclasts and Support the Formation of Mineralized Matrix and Vascular Networks In Vitro. Adv. Healthc. Mater. 2013, 2, 490–499. [Google Scholar] [CrossRef]
- Gamblin, A.L.; Renaud, A.; Charrier, C.; Hulin, P.; Louarn, G.; Heymann, D.; Trichet, V.; Layrolle, P. Osteoblastic and osteoclastic differentiation of human mesenchymal stem cells and monocytes in a miniaturized three-dimensional culture with mineral granules. Acta Biomater. 2014, 10, 5139–5147. [Google Scholar] [CrossRef]
- Hench, L.L. The story of Bioglass. J. Mater. Sci. Mater. Med. 2006, 17, 967–978. [Google Scholar] [CrossRef]
- Kowal, T.J.; Hahn, N.C.; Eider, S.; Marzillier, J.Y.; Fodera, D.M.; Thamma, U.; Jain, H.; Falk, M.M. New bioactive glass scaffolds with exceptional qualities for bone tissue regeneration: Response of osteoblasts and osteoclasts. Biomed. Mater. 2018, 13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Migneco, F.; Lin, C.Y.; Hollister, S.J. Chemically-conjugated bone morphogenetic protein-2 on three-dimensional polycaprolactone scaffolds stimulates osteogenic activity in bone marrow stromal cells. Tissue Eng. Part. A 2010, 16, 3441–3448. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K.; Ito, A.; Honda, H. Enhanced cell-seeding into 3D porous scaffolds by use of magnetite nanoparticles. J. Biomed. Mater. Res. Part. B Appl. Biomater. 2006, 77, 265–272. [Google Scholar] [CrossRef]
- Van Den Dolder, J.; Spauwen, P.H.M.; Jansen, J.A. Evaluation of various seeding techniques for culturing osteogenic cells on titanium fiber mesh. Tissue Eng. 2003, 9, 315–325. [Google Scholar] [CrossRef]
- Kelm, J.M.; Lal-Nag, M.; Sittampalam, G.S.; Ferrer, M. Translational in vitro research: Integrating 3D drug discovery and development processes into the drug development pipeline. Drug Discov. Today 2019, 24, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Si, Y.; Xu, G.; Chen, X.M.; Xiong, H.; Lai, L.; Zheng, Y.Q.; ZHANG, Z.G. High-dose PMA with RANKL and MCSF induces THP-1 cell differentiation into human functional osteoclasts in vitro. Mol. Med. Rep. 2017, 16, 8380–8384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blottiere, H.M.; Daculsi, G.; Anegon, I.; Pouezat, J.A.; Nelson, P.N.; Passuti, N. Utilization of activated U937 monocytic cells as a model to evaluate biocompatibility and biodegradation of synthetic calcium phosphate. Biomaterials 1995, 16, 497–503. [Google Scholar] [CrossRef]
- Ruggiu, A.; Tortelli, F.; Komlev, V.S.; Peyrin, F.; Cancedda, R. Extracellular matrix deposition and scaffold biodegradation in an in vitro three-dimensional model of bone by X-ray computed microtomography. Ann. Am. Thorac. Soc. 2010, 12, 181–204. [Google Scholar] [CrossRef]
- Kieninger, J.; Weltin, A.; Flamm, H.; Urban, G.A. Microsensor systems for cell metabolism-from 2D culture to organ-on-chip. Lab. Chip 2018, 18, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
Osteoporosis Type | Postmenopausal Osteoporosis | Disuse Osteoporosis | Glucocorticoid-Induced Osteoporosis |
---|---|---|---|
Induction Method |
|
|
|
Animal |
|
|
|
A. Field of Application | |
Cancer research | Breast [26,27,28,29,30,31,32,33,34] |
Prostate [28,30,33,34,35,36] | |
Multiple myeloma [37] | |
Fibrosarcoma/osteosarcoma [38] | |
Method development | Culture type:Perfusion [39,40]Static [41,42,43,44,45]Static—embedded in agarose [46,47]Combined perfusion and loading [48,49] |
Assessment of viability [50,51] | |
Assessment of bone formation [52] | |
Bone biology research | Bone fracture repair/endochondral ossification [46,53,54,55,56] |
Bone formation and/or remodeling [47,57,58,59,60,61,62,63,64,65,66,67,68] | |
Bone response to load/strain/microgravity/other biophysical stimuli [47,59,60,69,70,71,72,73,74,75,76,77] | |
Bone development and basic biology [78,79,80,81,82,83] | |
B. Derivation of Bone | |
Human | [31,33,40,48,49,50,71] |
Murine | [26,27,28,29,30,32,34,35,36,37,38,41,43,44,45,52,53,56,57,58,61,62,63,64,65,67,75,76,77,78,79,80,81] |
Bovine | [40,43,48,49,50,59,72,73,76] |
Rat | [39,46,47,60,68,69,74] |
Chicken | [42,54,55,77,82,83] |
Ovine | [48,49,50] |
Porcine | [51] |
Atlantic cod | [66] |
Key Criteria | Reproducibility | Throughput | Physiological Cell–Cell and Cell–Matrix Interaction | Can Be Assessed Using Commonly Available Analysis Methods | References |
---|---|---|---|---|---|
2D indirect plastic substrate | +++ | ++ | --- | +++ | [68,69,70,71,72,75,76,77,78,79] |
2D indirect with bone like substrate | ++ | + | - - | +++ | [67,73] |
2D direct plastic substrate | +++ | +++ | - - | +++ | [74,84,85,86,87,90] |
2D direct bone like substrate | ++ | + | - | ++ | [73,78,88,89,90,91,92,93] |
3D scaffold free | + | + | + | ++ | [101,104] |
3D matrix | - | - - | ++ | - - | [102,103,110,111,112] |
3D porous scaffold | - - - | - - - | +++ | - - - | [117,118,119,120,121,122,123] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sieberath, A.; Della Bella, E.; Ferreira, A.M.; Gentile, P.; Eglin, D.; Dalgarno, K. A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. Int. J. Mol. Sci. 2020, 21, 912. https://doi.org/10.3390/ijms21030912
Sieberath A, Della Bella E, Ferreira AM, Gentile P, Eglin D, Dalgarno K. A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. International Journal of Molecular Sciences. 2020; 21(3):912. https://doi.org/10.3390/ijms21030912
Chicago/Turabian StyleSieberath, Alexander, Elena Della Bella, Ana Marina Ferreira, Piergiorgio Gentile, David Eglin, and Kenny Dalgarno. 2020. "A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications" International Journal of Molecular Sciences 21, no. 3: 912. https://doi.org/10.3390/ijms21030912
APA StyleSieberath, A., Della Bella, E., Ferreira, A. M., Gentile, P., Eglin, D., & Dalgarno, K. (2020). A Comparison of Osteoblast and Osteoclast In Vitro Co-Culture Models and Their Translation for Preclinical Drug Testing Applications. International Journal of Molecular Sciences, 21(3), 912. https://doi.org/10.3390/ijms21030912