Differential Gene Profiling of the Heartwood Formation Process in Taiwania cryptomerioides Hayata Xylem Tissues
Abstract
:1. Introduction
2. Results and Discussion
2.1. Sampling of Wood Tissues Containing Living Ray Parenchyma Cells
2.2. Transcriptome Assembly and Functional Annotation
2.3. Analysis of the Differentially Expressed Genes (DEGs) in Different Tissues
2.4. Analysis of Specific Gene Groups
2.4.1. Terpenoid Biosynthesis during HW Formation
2.4.2. Lignan Biosynthesis during HW Formation
2.4.3. Transcription Factors and Programmed Cell Death during HW Formation
3. Materials and Methods
3.1. Wood Tissues
3.2. Living Ray Parenchyma Cells and Major Bioactive Compound Profiling
3.3. RNA Extraction and RNA-Seq
3.4. Transcriptome Assembly and Functional Annotation
3.5. Analysis of the Differentially Expressed Genes (DEGs)
3.6. Quantitative RT-PCR Validation of Selected DEGs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HW | Heartwood |
SW | Sapwood |
TZ | Transition zone |
RNA-seq | RNA-sequencing |
GO | Gene ontology |
DEG | Differentially expressed gene |
FDR | False discovery rate (p-value) |
PCA | Principle component analysis |
RPKM | Reads per kilobase per million mapped reads |
MVA | Mevalonate |
MEP | Methylerythritol 4-phosphate |
IPP | Isopentenyl diphosphate |
DMAPP | Dimethylallyl diphosphate |
GGPS | Geranylgeranyl diphosphate synthase |
TPS | Terpene synthase |
FPS | Farnesyl diphosphate synthase |
PAL | Phenylalanine ammonia-lyase |
PER | Peroxidase |
LAC | Laccase |
DIR | Dirigent protein |
PrR/PLR | Pinoresinol reductase/pinoresinol lariciresinol reductase |
TF | Transcription factor |
PCD | Programmed cell death |
TE | Tracheary element |
CEP | Cysteine endopeptidase |
XBCP | Xylem bark cysteine peptidase |
XCP | Xylem cysteine protease |
EGTA | Ethylene glycol-bis(2-aminoethyl ether)-N,N,N’,N’-tetraacetic acid |
PIPES | 1,4-Piperazinediethanesulfonic acid |
CTAB | Cetyltrimethylammonium bromide |
References
- Plomion, C.; Leprovost, G.; Stokes, A. Wood formation in trees. Plant Physiol. 2001, 127, 1513–1523. [Google Scholar] [CrossRef] [PubMed]
- Hillis, W.E. Heartwood and Tree Exudates; Springer: New York, NY, USA, 1987; pp. 4–38. [Google Scholar]
- Kampe, A.; Magel, E. New insights into heartwood and heartwood formation. In Cellular Aspects of Wood Formation; Formm, J., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 71–95. [Google Scholar]
- Liu, Y.C.; Lu, F.Y.; Ou, C.H. Trees of Taiwan; College of Agriculture, National Chung-Shing University: Taichung, Taiwan, 1994; pp. 68–69. [Google Scholar]
- Wang, S.Y. Commericial Woods; The Forest Products Association of R.O.C.: Taipei, Taiwan, 1983; pp. 86–88. [Google Scholar]
- Chang, S.T.; Cheng, S.S.; Wang, S.Y. Antitermitic activity of essential oils and components from Taiwania (Taiwania cryptomerioides). J. Chem. Ecol. 2001, 27, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.T.; Wang, S.Y.; Wu, C.L.; Su, Y.C.; Kuo, Y.H. Antifungal compounds in the ethyl acetate soluble fraction of the extractives of Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 1999, 53, 487–490. [Google Scholar] [CrossRef]
- Chang, S.T.; Wang, S.Y.; Kuo, Y.H. Resources and bioactive substances from Taiwania (Taiwania cryptomerioides). J. Wood Sci. 2003, 49, 1–4. [Google Scholar] [CrossRef]
- Chien, S.C.; Kuo, Y.H. Review of the chemical constitutes of Taiwania cryptomerioides. Chem. (Chin. Chem. Soc. Taipei) 2009, 67, 33–44. [Google Scholar]
- Chang, S.T.; Wang, S.Y.; Wu, C.L.; Chen, P.F.; Kuo, Y.H. Comparison of the antifungal activity of cadinane skeletal sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 2000, 54, 241–245. [Google Scholar] [CrossRef]
- Chang, S.T.; Chen, P.F.; Chang, S.C. Antibacterial activity of essential oils and extractives from Taiwania (Taiwania cryptomerioides Hayata). Q. J. Chin. For. 2000, 33, 119–125. [Google Scholar]
- Chang, S.T.; Wang, D.S.Y.; Wu, C.L.; Shiah, S.G.; Kuo, Y.H.; Chang, C.J. Cytotoxicity of extractives from Taiwania cryptomerioides heartwood. Phytochemistry 2000, 55, 227–232. [Google Scholar] [CrossRef]
- Chang, S.T.; Wang, S.Y.; Wu, C.L. Evaluation of antitumor potential of lignans from Taiwania (Taiwania cryptomerioides Hayata). Q. J. Chin. For. 2000, 33, 277–282. [Google Scholar]
- Huang, G.J.; Deng, J.S.; Huang, S.S.; Chang, C.I.; Chang, T.N.; Shie, P.H.; Kuo, Y.H. Anti-inflammatory activities of 6β-acetoxy-7α-hydroxyroyleanone from Taiwania cryptomerioides Hayata ex vivo and in vivo. J. Agric. Food Chem. 2011, 59, 11211–11218. [Google Scholar] [CrossRef]
- Spicer, R. Senescence in secondary xylem: heartwood foramtion as an active developmental program. In Vascular Transport in Plants; Holbrook, N.M., Zwieniecki, M.A., Eds.; Elsevier: New York, NY, USA, 2005; pp. 457–475. [Google Scholar]
- Celedon, J.M.; Bohlmann, J. An extended model of heartwood secondary metabolism informed by functional genomics. Tree Physiol. 2018, 38, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Yen, P.L.; Chang, T.C.; Chang, S.T.; Huang, S.K.; Yeh, T.F. Distribution of living ray parenchyma cells and major bioactive compounds during the heartwood formation of Taiwania cryptomerioides Hayata. J. Wood Chem. Technol. 2018, 38, 84–95. [Google Scholar] [CrossRef]
- Islam, M.A.; Begum, S.; Nakaba, S.; Funada, R. Distribution and pattern of availability of stroage starch and cell death of ray parenchyma cells of a conifer tree (Larix kaempferi). Res. J. Recent Sci. 2012, 1, 28–37. [Google Scholar]
- Nobuchi, T.; Takai, K.; Harada, H. Distribution of heartwood pheols in the trunk of sugi (Cryptomeria japonica D. Don) and partial characterization of heartwood formation. Mokuzai Gakkaishi 1987, 33, 88–96. [Google Scholar]
- Nakaba, S.; Kubo, T.; Funada, R. Differences in patterns of cell death between ray parenchyma cells and ray tracheids in the conifers Pinus densiflora and Pinus rigida. Trees-Struct. Funct. 2008, 22, 623–630. [Google Scholar] [CrossRef]
- Nobuchi, T.; Matsuno, H.; Harada, H. Radial distribution of heartwood phenols and the related cytological structure in the fresh wood of sugi (Cryptomeria japnica D. Don). Mokuzai Gakkaishi 1985, 31, 711–718. [Google Scholar]
- Beritognolo, I.; Magel, E.; Abdel-Latif, A.; Charpentier, J.P.; Jay-Allemand, C.; Breton, C. Expression of genes encoding chalcone synthase, flavanone 3-hydroxylase and dihydroflavonol 4-reductase correlates with flavanol accumulation during heartwood formation in Juglans nigra. Tree Physiol. 2002, 22, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Magel, E.; Hubner, B. Distribution of phenylalanine ammonia lyase and chalcone synthase within trunks of Robinia pseudoacacia L. Bot. Acta 1997, 110, 314–322. [Google Scholar] [CrossRef]
- Yang, J.M.; Kamdem, D.P.; Keathley, D.E.; Han, K.H. Seasonal changes in gene expression at the sapwood-heartwood transition zone of black locust (Robinia pseudoacacia) revealed by cDNA microarray analysis. Tree Physiol. 2004, 24, 461–474. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.M.; Park, S.; Kamdem, D.P.; Keathley, D.E.; Retzel, E.; Paule, C.; Kapur, V.; Han, K.H. Novel gene expression profiles define the metabolic and physiological processes characteristic of wood and its extractive formation in a hardwood tree species, Robinia pseudoacacia. Plant Mol. Biol. 2003, 52, 935–956. [Google Scholar] [CrossRef]
- De Filippis, L.; Magel, E. Identification of biochemical differences between the sapwood and transition zone in Robinia pseudoacacia L. by differential display of proteins. Holzforschung 2012, 66, 543–549. [Google Scholar] [CrossRef]
- Lim, K.J.; Paasela, T.; Harju, A.; Venalainen, M.; Paulin, L.; Auvinen, P.; Karkkainen, K.; Teeri, T.H. Developmental changes in Scots pine transcriptome during heartwood formation. Plant Physiol. 2016, 172, 1403–1417. [Google Scholar] [CrossRef] [Green Version]
- Celedon, J.M.; Chiang, A.; Yuen, M.M.S.; Diaz-Chavez, M.L.; Madilao, L.L.; Finnegan, P.M.; Barbour, E.L.; Bohlmann, J. Heartwood-specific transcriptome and metabolite signatures of tropical sandalwood (Santalum album) reveal the final step of (Z)-santalol fragrance biosynthesis. Plant J. 2016, 86, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Yang, K.C.; Huang-Yang, Y.S. Minute Strucutre of Taiwanese Woods; Hua Shiang Yuan Publishing Co.: Taipei, Taiwan, 1987; pp. 34–35. [Google Scholar]
- Conesa, A.; Gotz, S.; Garcia-Gomez, J.M.; Terol, J.; Talon, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef] [Green Version]
- Kutchan, T.M.; Gershenzon, J.; Moller, B.L.; Gang, D.R. Natural products. In Biochemistry and Molecular Biology of Plants; Buchanan, B.B., Gruissen, W., Jones, R.L., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 1132–1206. [Google Scholar]
- Vranová, E.; Coman, D.; Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 2013, 64, 665–700. [Google Scholar] [CrossRef]
- Suzuki, S.; Umezawa, T. Biosynthesis of lignans and norlignans. J. Wood Sci. 2007, 53, 273–284. [Google Scholar] [CrossRef]
- Taylor, A.M.; Gartner, B.L.; Morrell, J.J. Heartwood formation and natural durability—A review. Wood Fiber Sci. 2002, 34, 587–611. [Google Scholar]
- Hinz, M.; Wilson, I.W.; Yang, J.; Buerstenbinder, K.; Llewellyn, D.; Dennis, E.S.; Sauter, M.; Dolferus, R. Arabidopsis RAP2.2: An ethylene response transcription factor that is important for hypoxia survival. Plant Physiol. 2010, 153, 757–772. [Google Scholar] [CrossRef] [Green Version]
- Niu, N.N.; Liang, W.Q.; Yang, X.J.; Jin, W.L.; Wilson, Z.A.; Hu, J.P.; Zhang, D.B. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat. Commun. 2013, 4, 1445. [Google Scholar] [CrossRef]
- Chiang, N.T.; Wen, C.H.; Chu, F.H. TcMYB1, TcMYB4, and TcMYB8 participate in the regulation of lignan biosynthesis in Taiwania cryptomerioides Hayata. Tree Genet. Genomes 2019, 15, 67. [Google Scholar] [CrossRef]
- Liu, J.Y.; Osbourn, A.; Ma, P.D. MYB transcription factors as regulators of phenylpropanoid metabolism in plants. Mol. Plant 2015, 8, 689–708. [Google Scholar] [CrossRef] [Green Version]
- Heo, J.O.; Blob, B.; Helariutta, Y. Differentiation of conductive cells: a matter of life and death. Curr. Opin. Plant Biol. 2017, 35, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Nakano, Y.; Yamaguchiz, M.; Endo, H.; Rejab, N.A.; Ohtani, M. NAC-MYB-based transcriptional regulation of secondary cell wall biosynthesis in land plants. Front. Plant Sci. 2015, 6, 288. [Google Scholar] [CrossRef] [Green Version]
- Nobuchi, T.; Harada, H. Physiological features of the "white zone" of Sugi (Cryptomeria japonica D. Don) Cytological strucutre and moisture content. Mokuzai Gakkaishi 1983, 29, 824–832. [Google Scholar]
- Nakada, R.; Fukatsu, E. Seasonal variation of heartwood formation in Larix Kaempferi. Tree Physiol. 2012, 32, 1497–1508. [Google Scholar] [CrossRef] [Green Version]
- Buono, R.A.; Hudecek, R.; Nowack, M.K. Plant proteases during developmental programmed cell death. J. Exp. Bot. 2019, 70, 2097–2112. [Google Scholar] [CrossRef]
- Thomas, H.; Ougham, H.; Mur, L.; Jansson, S. Senescence and cell death. In Biochemistry and Molecular Biology of Plants; Buchanan, B.B., Gruissen, W., Jones, R.L., Eds.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 2015; pp. 925–982. [Google Scholar]
- Van Durme, M.; Nowack, M.K. Mechanisms of developmentally controlled cell death in plants. Curr. Opin. Plant Biol. 2016, 29, 29–37. [Google Scholar] [CrossRef]
- Olvera-Carrillo, Y.; Van Bel, M.; Van Hautegem, T.; Fendrych, M.; Huysmans, M.; Simaskova, M.; van Durme, M.; Buscaill, P.; Rivas, S.; Coll, N.S.; et al. A conserved core of programmed cell death indicator genes discriminates developmentally and environmentally induced programmed cell death in plants. Plant Physiol. 2015, 169, 2684–2699. [Google Scholar] [CrossRef]
- Zhang, D.D.; Liu, D.; Lv, X.M.; Wang, Y.; Xun, Z.L.; Liu, Z.X.; Li, F.L.; Lu, H. The cysteine protease CEP1, a key executor involved in tapetal programmed cell death, regulates pollen development in Arabidopsis. Plant Cell 2014, 26, 2939–2961. [Google Scholar] [CrossRef] [Green Version]
- Courtois-Moreau, C.L.; Pesquet, E.; Sjodin, A.; Muniz, L.; Bollhoner, B.; Kaneda, M.; Samuels, L.; Jansson, S.; Tuominen, H. A unique program for cell death in xylem fibers of Populus stem. Plant J. 2009, 58, 260–274. [Google Scholar] [CrossRef]
- Ohashi-Ito, K.; Oda, Y.; Fukuda, H. Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation. Plant Cell 2010, 22, 3461–3473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakaba, S.; Takata, N.; Yoshida, M.; Funada, R. Continuous expression of genes for xylem cysteine peptidases in long-lived ray parenchyma cells in Populus. Plant Biotechnol. 2015, 32, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Iyer, L.M.; Koonin, E.V.; Aravind, L. Novel predicted peptidases with a potential role in the ubiquitin signaling pathway. Cell Cycle 2004, 3, 1440–1450. [Google Scholar] [CrossRef] [PubMed]
- Shin, E.J.; Shin, H.M.; Nam, E.; Kim, W.S.; Kim, J.H.; Oh, B.H.; Yun, Y. DeSUMOylating isopeptidase: A second class of SUMO protease. Embo Rep. 2012, 13, 339–346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakaba, S.; Sano, Y.; Kubo, T.; Funada, R. The positional distribution of cell death of ray parenchyma in a conifer, Abies sachalinensis. Plant Cell Rep. 2006, 25, 1143–1148. [Google Scholar] [CrossRef]
- Chang, S.; Puryear, J.; Cairney, J. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. Rep. 1993, 11, 113–116. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.D.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [Green Version]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, M.D.; Smyth, G.K. Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics 2008, 9, 321–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999, 27, 29–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeh, T.-F.; Chu, J.-H.; Liu, L.-Y.; Chen, S.-Y. Differential Gene Profiling of the Heartwood Formation Process in Taiwania cryptomerioides Hayata Xylem Tissues. Int. J. Mol. Sci. 2020, 21, 960. https://doi.org/10.3390/ijms21030960
Yeh T-F, Chu J-H, Liu L-Y, Chen S-Y. Differential Gene Profiling of the Heartwood Formation Process in Taiwania cryptomerioides Hayata Xylem Tissues. International Journal of Molecular Sciences. 2020; 21(3):960. https://doi.org/10.3390/ijms21030960
Chicago/Turabian StyleYeh, Ting-Feng, Jui-Hua Chu, Li-Yuan Liu, and Shih-Yin Chen. 2020. "Differential Gene Profiling of the Heartwood Formation Process in Taiwania cryptomerioides Hayata Xylem Tissues" International Journal of Molecular Sciences 21, no. 3: 960. https://doi.org/10.3390/ijms21030960
APA StyleYeh, T. -F., Chu, J. -H., Liu, L. -Y., & Chen, S. -Y. (2020). Differential Gene Profiling of the Heartwood Formation Process in Taiwania cryptomerioides Hayata Xylem Tissues. International Journal of Molecular Sciences, 21(3), 960. https://doi.org/10.3390/ijms21030960