Supporting information for:

A capped peptide of the aggregation prone NAC 71-82 amino acid stretch of α -synuclein folds into soluble β -sheet oligomers at low and elevated peptide concentrations

Thomas Näsström¹*, Jörgen Ådén², Fumina Shibata¹, Per Ola Andersson³, Björn C.G. Karlsson¹*

¹Physical Pharmacy Laboratory, Linnæus University Centre for Biomaterials Chemistry, Linnæus University, SE-392 31, Kalmar, Sweden.²Department of Chemistry, University of Umeå, SE-901 87, Umeå, Sweden. ³Department of Engineering Sciences: Applied Material Science, Uppsala University, SE-751 21, Uppsala, Sweden.

<u>Correspondence to:</u> * Björn C.G Karlsson E-mail: <u>Bjorn.karlsson@lnu.se</u> Tel: +46 480 446740

* Thomas Näsström E-mail: <u>Thomas.Nasstrom@lnu.se</u> Tel: +46 480 446329

Table of Contents	Name	Page
SELECTED DDE EALDED DEDTIDE		
SELECTED I RE-FOLDED I EI HDE STADTING STDUCTUDES		
STARTING STRUCTURES	F. 01	01
- a-neical capped NAC /1-82 peptide	Figure SI	51
- α -helical non-capped NAC 71-82 peptide	Figure S2	SI
- Capped NAC 71-82 twisted β-sheet dimer	Figure S3	S2
CIRCULAR DICHROISM (CD) SPECTROSCOPY		
 SDS – peptide titration study: voltage profiles 	Figure S4	S3
- Secondary structure stability over time	Figure S5	S3
- The influence of salt on secondary structure	Figure S6	S4
- The influence of salt on secondary structure: voltage profiles	Figure S7	S4
MD SIMULATIONS OF PEPTIDE-SDS INTERACTIONS		
PEPTIDE _{COM} -SDS _{COM} DISTANCES OVER TIME		
- Capped NAC 71-82 α-helix monomer + an SDS micelle	Figure S8	S5
- Non-capped NAC 71-82 α-helix monomer + an SDS micelle	Figure S9	S6
STRIDE SECONDARY STRUCTURE OVER TIME ANALYSIS	-	
- Capped NAC 71-82 α-helix monomer + an SDS micelle	Figure S10	S 7
- Non-capped NAC 71-82 α-helix monomer + an SDS micelle	Figure S11	S 8
DSSP SUMMARY OF SECONDARY STRUCTURE POPULATED		
- Capped NAC 71-82 α-helix monomer +/- an SDS micelle	Figure S12	S9
- Non-capped NAC 71-82 α-helix monomer +/- an SDS micelle	Figure S13	S9
SNAPSHOTS OF PEPTIDE-SDS COMPLEXES AFTER 200 ns		
- Capped NAC 71-82 α-helix monomer + SDS micelle	Figure S14	S10

- Non-capped NAC 71-82 α-helix monomer + SDS micelle	Figure S15	S11
BCA ANALYSIS	Figure S16	S12
MD SIMULATIONS OF THE CAPPED NAC 71-82		
TWISTED β-SHEET DIMER-SDS INTERACTIONS		
PEPTIDE COM-SDS COM DISTANCES OVER TIME	Figure S17	S13
STRIDE SECONDARY STRUCTURE OVER TIME ANALYSIS	Figure S18	S14
DSSP SUMMARY OF SECONDARY STRUCTURE POPULATED	Figure S19	S15
SNAPSHOTS OF PEPTIDE-SDS COMPLEXES AFTER 200 ns	Figure S20	S16
SNAPSHOTS OF FIBRILLISATION MIXTURES	Figure S21	S17
COMPARISON OF STANDARDS IN BCA ASSAY	Figure S22	S17

SELECTED PRE-FOLDED PEPTIDE STARTING STRUCTURES α -helical capped NAC 71-82 peptide

Figure S1. Capped NAC 71-82 peptide in a pre-folded α -helical structure.

α-helical non-capped NAC 71-82 peptide

Figure S2. Non-capped NAC 71-82 peptide in a pre-folded α -helical structure.

Capped NAC 71-82 twisted β-sheet dimer

Figure S3. Capped NAC 71-82 peptide in a pre-folded twisted β -sheet dimer structure.

CIRCULAR DICHROISM (CD) SPECTROSCOPY

SDS – peptide titration study: voltage profiles

Figure S4. Circular dichroism (CD) voltage profiles of aqueous solutions with increasing concentrations of SDS (0-25 mM) of **A:** the capped (81.5 μ M) or **B:** the non-capped (85.5 μ M) NAC 71-82 peptide.

Secondary structure stability over time

Figure S5. Circular dichroism (CD) spectra of aqueous solutions of **A:** the capped (81.5 μ M) or **B:** the non-capped (85.5 μ M) NAC 71-82 peptide after incubation for 0 h (solid line), 24 h (dashed line), and 48 h (dotted line).

Figure S6. Circular dichroism (CD) spectra of **A:** the capped (81.5 μ M) NAC 71-82 peptide in water or **B:** the non-capped (85.5 μ M) NAC 71-82 peptide in water with 0.1 M NaCl in the absence (solid line) or the presence (dashed line) of 10 mM M of SDS.

The influence of salt on secondary structure: voltage profiles

Figure S7. Circular dichroism (CD) voltage profiles of **A:** the capped (81.5 μ M) NAC 71-82 peptide in water or **B:** the non-capped (85.5 μ M) NAC 71-82 peptide in water and 0.1 M NaCl in the absence (solid line) or the absence (dashed line) of 10 mM of SDS.

MD SIMULATIONS OF PEPTIDE-SDS INTERACTIONS

PEPTIDECOM-SDSCOM DISTANCE OVER TIME

Figure S8. Capped NAC 71-82 peptide-SDS micelle centre-of-mass distances (Peptide_{COM}-SDS micelle_{COM}, black solid line) over time and the SDS micelle radius of gyration (ROG_{SDS micelle}, red line) from separate simulations (#1-#6) of 200 ns each.

Non-capped NAC 71-82 α-helix monomer + an SDS micelle

Figure S9. Non-capped NAC 71-82 peptide-SDS micelle centre-of-mass distances (Peptide_{COM}-SDS micelle_{COM}, black solid line) over time and the SDS micelle radius of gyration (ROG_{SDS micelle}, red line) from separate simulations (#1-#6) of 200 ns each.

STRIDE SECONDARY STRUCTURE OVER TIME ANALYSIS

Capped NAC 71-82 α-helix monomer + an SDS micelle

Figure S10. The evolution of secondary structure of the α -helical pre-folded capped NAC 71-82 monomer (Fig. S1) over time (200 ns) in each of totally six MD simulations (#1-#6) in the presence of an SDS micelle. The different colours shown in the inserted panel represent different secondary elements (T = turn, E = extended β -sheet, B = bend, H = α -helix, G = 3₁₀-helix, and C = random coil).

Non-capped NAC 71-82 α-helix monomer + an SDS micelle

Figure S11. The evolution of secondary structure of the α -helical pre-folded non-capped NAC 71-82 monomer (Fig. S2) over time (200 ns) in each of totally six MD simulations (#1-#6) in the presence of an SDS micelle. The different colours shown in the inserted panel represent different secondary elements (T = turn, E = extended β -sheet, B = bend, H = α -helix, G = 3₁₀-helix, and C = random coil).

DSSP SUMMARY OF SECONDARY STRUCTURE POPULATED

Figure S12. DSSP secondary structure analysis from MD trajectory data. Numbers describe the extent of secondary structure elements [parallel- and anti-parallel β -sheets, 3_{10} -, α -, and π -helices, hydrogen-bonded turns, bends, and no secondary structure (coil)] that were populated during MD simulations of multiple copies of the capped NAC 71-82 peptide (in explicit water (totally three simulations) and 0.15 M NaCl (totally six simulations. The total occupancy of each type of secondary structure element is presented as a fraction of the total MD simulation time, and values are presented as mean \pm standard error of the mean from multiple MD simulations of 200 ns each.

Non-capped NAC 71-82 α -helix monomer in the absence and presence of an SDS micelle

Figure S13. DSSP secondary structure analysis from MD trajectory data. Numbers describe the extent of secondary structure elements [parallel- and anti-parallel β -sheets, 3₁₀-, α -, and π -helices, hydrogen-bonded turns, bends, and no secondary structure (coil)] that were populated during MD simulations of multiple copies of the non-capped NAC 71-82 peptide (in explicit water (totally three simulations) and 0.15 M NaCl (totally six simulations. The total occupancy of each type of secondary structure element is presented as a fraction of the total MD simulation time, and values are presented as mean \pm standard error of the mean from multiple MD simulations of 200 ns each.

SNAPSHOTS OF PEPTIDE-SDS COMPLEXES AFTER 200 ns

Capped NAC 71-82 α -helix monomer + an SDS micelle

Figure S14. Snapshot of the non-capped NAC 71-82 peptide – SDS micelle complex formed after 200 ns in each of totally six MD simulations (#1-#6).

Capped NAC 71-82 α -helix monomer + an SDS micelle

Figure S15. Snapshot of the non-capped NAC 71-82 peptide – SDS micelle complex formed after 200 ns in each of totally six MD simulations (#1-#6).

BCA ANALYSIS

Figure S16. Data obtained after linear regression.

MD SIMULATIONS OF THE CAPPED NAC 71-82 TWISTED $\beta\mbox{-}SHEET$ DIMER - SDS INTERACTIONS

PEPTIDECOM-SDSCOM DISTANCES OVER TIME

Figure S17. Capped NAC 71-82 twisted β -sheet dimer SDS micelle centre-of-mass distances (Peptide_{COM}-SDS micelle_{COM}, black and blue solid lines) over time and the SDS micelle radius of gyration (ROG_{SDS micelle}, red line) from separate simulations (#1-#6) of 200 ns each.

STRIDE SECONDARY STRUCTURE OVER TIME ANALYSIS

Figure S18. The evolution of secondary structure of the pre-folded twisted β -sheet capped NAC 71-82 dimer (Fig. S3) over time (200 ns) in each of totally six MD simulations (#1-#6) in the presence of an SDS micelle. The different colours shown in the inserted panel represent different secondary elements (T = turn, E = extended β -sheet, B = bend, H = α -helix, G = 3₁₀-helix, and C = random coil).

DSSP SUMMARY OF SECONDARY STRUCTURE POPULATED

Figure S19. DSSP secondary structure analysis from MD trajectory data. Numbers describe the extent of secondary structure elements [parallel- and anti-parallel β -sheets, 3_{10} -, α -, and π -helices, hydrogen-bonded turns, bends, and no secondary structure (coil)] that were populated during MD simulations of six copies of the capped NAC 71-82 twisted β -sheet dimer in 0.15 M NaCl in the absence or presence of an SDS micelle. The total occupancy of each type of secondary structure element is presented as a fraction of the total MD simulation time, and values are presented as mean \pm standard error of the mean from six MD simulations of 200 ns each.

#1 #2 #4 #3 #5 #6

SNAPSHOTS OF PEPTIDE-SDS COMPLEXES AFTER 200 ns

Figure S20. Snapshot of the capped NAC 71-82 twisted β -sheet dimer – SDS micelle complex formed after 200 ns in each of totally six MD simulations (#1-#6).

SNAPSHOTS OF FIBRILLISATION MIXTURES

Figure S21. Fibrillisation mixture snapshots taken of **A:** the non-capped NAC 71-82 peptide in mQ water after incubation for 72 h **B:** the non-capped NAC 71-82 peptide in Tris-HCl buffer containing 0.15 M NaCl after incubation for 36 h and **C:** the capped NAC 71-82 peptide in mQ water after incubation for 60 h.

COMPARISON OF STANDARDS IN BCA ASSAY

Figure S22. BCA analysis using BSA or the non-capped NAC 71-82 peptide as standard.