EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues
Abstract
:1. Tendon is a Proper Dense Regular Connective Tissue
2. Egr1 “Identity Card”
2.1. Multiple Names for a Single Gene
2.2. Numerous Extracellular Signals Regulate Egr1 Expression via Diverse Intracellular Signalling Pathways
2.3. EGR1 Protein: Structure and Transcriptional Activity
2.4. Egr1 Expression Profile In Vivo
3. EGR1 Roles in Connective Tissue Formation, Homeostasis and Healing
3.1. EGR1 Is a Potent Inducer of Extracellular Matrix Production in Tendons
3.1.1. EGR1 Function in Tendon Formation, Homeostasis, and Ageing
3.1.2. EGR1 Function in Tendon Healing
3.2. Egr1 Is a Mechanosensitive Gene in Tendon
3.3. EGR1 and Endochondral Bone Formation and Healing
3.4. EGR1 Regulates Extracellular Matrix Production in Adipose Tissue
4. EGR1 Is a Fibrotic Factor
4.1. EGR1 and Fibrosis in Metabolic Diseases Linked to Adipose Tissue (Obesity and Diabetes)
4.2. Tendon Defects in Type 2 Diabetes Mellitus
4.3. EGR1 Controls Fibrosis in Systemic Sclerosis
4.4. EGR1 Is at the Crossroad of the Molecular Pathways Involved in the Fibrotic Process in Animal Models for Organ Fibrosis
4.5. EGR1 and Matrix Production in Rheumatoid Arthritis and Osteoarthritis
4.6. EGR1 and Scarred Tendon
5. Concluding Remarks
Funding
Conflicts of Interest
References
- Santos, A.; Lagares, D. Matrix Stiffness: The Conductor of Organ Fibrosis. Curr. Rheumatol. Rep. 2018, 20, 2. [Google Scholar] [CrossRef] [PubMed]
- Nassari, S.; Duprez, D.; Fournier-Thibault, C. Non-myogenic Contribution to Muscle Development and Homeostasis: The Role of Connective Tissues. Front. Cell Dev. Biol. 2017, 5, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannan, R.T.; Peirce, S.M.; Barker, T.H. Fibroblasts: Diverse Cells Critical to Biomaterials Integration. ACS Biomater. Sci. Eng. 2018, 4, 1223–1232. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.; Ehirchiou, D.; Kilts, T.M.; Inkson, C.A.; Embree, M.C.; Sonoyama, W.; Li, L.; Leet, A.I.; Seo, B.-M.; Zhang, L.; et al. Identification of tendon stem/progenitor cells and the role of the extracellular matrix in their niche. Nat. Med. 2007, 13, 1219–1227. [Google Scholar] [CrossRef] [PubMed]
- Mienaltowski, M.J.; Birk, D.E. Structure, Physiology, and Biochemistry of Collagens. Adv. Exp. Med. Biol. 2014, 802, 5–29. [Google Scholar]
- Kadler, K.E.; Holmes, D.F.; Trotter, J.A.; Chapman, J.A. Collagen fibril formation. Biochem. J. 1996, 316, 1–11. [Google Scholar] [CrossRef]
- Huang, A.H.; Lu, H.H.; Schweitzer, R. Molecular regulation of tendon cell fate during development. J. Orthop. Res. 2015, 33, 800–812. [Google Scholar] [CrossRef]
- Dex, S.; Lin, D.; Shukunami, C.; Docheva, D. Tenogenic modulating insider factor: Systematic assessment on the functions of tenomodulin gene. Gene 2016, 587, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Murchison, N.D.; Price, B.A.; Conner, D.A.; Keene, D.R.; Olson, E.N.; Tabin, C.J.; Schweitzer, R. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development 2007, 134, 2697–2708. [Google Scholar] [CrossRef] [Green Version]
- Shukunami, C.; Takimoto, A.; Nishizaki, Y.; Yoshimoto, Y.; Tanaka, S.; Miura, S.; Watanabe, H.; Sakuma, T.; Yamamoto, T.; Kondoh, G.; et al. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Sci. Rep. 2018, 8, 3155. [Google Scholar] [CrossRef] [Green Version]
- Levay, A.K.; Peacock, J.D.; Lu, Y.; Koch, M.; Hinton, R.B.; Kadler, K.E.; Lincoln, J. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ. Res. 2008, 103, 948–956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendias, C.L.; Gumucio, J.P.; Davis, M.E.; Bromley, C.W.; Davis, C.S.; Brooks, S.V. Transforming growth factor-beta induces skeletal muscle atrophy and fibrosis through the induction of atrogin-1 and scleraxis. Muscle Nerve 2012, 45, 55–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pryce, B.A.; Brent, A.E.; Murchison, N.D.; Tabin, C.J.; Schweitzer, R. Generation of transgenic tendon reporters, ScxGFP and ScxAP, using regulatory elements of the scleraxis gene. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 2007, 236, 1677–1682. [Google Scholar] [CrossRef] [PubMed]
- Gaut, L.; Duprez, D. Tendon development and diseases. Dev. Biol. 2016, 5, 5–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Milet, C.; Duprez, D. The Mkx homeoprotein promotes tenogenesis in stem cells and improves tendon repair. Ann. Transl. Med. 2015, 3, S33. [Google Scholar] [PubMed]
- Milbrandt, J. A nerve growth factor-induced gene encodes a possible transcriptional regulatory factor. Science 1987, 238, 797–799. [Google Scholar] [CrossRef]
- Sukhatme, V.P.; Kartha, S.; Toback, F.G.; Taub, R.; Hoover, R.G.; Tsai-Morris, C.H. A novel early growth response gene rapidly induced by fibroblast, epithelial cell and lymphocyte mitogens. Oncogene Res. 1987, 1, 343–355. [Google Scholar]
- Sukhatme, V.P.; Cao, X.; Chang, L.C.; Tsai-Morris, C.H.; Stamenkovich, D.; Ferreira, P.C.P.; Cohen, D.R.; Edwards, S.A.; Shows, T.B.; Curran, T.; et al. A zinc finger-encoding gene coregulated with c-fos during growth and differentiation, and after cellular depolarization. Cell 1988, 53, 37–43. [Google Scholar] [CrossRef]
- Lim, R.W.; Varnum, B.C.; Herschman, H.R. Cloning of tetradecanoyl phorbol ester-induced “primary response” sequences and their expression in density-arrested Swiss 3T3 cells and a TPA non-proliferative variant. Oncogene 1987, 1, 263–270. [Google Scholar]
- Lemaire, P.; Relevant, O.; Bravo, R.; Charnay, P. Two mouse genes encoding potential transcription factors with identical DNA-binding domains are activated by growth factors in cultured cells. Proc. Natl. Acad. Sci. USA 1988, 85, 4691–4695. [Google Scholar] [CrossRef] [Green Version]
- Christy, B.A.; Lau, L.F.; Nathans, D. A gene activated in mouse 3T3 cells by serum growth factors encodes a protein with “zinc finger” sequences. Proc. Natl. Acad. Sci. USA 1988, 85, 7857–7861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mello, C.V.; Vicario, D.S.; Clayton, D.F. Song presentation induces gene expression in the songbird forebrain. Proc. Natl. Acad. Sci. USA 1992, 89, 6818–6822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai-Morris, C.H.; Cao, X.M.; Sukhatme, V.P. 5′ flanking sequence and genomic structure of Egr-1, a murine mitogen inducible zinc finger encoding gene. Nucleic Acids Res. 1988, 16, 8835–8846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Guy, G.R.; Sukhatme, V.P.; Tan, Y.H. Regulation of the Egr-1 gene by tumor necrosis factor and interferons in primary human fibroblasts. J. Biol. Chem. 1992, 267, 1345–1349. [Google Scholar]
- Rockel, J.S.; Bernier, S.M.; Leask, A. Egr-1 inhibits the expression of extracellular matrix genes in chondrocytes by TNFα-induced MEK/ERK signalling. Arthritis Res. Ther. 2009, 11, R8. [Google Scholar] [CrossRef] [Green Version]
- Granet, C.; Miossec, P. Combination of the pro-inflammatory cytokines IL-1, TNF-α and IL-17 leads to enhanced expression and additional recruitment of AP-1 family members, Egr-1 and NF-κB in osteoblast-like cells. Cytokine 2004, 26, 169–177. [Google Scholar] [CrossRef]
- Geng, L.; Liao, B.; Jin, L.; Huang, Z.; Triggle, C.R.; Ding, H.; Zhang, J.; Huang, Y.; Lin, Z.; Xu, A. Exercise Alleviates Obesity-Induced Metabolic Dysfunction via Enhancing FGF21 Sensitivity in Adipose Tissues. Cell Rep. 2019, 26, 2738–2752. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Choi, H.; Seon, M.; Cho, D.; Bang, S.I. LL-37 stimulates the functions of adipose-derived stromal/stem cells via early growth response 1 and the MAPK pathway. Stem Cell Res. Ther. 2016, 7, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Dalton, S.; Treisman, R. Characterization of SAP-1, a protein recruited by serum response factor to the c-fos serum response element. Cell 1992, 68, 597–612. [Google Scholar] [CrossRef]
- Christy, B.; Nathans, D. Functional serum response elements upstream of the growth factor-inducible gene zif268. Mol. Cell. Biol. 1989, 9, 4889–4895. [Google Scholar] [CrossRef] [Green Version]
- McMahon, S.B.; Monroe, J.G. A ternary complex factor-dependent mechanism mediates induction of egr-1 through selective serum response elements following antigen receptor cross-linking in B lymphocytes. Mol. Cell. Biol. 1995, 15, 1086–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, S.; Chen, S.J.; Wu, M.; Warner-Blankenship, M.; Ning, H.; Lakos, G.; Mori, Y.; Chang, E.; Nihijima, C.; Takehara, K.; et al. Smad-independent transforming growth factor-β regulation of early growth response-1 and sustained expression in fibrosis: Implications for scleroderma. Am. J. Pathol. 2008, 173, 1085–1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoffmann, E.; Ashouri, J.; Wolter, S.; Doerrie, A.; Dittrich-Breiholz, O.; Schneider, H.; Wagner, E.F.; Troppmair, J.; Mackman, N.; Kracht, M. Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J. Biol. Chem. 2008, 283, 12120–12128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hess, J.; Angel, P.; Schorpp-Kistner, M. AP-1 subunits: Quarrel and harmony among siblings. J. Cell Sci. 2004, 117, 5965–5973. [Google Scholar] [CrossRef] [Green Version]
- Aicher, W.K.; Sakamoto, K.M.; Hack, A.; Eibel, H. Analysis of functional elements in the human Egr-1 gene promoter. Rheumatol. Int. 1999, 18, 207–214. [Google Scholar] [CrossRef]
- Cao, X.M.; Koski, R.A.; Gashler, A.; McKiernan, M.; Morris, C.F.; Gaffney, R.; Hay, R.V.; Sukhatme, V.P. Identification and characterization of the Egr-1 gene product, a DNA-binding zinc finger protein induced by differentiation and growth signals. Mol. Cell. Biol. 1990, 10, 1931–1939. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Mahendran, R.; Guy, G.R.; Tan, Y.H. Detection and characterization of cellular EGR-1 binding to its recognition site. J. Biol. Chem. 1993, 268, 16949–16957. [Google Scholar]
- Sheng, M.; McFadden, G.; Greenberg, M.E. Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 1990, 4, 571–582. [Google Scholar] [CrossRef]
- Vaccarino, F.M.; Hayward, M.D.; Le, H.N.; Hartigan, D.J.; Duman, R.S.; Nestler, E.J. Induction of immediate early genes by cyclic AMP in primary cultures of neurons from rat cerebral cortex. Mol. Brain Res. 1993, 19, 76–82. [Google Scholar] [CrossRef]
- Kang, J.H.; Kim, M.J.; Jang, H.I.; Koh, K.H.; Yum, K.S.; Rhie, D.J.; Shin, H.Y.; Sang, J.H.; Kim, M.S.; Jo, Y.H. Proximal cyclic AMP response element is essential for exendin-4 induction of rat EGR-1 gene. Am. J. Physiol. Endocrinol. Metab. 2007, 292, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Mohtar, O.; Ozdemir, C.; Roy, D.; Shantaram, D.; Emili, A.; Kandror, K.V. Egr1 mediates the effect of insulin on leptin transcription in adipocytes. J. Biol. Chem. 2019, 294, 5784–5789. [Google Scholar] [CrossRef] [PubMed]
- Saltiel, A.R.; Kahn, C.R. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001, 414, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Biddinger, S.B.; Kahn, C.R. FROM MICE TO MEN: Insights into the Insulin Resistance Syndromes. Annu. Rev. Physiol. 2006, 68, 123–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franke, T.F.; Yang, S.I.; Chan, T.O.; Datta, K.; Kazlauskas, A.; Morrison, D.K.; Kaplan, D.R.; Tsichlis, P.N. The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995, 81, 727–736. [Google Scholar] [CrossRef] [Green Version]
- Müller, I.; Lipp, P.; Thiel, G. Ca2+ signaling and gene transcription in glucose-stimulated insulinoma cells. Cell Calcium 2012, 52, 137–151. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.F.; Wang, H.K.; Chang, H.W.; Sun, J.; Sun, J.S.; Chao, Y.H. High glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway. Sci. Rep. 2017, 7, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, R.P.; Yan, F.; Boynton, A.L. UV irradiation upregulates Egr-1 expression at transcription level. J. Cell. Biochem. 1999, 73, 227–236. [Google Scholar] [CrossRef]
- Thyss, R.; Virolle, V.; Imbert, V.; Peyron, J.F.; Aberdam, D.; Virolle, T. NF-κB/Egr-1/Gadd45 are sequentially activated upon UVB irradiation to mediate epidermal cell death. EMBO J. 2005, 24, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Trinh, N.T.; Yamashita, T.; Ohneda, K.; Kimura, K.; Salazar, G.T.A.; Sato, F.; Ohneda, O. Increased Expression of EGR-1 in Diabetic Human Adipose Tissue-Derived Mesenchymal Stem Cells Reduces Their Wound Healing Capacity. Stem Cells Dev. 2016, 25, 760–773. [Google Scholar] [CrossRef]
- Schwachtgen, J.L.; Houston, P.; Campbell, C.; Sukhatme, V.; Braddock, M. Fluid shear stress activation of egr-1 transcription in cultured human endothelial and epithelial cells is mediated via the extracellular signal-related kinase 1/2 mitogen-activated protein kinase pathway. J. Clin. Invest. 1998, 101, 2540–2549. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Zhang, S.S.; Saito, K.; Williams, S.; Arimura, Y.; Ma, Y.; Ke, Y.; Baron, V.; Mercola, D.; Feng, G.S.; et al. PTEN regulation by Akt-EGR1-ARF-PTEN axis. EMBO J. 2009, 28, 21–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christy, B.; Nathans, D. DNA binding site of the growth factor-inducible protein Zif268. Proc. Natl. Acad. Sci. USA 1989, 86, 8737–8741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemaire, P.; Vesque, C.; Schmitt, J.; Stunnenberg, H.; Frank, R.; Charnay, P. The serum-inducible mouse gene Krox-24 encodes a sequence-specific transcriptional activator. Mol. Cell. Biol. 1990, 10, 3456–3467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gashler, A.L.; Swaminathan, S.; Sukhatme, V.P. A novel repression module, an extensive activation domain, and a bipartite nuclear localization signal defined in the immediate-early transcription factor Egr-1. Mol. Cell. Biol. 1993, 13, 4556–4571. [Google Scholar] [CrossRef] [Green Version]
- Russo, M.W.; Sevetson, B.R.; Milbrandt, J. Identification of NAB1, a repressor of NGFI-A- and Krox20-mediated transcription. Proc. Natl. Acad. Sci. USA 1995, 92, 6873–6877. [Google Scholar] [CrossRef] [Green Version]
- Svaren, J.; Sevetson, B.R.; Apel, E.D.; Zimonjic, D.B.; Popescu, N.C.; Milbrandt, J. NAB2, a corepressor of NGFI-A (Egr-1) and Krox20, is induced by proliferative and differentiative stimuli. Mol. Cell. Biol. 1996, 16, 3545–3553. [Google Scholar] [CrossRef] [Green Version]
- Sevetson, B.R.; Svaren, J.; Milbrandt, J. A novel activation function for NAB proteins in EGR-dependent transcription of the luteinizing hormone β gene. J. Biol. Chem. 2000, 275, 9749–9757. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Mahendran, R.; Guy, G.R.; Tan, Y.H. Protein phosphatase inhibitors induce the sustained expression of the Egr- 1 gene and the hyperphosphorylation of its gene product. J. Biol. Chem. 1992, 267, 12991–12997. [Google Scholar]
- Huang, R.P.; Fan, Y.; DeBelle, I.; Ni, Z.; Matheny, W.; Adamson, E.D. Egr-1 inhibits apoptosis during the UV response: Correlation of cell survival with Egr-1 phosphorylation. Cell Death Differ. 1998, 5, 96–106. [Google Scholar] [CrossRef] [Green Version]
- Huang, R.P.; Fan, Y.; Peng, A.; Zeng, Z.L.; Reed, J.C.; Adamson, E.D.; Boynton, A.L. Suppression of human fibrosarcoma cell growth by transcription factor, Egr-1, involves down-regulation of Bcl-2. Int. J. Cancer 1998, 77, 880–886. [Google Scholar]
- Jain, N.; Mahendran, R.; Philp, R.; Guy, G.R.; Tan, Y.H.; Cao, X. Casein kinase II associates with Egr-1 and acts as a negative modulator of its DNA binding and transcription activities in NIH 3T3 cells. J. Biol. Chem. 1996, 271, 13530–13536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; De Belle, I.; Liang, H.; Adamson, E.D. Coactivating factors p300 and CBP are transcriptionally crossregulated by Egr1 in prostate cells, leading to divergent responses. Mol. Cell 2004, 15, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Bae, M.-H.; Jeong, C.-H.; Kim, S.-H.; Bae, M.-K.; Jeong, J.-W.; Ahn, M.-Y.; Bae, S.-K.; Kim, N.D.; Kim, C.W.; Kim, K.-R.; et al. Regulation of Egr-1 by association with the proteasome component C8. Biochim. Biophys. Acta 2002, 1592, 163–167. [Google Scholar] [CrossRef] [Green Version]
- Manente, A.G.; Pinton, G.; Tavian, D.; Lopez-Rodas, G.; Brunelli, E.; Moro, L. Coordinated sumoylation and ubiquitination modulate EGF induced EGR1 expression and stability. PLoS ONE 2011, 6, 25676. [Google Scholar] [CrossRef] [Green Version]
- Bai, X.C.; Lu, D.; Bai, J.; Zheng, H.; Ke, Z.Y.; Li, X.M.; Luo, S.Q. Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-κB. Biochem. Biophys. Res. Commun. 2004, 314, 197–207. [Google Scholar]
- Garrett, I.R.; Boyce, B.F.; Oreffo, R.O.C.; Bonewald, L.; Poser, J.; Mundy, G.R. Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J. Clin. Invest. 1990, 85, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Key, L.L.; Wolf, W.C.; Gundberg, C.M.; Ries, W.L. Superoxide and bone resorption. Bone 1994, 15, 431–436. [Google Scholar]
- Mody, N.; Parhami, F.; Sarafian, T.A.; Demer, L.L. Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic. Biol. Med. 2001, 31, 509–519. [Google Scholar] [CrossRef]
- Nose, K.; Shibanuma, M.; Kikuchi, K.; Kageyama, H.; Sakiyama, S.; Kuroki, T. Transcriptional activation of early-response genes by hydrogen peroxide in a mouse osteoblastic cell line. Eur. J. Biochem. 1991, 201, 99–106. [Google Scholar] [CrossRef]
- Pines, A.; Bivi, N.; Romanello, M.; Damante, G.; Kelley, M.R.; Adamson, E.D.; D’Andrea, P.; Quadrifoglio, F.; Moro, L.; Tell, G. Cross-regulation between Egr-1 and APE/Ref-1 during early response to oxidative stress in the human osteoblastic HOBIT cell line: Evidence for an autoregulatory loop. Free Radic. Res. 2005, 39, 269–281. [Google Scholar] [CrossRef]
- Huang, R.P.; Adamson, E.D. Characterization of the DNA-Binding Properties of the Early Growth Response-1 (Egr-1) Transcription Factor: Evidence for Modulation by a Redox Mechanism. DNA Cell Biol. 1993, 12, 265–273. [Google Scholar] [CrossRef] [PubMed]
- McMahon, A.P.; Champion, J.E.; McMahon, J.A.; Sukhatme, V.P. Developmental expression of the putative transcription factor Egr-1 suggests that Egr-1 and c-fos are coregulated in some tissues. Development 1990, 108, 281–287. [Google Scholar] [PubMed]
- Lejard, V.; Blais, F.; Guerquin, M.-J.; Bonnet, A.; Bonnin, M.-A.; Havis, E.; Malbouyres, M.; Bidaud, C.B.; Maro, G.; Gilardi-Hebenstreit, P.; et al. EGR1 and EGR2 involvement in vertebrate tendon differentiation. J. Biol. Chem. 2011, 286, 5855–5867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orgeur, M.; Martens, M.; Leonte, G.; Nassari, S.; Bonnin, M.A.; Börno, S.T.; Timmermann, B.; Hecht, J.; Duprez, D.; Stricker, S. Genome-wide strategies identify downstream target genes of chick connective tissue-associated transcription factors. Development 2018, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yue, F.; Cheng, Y.; Breschi, A.; Vierstra, J.; Wu, W.; Ryba, T.; Sandstrom, R.; Ma, Z.; Davis, C.; Pope, B.D.; et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature 2014, 515, 355–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerquin, M.-J.; Charvet, B.; Nourissat, G.; Havis, E.; Ronsin, O.; Bonnin, M.-A.; Ruggiu, M.; Olivera-Martinez, I.; Robert, N.; Lu, Y.; et al. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J. Clin. Invest. 2013, 123, 3564–3576. [Google Scholar] [CrossRef] [Green Version]
- Milet, C.; Bléher, M.; Allbright, K.; Orgeur, M.; Coulpier, F.; Duprez, D.; Havis, E. Egr1 deficiency induces browning of inguinal subcutaneous white adipose tissue in mice. Sci. Rep. 2017, 7, 16153. [Google Scholar] [CrossRef] [Green Version]
- Sun, X.; Huang, H.; Pan, X.; Li, S.; Xie, Z.; Ma, Y.; Hu, B.; Wang, J.; Chen, Z.; Shi, P. EGR1 promotes the cartilage degeneration and hypertrophy by activating the Krüppel-like factor 5 and β-catenin signaling. Biochim. Biophys. Acta. Mol. basis Dis. 2019, 1865, 2490–2503. [Google Scholar] [CrossRef]
- Chen, Z.; Yue, S.X.; Zhou, G.; Greenfield, E.M.; Murakami, S. ERK1 and ERK2 regulate chondrocyte terminal differentiation during endochondral bone formation. J. Bone Miner. Res. 2015, 30, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, S.; Weitzmann, M.N.; Kimble, R.B.; Rizzo, M.; Zahner, M.; Milbrandt, J.; Ross, F.P.; Pacifici, R. Estrogen blocks M-CSF gene expression and osteoclast formation by regulating phosphorylation of Egr-1 and its interaction with Sp-1. J. Clin. Invest. 1998, 102, 1850–1859. [Google Scholar] [CrossRef] [Green Version]
- Cenci, S.; Weitzmann, M.N.; Gentile, M.A.; Aisa, M.C.; Pacifici, R. M-CSF neutralization and Egr-1 deficiency prevent ovariectomy-induced bone loss. J. Clin. Invest. 2000, 105, 1279–1287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.L.; Tourtellotte, L.C.; Wesselschmidt, R.L.; Milbrandt, J. Growth and differentiation proceeds normally in cells deficient in the immediate early gene NGFI-A. J. Biol. Chem. 1995, 270, 9971–9977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Topilko, P.; Schneider-Maunoury, S.; Levi, G.; Trembleau, A.; Gourdji, D.; Driancourt, M.A.; Rao, C.V.; Charnay, P. Multiple pituitary and ovarian defects in Krox-24 (NGFI-A, Egr-1)-targeted mice. Mol. Endocrinol. 1998, 12, 107–122. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Wang, B.; Liu, J.; Chen, L. The p16/miR-217/EGR1 pathway modulates age-related tenogenic differentiation in tendon stem/progenitor cells. Acta Biochim. Biophys. Sin. (Shanghai) 2017, 49, 1015–1021. [Google Scholar] [CrossRef] [Green Version]
- Gaut, L.; Robert, N.; Delalande, A.; Bonnin, M.A.; Pichon, C.; Duprez, D. EGR1 regulates transcription downstream of mechanical signals during tendon formation and healing. PLoS ONE 2016, 11, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Halberg, N.; Khan, T.; Trujillo, M.E.; Wernstedt-Asterholm, I.; Attie, A.D.; Sherwani, S.; Wang, Z.V.; Landskroner-Eiger, S.; Dineen, S.; Magalang, U.J.; et al. Hypoxia-Inducible Factor 1 Induces Fibrosis and Insulin Resistance in White Adipose Tissue. Mol. Cell. Biol. 2009, 29, 4467–4483. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Halberg, N.; Khan, M.; Magalang, U.J.; Scherer, P.E. Selective Inhibition of Hypoxia-Inducible Factor 1 Ameliorates Adipose Tissue Dysfunction. Mol. Cell. Biol. 2013, 33, 904–917. [Google Scholar] [CrossRef] [Green Version]
- Ackerman, J.E.; Geary, M.B.; Orner, C.A.; Bawany, F.; Loiselle, A.E. Obesity/Type II diabetes alters macrophage polarization resulting in a fibrotic tendon healing response. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.; Melichian, D.S.; De La Garza, M.; Gruner, K.; Bhattacharyya, S.; Barr, L.; Nair, A.; Shahrara, S.; Sporn, P.H.S.; Mustoe, T.A.; et al. Essential roles for early growth response transcription factor Egr-1 in tissue fibrosis and wound healing. Am. J. Pathol. 2009, 175, 1041–1055. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yang, Z.; Heng, Y.; Miao, C. MicroRNA-181 exerts an inhibitory role during renal fibrosis by targeting early growth response factor-1 and attenuating the expression of profibrotic markers. Mol. Med. Rep. 2019, 19, 3305–3313. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.J.; Ning, H.; Ishida, W.; Sodin-Semrl, S.; Takagawa, S.; Mori, Y.; Varga, J. The early-immediate gene EGR-1 is induced by transforming growth factor-β and mediates stimulation of collagen gene expression. J. Biol. Chem. 2006, 281, 21183–21197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, L.; Peng, H.; Osaki, M.; Choy, B.K.; Auron, P.E.; Sandell, L.J.; Goldring, M.B. Egr-1 mediates transcriptional repression of COL2A1 promoter activity by interleukin-1β. J. Biol. Chem. 2003, 278, 17688–17700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reumann, M.K.; Strachna, O.; Yagerman, S.; Torrecilla, D.; Kim, J.; Doty, S.B.; Lukashova, L.; Boskey, A.L.; Mayer-Kuckuk, P. Loss of transcription factor early growth response gene 1 results in impaired endochondral bone repair. Bone 2011, 49, 743–752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakrabarti, P.; Kim, J.Y.; Singh, M.; Shin, Y.-K.; Kim, J.; Kumbrink, J.; Wu, Y.; Lee, M.-J.; Kirsch, K.H.; Fried, S.K.; et al. Insulin inhibits lipolysis in adipocytes via the evolutionarily conserved mTORC1-Egr1-ATGL-mediated pathway. Mol. Cell. Biol. 2013, 33, 3659–3666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Zhang, Y.; Sun, T.; Guo, F.; Huang, S.; Chandalia, M.; Abate, N.; Fan, D.; Xin, H.-B.; Chen, Y.E.; et al. Dietary obesity-induced Egr-1 in adipocytes facilitates energy storage via suppression of FOXC2. Sci. Rep. 2013, 3, 1476. [Google Scholar] [CrossRef] [Green Version]
- Nebbaki, S.-S.; El Mansouri, F.E.; Afif, H.; Kapoor, M.; Benderdour, M.; Duval, N.; Pelletier, J.-P.; Martel-Pelletier, J.; Fahmi, H. Egr-1 contributes to IL-1-mediated down-regulation of peroxisome proliferator-activated receptor γ expression in human osteoarthritic chondrocytes. Arthritis Res. Ther. 2012, 14, R69. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Liu, J.; Chen, L.; Zhou, Y.; Tang, K. EGR1 Induces Tenogenic Differentiation of Tendon Stem Cells and Promotes Rabbit Rotator Cuff Repair. Cell. Physiol. Biochem. 2015, 35, 699–709. [Google Scholar] [CrossRef]
- Wang, B.; Guo, J.; Feng, L.; Suen, C.-W.; Fu, W.-M.; Zhang, J.-F.; Li, G. MiR124 suppresses collagen formation of human tendon derived stem cells through targeting egr1. Exp. Cell Res. 2016, 347, 360–366. [Google Scholar] [CrossRef]
- Qiu, S.; Sun, Y.; Xu, J.; Wen, G.; Yu, Y.; Wu, T.; Chai, Y. Ferulic acid improves self-renewal and differentiation of human tendon-derived stem cells by upregulating early growth response 1 through hypoxia. Genesis 2019, 57. [Google Scholar] [CrossRef]
- Eliasson, P.; Andersson, T.; Hammerman, M.; Aspenberg, P. Primary gene response to mechanical loading in healing rat Achilles tendons. J. Appl. Physiol. 2013, 114, 1519–1526. [Google Scholar] [CrossRef] [Green Version]
- Eliasson, P.; Andersson, T.; Aspenberg, P. Rat Achilles tendon healing: Mechanical loading and gene expression. J. Appl. Physiol. 2009, 107, 399–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maeda, T.; Sakabe, T.; Sunaga, A.; Sakai, K.; Rivera, A.L.; Keene, D.R.; Sasaki, T.; Stavnezer, E.; Iannotti, J.; Schweitzer, R.; et al. Conversion of mechanical force into TGF-β-mediated biochemical signals. Curr. Biol. 2011, 21, 933–941. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Derby, B.M.; Reichensperger, J.; Chambers, C.; Bueno, R.A.; Suchy, H.; Neumeister, M.W. Early growth response factor-1: Expression in a rabbit flexor tendon scar model. Plast. Reconstr. Surg. 2012, 129, 435–442. [Google Scholar] [CrossRef] [Green Version]
- Hammerman, M.; Aspenberg, P.; Eliasson, P. Microtrauma stimulates rat Achilles tendon healing via an early gene expression pattern similar to mechanical loading. J. Appl. Physiol. 2014, 116, 54–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, C.-Y.C.; Kadler, K.E. Chapter Eleven - Importance of the circadian clock in tendon development. Curr. Top. Dev. Biol. 2019, 133, 309–342. [Google Scholar] [PubMed]
- Chang, J.; Garva, R.; Pickard, A.; Yeung, C.-Y.C.; Mallikarjun, V.; Swift, J.; Holmes, D.F.; Calverley, B.; Lu, Y.; Adamson, A.; et al. Circadian control of the secretory pathway maintains collagen homeostasis. Nat. Cell Biol. 2020, 22, 74–86. [Google Scholar] [CrossRef] [PubMed]
- Riedel, C.S.; Georg, B.; Jørgensen, H.L.; Hannibal, J.; Fahrenkrug, J. Mice Lacking EGR1 Have Impaired Clock Gene (BMAL1) Oscillation, Locomotor Activity, and Body Temperature. J. Mol. Neurosci. 2018, 64, 9–19. [Google Scholar] [CrossRef]
- Magnusson, S.P.; Kjaer, M. The impact of loading, unloading, ageing and injury on the human tendon. J. Physiol. 2019, 597, 1283–1298. [Google Scholar] [CrossRef] [Green Version]
- Schiele, N.R.; Marturano, J.E.; Kuo, C.K. Mechanical factors in embryonic tendon development: Potential cues for stem cell tenogenesis. Curr. Opin. Biotechnol. 2013, 24, 834–840. [Google Scholar] [CrossRef] [Green Version]
- Arvind, V.; Huang, A.H. Mechanobiology of limb musculoskeletal development. Ann. N. Y. Acad. Sci. 2017, 1409, 18–32. [Google Scholar] [CrossRef]
- Marturano, J.E.; Arena, J.D.; Schiller, Z.A.; Georgakoudi, I.; Kuo, C.K. Characterization of mechanical and biochemical properties of developing embryonic tendon. Proc. Natl. Acad. Sci. USA 2013, 110, 6370–6375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Havis, E.; Bonnin, M.-A.; De Lima, J.E.; Charvet, B.; Milet, C.; Duprez, D. TGFβ and FGF promote tendon progenitor fate and act downstream of muscle contraction to regulate tendon differentiation during chick limb development. Development 2016, 143, 3839–3851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herchenhan, A.; Dietrich-Zagonel, F.; Schjerling, P.; Kjær, M.; Eliasson, P. Early Growth Response Genes Increases Rapidly After Mechanical Overloading and Unloading in Tendon Constructs. J. Orthop. Res. 2019, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Zhang, A.; Richardson, D.W. Regulation of the tenogenic gene expression in equine tenocyte-derived induced pluripotent stem cells by mechanical loading and Mohawk. Stem Cell Res. 2019, 39, 101489. [Google Scholar] [CrossRef]
- Aspenberg, P. Stimulation of tendon repair: Mechanical loading, GDFs and platelets. A mini-review. Int. Orthop. 2007, 31, 783–789. [Google Scholar] [CrossRef] [Green Version]
- Gumucio, J.P.; Sugg, K.B.; Mendias, C.L. TGF-β Superfamily Signaling in Muscle and Tendon Adaptation to Resistance Exercise. Exerc. Sport Sci. Rev. 2015, 43, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Weatherholt, A.M.; Fuchs, R.K.; Warden, S.J. Specialized connective tissue: Bone, the structural framework of the upper extremity. J. Hand Ther. 2012, 25, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Reumann, M.K.; Strachna, O.; Lukashova, L.; Verdelis, K.; Donnelly, E.; Boskey, A.L.; Mayer-Kuckuk, P. Early growth response gene 1 regulates bone properties in mice. Calcif. Tissue Int. 2011, 89, 1–9. [Google Scholar] [CrossRef]
- Lu, K.; Shi, T.-S.; Shen, S.-Y.; Lu, W.-L.; Wu, J.; Zhang, K.-J.; Zhu, X.-B.; Shi, Y.; Liu, X.-L.; Yu, F.; et al. Egr1 deficiency disrupts dynamic equilibrium of chondrocyte extracellular matrix through PPARγ/RUNX2 signaling pathways. Am. J. Transl. Res. 2018, 10, 1620–1632. [Google Scholar]
- Karsenty, G.; Wagner, E.F. Reaching a genetic and molecular understanding of skeletal development. Dev. Cell 2002, 2, 389–406. [Google Scholar] [CrossRef] [Green Version]
- Marcelin, G.; Clément, K. Adipose tissue fibrosis: An aggravating factor in obesity. Medecine/Sciences 2018, 34, 424–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, T.; Muise, E.S.; Iyengar, P.; Wang, Z.V.; Chandalia, M.; Abate, N.; Zhang, B.B.; Bonaldo, P.; Chua, S.; Scherer, P.E. Metabolic Dysregulation and Adipose Tissue Fibrosis: Role of Collagen VI. Mol. Cell. Biol. 2009, 29, 1575–1591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz-Ojeda, F.J.; Méndez-Gutiérrez, A.; Aguilera, C.M.; Plaza-Díaz, J. Extracellular matrix remodeling of adipose tissue in obesity and metabolic diseases. Int. J. Mol. Sci. 2019, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Q.A.; Tao, C.; Gupta, R.K.; Scherer, P.E. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat. Med. 2013, 19, 1338–1344. [Google Scholar] [CrossRef]
- Bartelt, A.; Heeren, J. Adipose tissue browning and metabolic health. Nat. Rev. Endocrinol. 2014, 10, 24–36. [Google Scholar] [CrossRef]
- Hinz, B.; Lagares, D. Evasion of apoptosis by myofibroblasts: A hallmark of fibrotic diseases. Nat. Rev. Rheumatol. 2020, 16, 11–31. [Google Scholar] [CrossRef]
- Vallée, A.; Lecarpentier, Y. TGF-β in fibrosis by acting as a conductor for contractile properties of myofibroblasts. Cell Biosci. 2019, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Buechler, C.; Krautbauer, S.; Eisinger, K. Adipose tissue fibrosis. World J. Diabetes 2015, 6, 548–553. [Google Scholar] [CrossRef]
- Sun, K.; Tordjman, J.; Clément, K.; Scherer, P.E. Fibrosis and adipose tissue dysfunction. Cell Metab. 2013, 18, 470–477. [Google Scholar] [CrossRef] [Green Version]
- Sun, K.; Kusminski, C.M.; Scherer, P.E.; Sun, K.; Kusminski, C.M.; Scherer, P.E. Adipose tissue remodeling and obesity Find the latest version: Review series Adipose tissue remodeling and obesity. J. Clin. Invest. 2011, 121, 2094–2101. [Google Scholar] [CrossRef] [Green Version]
- Divoux, A.; Clement, K. Architecture and the extracellular matrix: The still unappreciated components of the adipose tissue. Obes. Rev. 2011, 12, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Lackey, D.E.; Burk, D.H.; Ali, M.R.; Mostaedi, R.; Smith, W.H.; Park, J.; Scherer, P.E.; Seay, S.A.; McCoin, C.S.; Bonaldo, P.; et al. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity. Am. J. Physiol. Endocrinol. Metab. 2014, 306, 233–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, X.; Shen, N.; Zhang, M.-L.; Pan, F.-Y.; Wang, C.; Jia, W.-P.; Liu, C.; Gao, Q.; Gao, X.; Xue, B.; et al. Egr-1 decreases adipocyte insulin sensitivity by tilting PI3K/Akt and MAPK signal balance in mice. EMBO J. 2011, 30, 3754–3765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saiki, A.; Olsson, M.; Jernås, M.; Gummesson, A.; McTernan, P.G.; Andersson, J.; Jacobson, P.; Sjöholm, K.; Olsson, B.; Yamamura, S.; et al. Tenomodulin Is Highly Expressed in Adipose Tissue, Increased in Obesity, and Down-Regulated during Diet-Induced Weight Loss. J. Clin. Endocrinol. Metab. 2009, 94, 3987–3994. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, C.M.; Gomez-Llorente, C.; Tofe, I.; Gil-Campos, M.; Cañete, R.; Gil, Á. Genome-wide expression in visceral adipose tissue from obese prepubertal children. Int. J. Mol. Sci. 2015, 16, 7723–7737. [Google Scholar] [CrossRef]
- Senol-Cosar, O.; Flach, R.J.R.; DiStefano, M.; Chawla, A.; Nicoloro, S.; Straubhaar, J.; Hardy, O.T.; Noh, H.L.; Kim, J.K.; Wabitsch, M.; et al. Tenomodulin promotes human adipocyte differentiation and beneficial visceral adipose tissue expansion. Nat. Commun. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Ranger, T.A.; Wong, A.M.Y.; Cook, J.L.; Gaida, J.E. Is there an association between tendinopathy and diabetes mellitus? A systematic review with meta-analysis. Br. J. Sports Med. 2016, 50, 982–989. [Google Scholar] [CrossRef]
- Nichols, A.E.C.; Oh, I.; Loiselle, A.E. Effects of Type II Diabetes Mellitus on Tendon Homeostasis and Healing. J. Orthop. Res. 2019, 38, 13–22. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Li, Y.-J.; Rui, Y.-F.; Dai, G.-C.; Shi, L.; Xu, H.-L.; Ni, M.; Zhao, S.; Chen, H.; Wang, C.; et al. The effects of high glucose on tendon-derived stem cells: Implications of the pathogenesis of diabetic tendon disorders. Oncotarget 2017, 8, 17518–17528. [Google Scholar] [CrossRef] [Green Version]
- Van Caam, A.; Vonk, M.; van den Hoogen, F.; van Lent, P.; van der Kraan, P. Unraveling SSc Pathophysiology; The Myofibroblast. Front. Immunol. 2018, 9, 2452. [Google Scholar] [CrossRef] [Green Version]
- Korman, B. Evolving insights into the cellular and molecular pathogenesis of fibrosis in systemic sclerosis. Transl. Res. 2019, 209, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharyya, S.; Wu, M.; Fang, F.; Tourtellotte, W.; Feghali-Bostwick, C.; Varga, J. Early growth response transcription factors: Key mediators of fibrosis and novel targets for anti-fibrotic therapy. Matrix Biol. 2011, 30, 235–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, S.; Fang, F.; Tourtellotte, W.; Varga, J. Egr-1: New conductor for the tissue repair orchestra directs harmony (regeneration) or cacophony (fibrosis). J. Pathol. 2013, 229, 286–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhattacharyya, S.; Sargent, J.L.; Du, P.; Lin, S.; Tourtellotte, W.G.; Takehara, K.; Whitfield, M.L.; Varga, J. Egr-1 induces a profibrotic injury/repair gene program associated with systemic sclerosis. PLoS ONE 2011, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Yasuoka, H.; Hsu, E.; Ruiz, X.D.; Steinman, R.A.; Choi, A.M.K.; Feghali-Bostwick, C.A. The fibrotic phenotype induced by IGFBP-5 is regulated by MAPK activation and egr-1-dependent and -independent mechanisms. Am. J. Pathol. 2009, 175, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Ghatak, S.; Markwald, R.R.; Hascall, V.C.; Dowling, W.; Lottes, R.G.; Baatz, J.E.; Beeson, G.; Beeson, C.C.; Perrella, M.A.; Thannickal, V.J.; et al. Transforming growth factor β1 (TGF β1) regulates CD44V6 expression and activity through extracellular signal-regulated kinase (ERK)-induced EGR1 in pulmonary fibrogenic fibroblasts. J. Biol. Chem. 2017, 292, 10465–10489. [Google Scholar] [CrossRef] [Green Version]
- Ho, L.C.; Sung, J.M.; Shen, Y.T.; Jheng, H.F.; Chen, S.H.; Tsai, P.J.; Tsai, Y.S. Egr-1 deficiency protects from renal inflammation and fibrosis. J. Mol. Med. 2016, 94, 933–942. [Google Scholar] [CrossRef]
- Li, T.Z.; Kim, S.M.; Hur, W.; Choi, J.E.; Kim, J.-H.; Hong, S.W.; Lee, E.B.; Lee, J.H.; Yoon, S.K. Elk-3 Contributes to the Progression of Liver Fibrosis by Regulating the Epithelial-Mesenchymal Transition. Gut Liver 2017, 11, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Peng, W.-X.; Xiong, E.-M.; Ge, L.; Wan, Y.-Y.; Zhang, C.-L.; Du, F.-Y.; Xu, M.; Bhat, R.A.; Jin, J.; Gong, A.-H. Egr-1 promotes hypoxia-induced autophagy to enhance chemo-resistance of hepatocellular carcinoma cells. Exp. Cell Res. 2016, 340, 62–70. [Google Scholar] [CrossRef]
- Bai, Q.; Yan, H.; Sheng, Y.; Jin, Y.; Shi, L.; Ji, L.; Wang, Z. Long-term acetaminophen treatment induced liver fibrosis in mice and the involvement of Egr-1. Toxicology 2017, 382, 47–58. [Google Scholar] [CrossRef]
- Gess, B.; Wolf, K.; Pfeifer, M.; Riegger, G.A.; Kurtz, A. In vivo carbon monoxide exposure and hypoxic hypoxia stimulate immediate early gene expression. Pflugers Arch. 1997, 434, 568–574. [Google Scholar] [CrossRef] [PubMed]
- Ghazvini-Boroujerdi, M.; Clark, J.; Narula, N.; Palmatory, E.; Connolly, J.M.; DeFelice, S.; Xu, J.; Jian, B.; Hazelwood, S.; Levy, R.J. Transcription factor Egr-1 in calcific aortic valve disease. J. Heart Valve Dis. 2004, 13, 894–903. [Google Scholar] [PubMed]
- Shen, J.; Xing, W.; Gong, F.; Wang, W.; Yan, Y.; Zhang, Y.; Xie, C.; Fu, S. MiR-150-5p retards the progression of myocardial fibrosis by targeting EGR1. Cell Cycle 2019, 18, 1335–1348. [Google Scholar] [CrossRef] [PubMed]
- Kökény, G.; Calvier, L.; Legchenko, E.; Chouvarine, P.; Mózes, M.M.; Hansmann, G. PPARγ is a gatekeeper for extracellular matrix and vascular cell homeostasis: Beneficial role in pulmonary hypertension and renal/cardiac/pulmonary fibrosis. Curr. Opin. Nephrol. Hypertens. 2020, 29, 171–179. [Google Scholar] [CrossRef]
- Németh, Á.; Mózes, M.M.; Calvier, L.; Hansmann, G.; Kökény, G. The PPARγ agonist pioglitazone prevents TGF-β induced renal fibrosis by repressing EGR-1 and STAT3. BMC Nephrol. 2019, 20, 245. [Google Scholar] [CrossRef]
- Wan, H.; Yuan, Y.; Liu, J.; Chen, G. Pioglitazone, a PPAR-γ activator, attenuates the severity of cerulein-induced acute pancreatitis by modulating early growth response-1 transcription factor. Transl. Res. 2012, 160, 153–161. [Google Scholar] [CrossRef]
- Li, G.; Han, N.; Li, Z.; Lu, Q. Identification of transcription regulatory relationships in rheumatoid arthritis and osteoarthritis. Clin. Rheumatol. 2013, 32, 609–615. [Google Scholar] [CrossRef]
- Kloppenburg, M.; Berenbaum, F. Osteoarthritis year in review 2019: Epidemiology and therapy. Osteoarthr. Cartil. 2020. [Google Scholar] [CrossRef] [Green Version]
- Huber, L.C.; Distler, O.; Tarner, I.; Gay, R.E.; Gay, S.; Pap, T. Synovial fibroblasts: Key players in rheumatoid arthritis. Rheumatology 2006, 45, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Yuan, Z.; Cui, S. Identifying candidate genes involved in osteoarthritis through bioinformatics analysis. Clin. Exp. Rheumatol. 2016, 34, 282–290. [Google Scholar]
- Feng, Z.; Lian, K.-J. Identification of genes and pathways associated with osteoarthritis by bioinformatics analyses. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 736–744. [Google Scholar] [PubMed]
- Grimbacher, B.; Aicher, W.K.; Peter, H.H.; Eibel, H. Measurement of transcription factor c-fos and EGR-1 mRNA transcription levels in synovial tissue by quantitative RT-PCR. Rheumatol. Int. 1997, 17, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Trabandt, A.; Aicher, W.K.; Gay, R.E.; Sukhatme, V.P.; Fassbender, H.G.; Gay, S. Spontaneous expression of immediately-early response genes c-fos and egr-1 in collagenase-producing rheumatoid synovial fibroblasts. Rheumatol. Int. 1992, 12, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Aicher, W.K.; Heer, A.H.; Trabandt, A.; Bridges Jr, S.L.; Schroeder Jr, H.W.; Stransky, G.; Gay, R.E.; Eibel, H.; Peter, H.H.; Siebenlist, U. Overexpression of zinc-finger transcription factor Z-225/Egr-1 in synoviocytes from rheumatoid arthritis patients. J. Immunol. 1994, 152, 5940–5948. [Google Scholar] [PubMed]
- Alexander, D.; Judex, M.; Meyringer, H.; Weis-Klemm, M.; Gay, B.; Müller-Ladner, U.; Aicher, W.K. Transcription factor Egr-1 activates collagen expression in immortalized fibroblasts or fibrosarcoma cells. Biol. Chem. 2002, 383, 1845–1853. [Google Scholar] [CrossRef]
- Nourissat, G.; Berenbaum, F.; Duprez, D. Tendon injury: From biology to tendon repair. Nat. Rev. Rheumatol. 2015, 11, 223–233. [Google Scholar] [CrossRef]
- Docheva, D.; Müller, S.A.; Majewski, M.; Evans, C.H. Biologics for tendon repair. Adv. Drug Deliv. Rev. 2015, 84, 222–239. [Google Scholar] [CrossRef] [Green Version]
- Nichols, A.E.C.; Best, K.T.; Loiselle, A.E. The cellular basis of fibrotic tendon healing: Challenges and opportunities. Transl. Res. 2019, 209, 156–168. [Google Scholar] [CrossRef]
- Lin, D.; Alberton, P.; Caceres, M.D.; Volkmer, E.; Schieker, M.; Docheva, D. Tenomodulin is essential for prevention of adipocyte accumulation and fibrovascular scar formation during early tendon healing. Cell Death Dis. 2017, 8, e3116. [Google Scholar] [CrossRef] [Green Version]
- Sakabe, T.; Sakai, K.; Maeda, T.; Sunaga, A.; Furuta, N.; Schweitzer, R.; Sasaki, T.; Sakai, T. Transcription factor scleraxis vitally contributes to progenitor lineage direction in wound healing of adult tendon in mice. J. Biol. Chem. 2018, 293, 5766–5780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pryce, B.A.; Watson, S.S.; Murchison, N.D.; Staverosky, J.A.; Dünker, N.; Schweitzer, R. Recruitment and maintenance of tendon progenitors by TGFbeta signaling are essential for tendon formation. Development 2009, 136, 1351–1361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Docheva, D.; Hunziker, E.B.; Fässler, R.; Brandau, O. Tenomodulin is necessary for tenocyte proliferation and tendon maturation. Mol. Cell. Biol. 2005, 25, 699–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagchi, R.A.; Roche, P.; Aroutiounova, N.; Espira, L.; Abrenica, B.; Schweitzer, R.; Czubryt, M.P. The transcription factor scleraxis is a critical regulator of cardiac fibroblast phenotype. BMC Biol. 2016, 14, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagel, J.-I.; Deindl, E. Early growth response 1—a transcription factor in the crossfire of signal transduction cascades. Indian J. Biochem. Biophys. 2011, 48, 226–235. [Google Scholar]
- Magee, N.; Zhang, Y. Role of early growth response 1 in liver metabolism and liver cancer. Hepatoma Res. 2017, 3, 268–277. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Ameri, A.H.; Wang, S.; Jansson, K.H.; Casey, O.M.; Yang, Q.; Beshiri, M.L.; Fang, L.; Lake, R.G.; Agarwal, S.; et al. EGR1 regulates angiogenic and osteoclastogenic factors in prostate cancer and promotes metastasis. Oncogene 2019, 38, 6241–6255. [Google Scholar] [CrossRef]
- Penet, M.-F.; Kakkad, S.; Pathak, A.P.; Krishnamachary, B.; Mironchik, Y.; Raman, V.; Solaiyappan, M.; Bhujwalla, Z.M. Structure and Function of a Prostate Cancer Dissemination-Permissive Extracellular Matrix. Clin. Cancer Res. 2017, 23, 2245–2254. [Google Scholar] [CrossRef] [Green Version]
- Gitenay, D.; Baron, V.T. Is EGR1 a potential target for prostate cancer therapy? Future Oncol. 2009, 5, 993–1003. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Lu, H. Giant cell tumor of tendon sheath in the wrist that damaged the extensor indicis proprius tendon: A case report and literature review. BMC Cancer 2019, 19, 1057. [Google Scholar] [CrossRef]
- Sun, Z.; Xu, X.; He, J.; Murray, A.; Sun, M.-A.; Wei, X.; Wang, X.; McCoig, E.; Xie, E.; Jiang, X.; et al. EGR1 recruits TET1 to shape the brain methylome during development and upon neuronal activity. Nat. Commun. 2019, 10, 3892. [Google Scholar] [CrossRef] [Green Version]
Genes Regulated by EGR1 Gene Names (Protein Names) | Activated (+) or Repressed (−) by EGR1 | References | Expression in Connective Tissues o | Physiological /Pathological Roles in Connective Tissues |
---|---|---|---|---|
(I) Extracellular Proteins: (1) Extra Cellular Matrix (ECM) Components | ||||
Acan (Aggrecan) | − | [25] | Cartilage Tendon | ECM component of cartilage negatively regulated by EGR1 |
Bgn (Biglycan) | + | [46,76,84] | Tendon | ECM component of tendon Collagen fibrillogenesis |
Col1a1 * (1 chain of type I collagen) | + | [73,76,77,84,85,86,87,88,89,90] | Tendon Bone White adipose tissue | Main ECM structural and functional component of tendons ECM component of adipose tissue Fibrosis |
Col1a2 * (2 chain of type I collagen) | + | [46,76,77,85,91] | Tendon Bone White adipose tissue | Main ECM structural and functional component of tendons ECM component of adipose tissue Fibrosis |
Col2a1 * (1 chain of type II collagen) | − | [25,92] | Cartilage | Major ECM component of cartilage negatively regulated by EGR1 |
Col3a1 (1 chain of type III collagen) | + | [73,76,77,86,87,88,90] | Tendon White adipose tissue | ECM component of tendon and adipose tissue Collagen fibrillogenesis Fibrosis |
Col5a1 (1 chain of type V collagen) | + | [73,76,77] | Tendon White adipose tissue | ECM component of tendon and adipose tissue Collagen fibrillogenesis |
Col5a2 (chain of type V collagen) | + | [77] | Tendon White adipose tissue | ECM component of tendon and adipose tissue Collagen fibrillogenesis |
Col6a1 (1 chain of type VI collagen) | + | [76] | Tendon White adipose tissue | ECM component of tendon and adipose tissue Fibrosis |
Col14a1 (1 chain of type XIV collagen) | + | [73,76,77] | Tendon White adipose tissue | ECM component of tendon and adipose tissue Collagen fibrillogenesis |
Dcn (Decorin) | + | [76,77,84] | Tendon White adipose tissue | ECM component of tendon and adipose tissue Collagen fibrillogenesis |
Fbn1 (Fibrillin 1) | + | [76,77] | Tendon White adipose tissue | ECM component of tendon and adipose tissue Collagen fibrillogenesis |
Fn1 (Fibronectin) | + | [77] | Tendon White adipose tissue | ECM component of tendon and adipose tissue Matrix organizer Collagen fibrillogenesis |
Hapln1 * (Hyaluronan and proteoglycan link protein 1) | − | [25] | Cartilage Tendon | ECM component of cartilage negatively regulated by EGR1 |
Postn (Periostin) | + | [77] | Tendon Bone White adipose tissue | ECM component of tendon, bone, and adipose tissue |
Tnc (Tenascin) | + | [76] | Tendon White adipose tissue | ECM component of tendon and adipose tissue Collagen fibrillogenesis |
(2) Secreted Proteins/Hormones | ||||
Bglap (Osteocalcin) | + | [93] | Bone | Bone-derived hormone involved in bone mineralization Regulation of glucose homeostasis |
Csf1 * (Macrophage Colony Stimulating Factor, M-CSF) | − | [80,81] | Bone Osteoclast precursors | Osteoclast proliferation and differentiation |
Ctsk (Cathepsin K) | + | [77,93] | Bone Tendon Adipose tissue | ECM remodelling enzyme involved in bone formation during skeletal repair |
Lep * (Leptin) | + | [41,77] | White adipose tissue | Hormone secreted by adipocytes involved in energy balance regulation |
Tgfb2 * (Transforming Growth Factor beta2, TGFbeta2) | + | [73,76,85] | Tendon | Tendon development, homeostasis, and repair fibrosis |
(II) Transmembrane Proteins | ||||
Tnmd (Tenomodulin) | + | [73,76,84,85] | Tendon White adipose tissue | Main tendon differentiation marker Transmembrane glycoprotein involved in tendon formation, homeostasis, and repair Increased in obese patients |
(III) Cytoplasmic Proteins | ||||
Pnpla2 * (Adipose Triglyceride Lipase, ATGL) | − | [94] | White adipose tissue | Enzyme involved in adipose triglyceride lipolysis to mobilize triglyceride for energy production |
Acp5 (Tartrate-resistant acid phosphatase) | + | [93] | Bone | Metalloprotein enzyme involved in endochondral bone formation and repair |
Ucp1 * (Uncoupling protein 1) | − | [77] | White and brown adipose tissues | Thermogenic protein expressed in brown adipose tissue Upregulated in the context of white adipose tissue browning |
(IV) Transcription Factors/Nuclear Proteins | ||||
Cebpb * (CCAAT/Enhancer Binding Protein ß, C/EBPß) | − | [77] | White adipose tissue | Adipocyte differentiation Overexpression induces osteopenia |
Egr1 * (Early Growth Response 1) | − | [37] | Tendon Bone (hypertrophic cartilage) White adipose tissue | Zinc finger transcription factor involved in tendon formation, homeostasis, and repair Egr1 deletion induces bone loss Egr1 deletion induces white fat browning Fibrotic factor |
Foxc2 (Forkhead box protein C2) | − | [95] | Adipose tissue | Increases insulin sensitivity and is down-egulated in type 2 diabetic patients |
Mkx (Mohawk) | + | [46] | Tendon | Homeobox protein involved in tendon formation and homeostasis |
Pparg * (Peroxysome Proliferator Activated Receptor PPAR) | − | [96] | Adipose tissue Chondrocytes | Positive regulator of adipocyte differentiation Negative regulator of osteocyte differentiation Anti-fibrotic factor |
Scx (Scleraxis) | + | [73,76,84,85] | Tendon | Main tendon marker bHLH transcription factor involved in tendon development, homeostasis, and repair |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Havis, E.; Duprez, D. EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. Int. J. Mol. Sci. 2020, 21, 1664. https://doi.org/10.3390/ijms21051664
Havis E, Duprez D. EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. International Journal of Molecular Sciences. 2020; 21(5):1664. https://doi.org/10.3390/ijms21051664
Chicago/Turabian StyleHavis, Emmanuelle, and Delphine Duprez. 2020. "EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues" International Journal of Molecular Sciences 21, no. 5: 1664. https://doi.org/10.3390/ijms21051664
APA StyleHavis, E., & Duprez, D. (2020). EGR1 Transcription Factor is a Multifaceted Regulator of Matrix Production in Tendons and Other Connective Tissues. International Journal of Molecular Sciences, 21(5), 1664. https://doi.org/10.3390/ijms21051664