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Abstract: Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical
pathology consists of extracellular amyloid-f (Af) plaques and intracellular tau neurofibrillary tangles.
Mutations in the APP, PSEN1, and PSEN2 genes increase A3 production and aggregation, and thus
cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD
to result from complex etiological alterations. Among them, aging is the strongest risk factor for
the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a
well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a
critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients.
Genetically, defects in DNA damage repair resulted from mutations in the BRACI and other DNA
damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA
damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association,
the causative potential, and the biomarker values of DNA damage in AD pathogenesis.

Keywords: Alzheimer’s disease pathogenesis; diagnostic biomarkers for Alzheimer disease;
DNA damage response; DNA damage repair

1. Introduction

Approximately 50 million people worldwide are affected by dementia (World Health
Organization/WHO, 2019). With around 10 million new cases each year (WHO, https://www.who.int/
news-room/fact-sheets/detail/dementia), dementia is estimated to affect 75.6 million and 135.5 million
people worldwide by 2030 and 2050 (WHO) respectively. Among the neurodegenerative diseases that
cause dementia, Alzheimer’s disease (AD) is the primary cause, accounting for 60%—-70% of dementia
cases (WHO). AD is a major health issue and the predominant burden on the healthcare system with
respect to dementia.

AD was first described by Alois Alzheimer more than one century ago on a patient named
Auguste D [1]; the typical pathological features include extensive cerebral amyloid plaques and
neurofibrillary tangles [2,3]. The latter is caused by intraneuronal aggregation of hyperphosphorylated
tau; abnormal tau phosphorylation is attributable to several kinases including CDKS5 [4-7]. Additionally,
CDKS5 phosphorylates the amyloid precursor protein (APP) at threonine 668 (T668), which stimulates
B-amyloid (AP) peptide accumulation [8]. Aggregation of A peptides, particularly Ap1.4p, causes
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amyloid (senile) plaques in AD brain [9-11]. Furthermore, CDKS5 activities affect DNA damage
response [12], supporting a linkage of DNA damage with AD [13,14].

Ap peptides are directly produced by sequential cleavages of APP by (3- and y-secretase;
the proteolytic c-terminal fragment of APP (CTFf) of (3-secretase is cleaved within the cell membrane
by y-secretase to generate neurotoxic A3 peptides with length ranging from 38-43 residues [15-19].
The 40 residue Af3 peptide (AB1.49) is the major product, accounting for more than 50% of Af3
peptides [9,17]. Although the AB1.4p peptide consists of less than 10% of A peptides [16,17], it is
more neurotoxic and associates with a higher risk of AD because of its propensity of aggregation [9].
The importance of A in AD pathogenesis is illustrated by mutations of APP, PSEN1, and PREN2 genes
in familial AD with the latter two encoding the presenilin 1 and presenilin 2 subunit of y-secretase.
Individuals with these mutations develop early onset dementia in an autosomal-dominant manner [20];
the typical onset starts between 30 and 50 years of age in PSENT mutant carriers with some being
affected at in their 20s [20,21]. y-secretase with mutant presenilin 1 or presenilin 2 subunit favors A31.4»
production [16,17]. These genetic observations led to formation of the amyloid cascade hypothesis,
in which abnormal A drives AD pathogenesis via regulating other pathological events including
tau pathology [22-27]. This hypothesis is supported by the similar pathological features between
familial AD and sporadic late onset AD (LOAD) [20]. Although familial AD constitutes less than
1% of AD cases [28,29], the hypothesis has been widely accepted to guide research in advancing the
understanding of both familial AD and LOAD in the past two decades [30,31].

Nonetheless, it is becoming increasingly clear that complex pathological etiology instead of the
amyloid-cascade hypothesis is involved in LOAD, which accounts for more than 90% of AD cases
in patients over 65 year old [32,33]. This concept is supported by the lack of success in all phase III
clinical trials on drugs developed to remove cerebral Af in attempt to slow down cognitive decline in
patients with either mild cognitive impairment (MCI) or AD dementia [31,34]. In sporadic LOAD cases,
aging is the strongest risk factor [30,35]. Aging is clearly a complex process; nonetheless, accumulative
evidence reveals a central role of DNA damage in aging [36]. Of note, DNA damage is clearly linked
to AD and other neurodegenerative diseases. The topic of “DNA and neurodegenerative diseases” has
been previously reviewed [14,30,37]. We will update the recent developments from 2014 onward; key
publications prior to 2014 will be covered. Data used in this review were extracted from PubMed and
selected according to the PRISMA Guidelines [38,39] (Figure 1).
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Figure 1. Systemic literature search and selection of articles for review.
2. Association of DNA Damage with Alzheimer’s Disease

The association of DNA damage with aging is well studied and established with 7086 articles
under “DNA damage” AND “aging” listed in PubMed as of January 17, 2020. Genome rearrangement
and double strand breaks (DSBs) increase in aging mice and senescing human cells [40,41]. DNA lesions
are accumulated in AD brains. Elevations in YH2AX, a well-established marker of DSB [42], were
detected in 11 of 13 AD brains in astrocytes of hippocampus and cerebral cortex [43]. Using two
independent cohorts (1 = 13 and n = 23), significant increases in YH2AX were recently demonstrated in
astrocytes and neurons in the hippocampus and frontal cortex of AD brains [44]; the increase occurred
in brains with mild cognitive impairment (MCI) [44], a preclinical stage of AD [45,46], suggesting an
important role of DSB in AD pathogenesis. Furthermore, DSBs and single strand breaks (SSBs) were
demonstrated at the DNA level in hippocampi of AD brains [47].

The detection of both DSBs and SSBs in AD brains supports the knowledge that endogenous
reactive oxygen species (ROS) is the major source of DNA damage in AD brains [48], considering the
brain being protected from external or environmental genotoxins through the blood-brain barrier.
Post-mitotic neurons of the central nervous system have a high rate of metabolism [49]; the human
brain accounts for 2% of body mass and consumes 20% of oxygen [50]. In this regard, accumulation
of DNA oxidization was observed in AD brains [51,52]; the lesion was also detected in brains with
MCI [53-55] and preclinical AD (PCAD) [55,56]. PCAD subjects are clinically normal, i.e., without overt
manifestation of AD, but with pathological features of AD [56,57]. The proceeding of oxidative DNA
lesions in MCI and PCAD conditions supports a causative contribution of DNA damage induced by
ROS in AD. The predominant base adduct of DNA lesion caused by ROS is 8-hydroxyguanine (8-OHG);
8-hydroxy-2’-deoxyguanosine (8-OHdG) is a widely used marker of DNA oxidation. Increase of
8-OHdG in ventricular cerebrospinal fluid (CSF) was observed in AD brains, suggesting a biomarker
value of 8-OHdG in AD diagnosis [58].
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Collectively, evidence suggests a role of DNA damage with respect to DNA oxidation and the
resultant DSBs and SSBs in AD pathogenesis. The accumulation of these DNA lesions is in part
attributable to reductions in the repair of these DNA damages. By using autoradiographic methods to
examine DNA damage (SSB) and repair capacity in neurons, an inverse association of accumulation
of nuclear DNA (nDNA) breaks and nDNA repair was documented in aging mouse brain [59,60];
accumulation of nDNA SSB was detected in mouse cerebellar granule cells as well as hippocampal
pyramidal and granule cells [61], which underlines a causative role of DNA damage in AD pathogenesis.

3. Link of DSB with AD

Brain is particularly vulnerable to impairment in DNA repair [62], which is likely attributable to
the high levels of metabolism and transcription activities in neurons of the central nervous system
(CNS) [48,49,63]. In addition to ROS as a source of DSBs in neurons of CSN, recent development
reveals an essential association of transcription with DSB [64]. Stimulation or performance of variety
of physiological tasks generate DSBs in neurons [63,65,66]. DSBs occur in the promoters of several
early response genes and contribute to their transcription [65]; early response genes function in
learning and memory [67,68] suggesting an association of DSB accumulation with cognitive decline,
a major defect in patients with AD. Consistent with these observations, the number of DSB was
increased in transgenic mice of hAPP (human APP mutant) [63]. While the underlying mechanisms
responsible for DSB generation in neurons performing physiological activities remain to be determined,
it is likely that topoisomerase II3 (TOP2[3) produces these DSBs [65,69-72]. It was first reported by
Juetal. in 2006 that DSB generation by the TOP2[3-PARP1 complex in the pS2 promoter is required
for estrogen-induced transcription of the target gene in MCF7 cells [69]. Subsequently, glucocorticoid
receptor was also reported to transactivate genes via TOP23-produced DSBs [73]. Additionally, TOP2/3
is expressed in differentiation cells and neurons [74,75]; the expression of long-transcripts linked to
autism is facilitated by TOP23 [76]. While it is indeed intriguing for an essential role of DSBs at least in
a subset of gene transcription, it is clear that DSBs need to be effectively repaired regardless of their
sources of generation owning to their toxic impact on genome stability [77]. Reduction in DSB repair
will lead to DSB accumulation, neuron loss, cognitive decline, and thus AD [44,78,79].

DSBs in mammalian cells are repaired by either homologous recombination (HR) or
non-homologous end joining (NHE]) [80]. DSBs result in activation of ATM (ataxia-telangiectasia
mutated) and DNA-PK (DNA-dependent protein kinase) kinases which play essential roles in DSB
repair (Figure 2) [81-83]. Recruiting ATM to DSB is mediated by the MRN complex; ATM action leads
to BRCA1 recruitment, a commitment step for utilization of HR to repair DSBs (Figure 2) [80,84,85].
On the other hand, DSBs also recruit DNA-PK though the Ku70/Ku80 complex, followed by 53BP1
recruitment, which commits to NHE]J-mediated DSBs repair (Figure 2) [86]. The recruitment of BRCA1
and 53BP1 are mutually exclusive (Figure 2).
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Figure 2. A model showing double strand break (DSB) repair pathways. For the homologous
recombination (HR) and non-homologous end joining (NHE]) pathways, DSBs are first recognized by
either the MRN or Ku70/80 complex, followed by the recruitment of ATM or DNA-PKcs (the catalytic
subunit of DNA-PK) as indicated. ATM and DNA-PK then phosphorylate H2AX at serine 139 to generate
YH2AX (event 1), which initiates event 2: recruiting either BRCA1 or 53BP1; recruitment of either inhibits
the recruitment of another. 53BP1: p53-binding protein 1; ATM: ataxia-telangiectasia mutated; BRCA1:
breast cancer type 1 susceptibility protein; DSB: double strand DNA break; DNA-PK: DNA-dependent
protein kinase; HR: homologous recombination; MRN: the complex of MRE11-NBS1-RAD50; NHE]:
non-homologous end joining.

3.1. Association of HR in AD

Evidence suggests a contribution of decreases in HR to AD. ATM is the apical kinase in mediating
DSB repair by HR (Figure 2). Ataxia telangiectasia (A-T) is caused by mutations in the ATM gene;
the disease manifests defects in multiple system including its typical clinical presentation of ataxia due
to progressive neurodegeneration that occurs in early childhood [87]. In comparison to age-matched
control subjects, reductions in both the ATM protein and its mRNA were detected in the front cortex
of AD brains (n = 9, 5 males and 4 females) [88]. Downregulation of ATM was also suggested in 3
mouse models for AD, transgenic mice expressing mutants of APP, PSEN1/APP, or PSEN1/APP/MAPT
(encoding tau) [88].

BRCAL1 plays an essential role in DSB repair using the HR process and recruitment of BRCA1 to
DSBs commits cells to HR (Figure 2) [80,86]. Reductions in BRCA1’s ability in managing DSB repair are
suggested in AD brains. Decreases in BRCA1 expression were detected in the hippocampal neurons
of not only AD but also MCI brains [89], indicating a causative role of BRCA1 in AD. In this respect,
transgenic expression of hAPP in mice leads to decrease in BRCA1 expression; knockdown of BRCA1
in these mice increases neuronal DSBs and apoptosis with concurrent impairment of learning and
memory [89]. On the other hand, exploratory activities induced by change in environment upregulate
BRCAL1 in the dentate gyrus of mouse hippocampus [89]. These results are well in accordance with the
concept that physiological neuronal activities increase transcription of early response genes through
processes promoted by DSBs [65]. It is thus intriguing to envisage a role of BRCA1 in the repair of
those transcription-utilized DSBs. This possibility is further supported by induction of the HR protein
RAD52 by nascent mRNAs in terminally differentiated neurons and A3 inhibits RAD52 expression [90].
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In the APP/PSEN1 mouse model for AD, a decrease in the HR protein RAD51 co-exists with DSB
accumulation [91]. Additionally, the BRCA1I promoter is hypomethylated and the BRCA1 protein is
increased in AD brains; however, the protein was found to be mis-located into the cytoplasm as a highly
non-soluble protein through association with tau; BRCA1 in AD brains is thus dysfunctional with
respect to DSB repair [92]. This BRCA1 dysfunctionality can be directly induced by A peptides [92].
The association of BRCA1 with phosphorylated tau in AD brain was also observed [93], consistent with
tau hyperphosphorylation causing tau aggregation. In neurons differentiated from induced pluripotent
stem cells (iPSC) that were reprogrammed from fibroblasts of familial AD patients, location of BRCA1
to cytosol is also demonstrated [89]. Collectively, evidence favors a critical role of BRCA1 in DSB repair
in CNS neurons and its dysfunction contributes to DSB accumulation and AD pathogenesis.

The ATM-BRCA1 pathway of HR not only plays a role in AD through the management of DSB
repair but also may affect AD indirectly. FE65 is an adaptor protein with its expression enriched in the
brain [94,95]. It binds the APP intracellular domain (AICD), the c-terminal fragment of A3, contributes
to ACID-derived transcription activities in mice, and likely plays a role in AD [94,96]. FE65 interacts
with Tip60 and has an important role in DNA damage response (DDR) in SK-N-SH neuroblastoma
cells [97]. Tip60 has a key function in DSB-induced ATM activation through acetylation of ATM at
lysine 3016 [98,99]; mice deficient in FE65 are more sensitive to DNA damage [96]. Evidence thus
supports a connection between FE65 and ATM in DSB repair in neurons. This concept is supported by
recent discoveries of FE65 being an ATM target during DDR [100,101].

While evidence supports a role of HR in the repair of DSBs in post-mitotic neurons, many issues
remain unclear. HR requires DNA replication and thus takes place in late S and G2 phase [80,86];
the mechanisms underlying HR in DSB repair of terminally differentiated neurons are still unclear.
In studies using neurons differentiated from iPSCs reprogrammed from patients with familial AD,
ATM and BRCAL1 signaling were found to associate with the expression of cell cycle elements [88,89];
this suggests cell cycle re-entry as a potential mechanism for utilization of HR in post-mitotic neurons.
Nonetheless, more evidence is needed to uncover the full mechanism at play.

3.2. Link of NHE] in AD

NHE]J makes a major contribution to DSB repair because it does not rely on cell division and is the
primary choice for differentiated cells to repair DSBs [80,86]. In this regard, downregulation of NHE]
is likely a contributor to DSB accumulation in the AD brain. Herpes simplex virus-type 1 (HSV-1)
infection is a well-recognized risk factor of AD [102,103]. HSV-1 induces AD via affecting multiple AD
events, such as through enhancing Af31_45 production [104]. The virus causes DSB accumulation in rat
cortical neuron through downregulation of Ku80, an essential component of NHE] (Figure 2), and thus
impairs NHE] in cortical neurons [105].

DNA-PK consists of the Ku70/Ku80 subunits and the catalytic subunit DNA-PKcs [106,107]. In a
retrospective study using post-mortem AD brains, reductions in both Ku and DNA-PKcs in cortex
were suggested [108]. However, reductions in DNA-PK expression did not reach a level of statistical
significance [109]. In immunodeficient mice lacking DNA-PK, hippocampal CA1 and CA3 neurons
are vulnerable to DNA damage [110]. Invitro, AP peptides including AB1_4p reduce DNA-PKcs
expression and compromises DSB repair in PC12 cells [111].

In consideration of the unique characteristics of NHE] [80,86], reductions in the
DNA-PK-dependent classical NHE] (c-NHE]) are conceptually the primary cause of DSB accumulation
in AD brains in comparison to HR. Additionally, recent evidence shows DSB generation to be an
essential process in transcription initiation [69] and elongation [112] in which DSBs are managed by
TOP2f complexed with DNA-PK [69]; the involvement of DNA-PK in the process is likely for dynamic
repair of DSBs. As high transcription activity in post-mitotic neurons remains a major source of DSBs
associated with neuron activities and transcription [63,65,66], it seems logical for defects in NHE] being
favored over HR leading to DSB accumulation in AD. Nonetheless, the reverse seems evident based on
the available studies (see Section 3.1). Furthermore, in a direct comparison study using APP/PSEN1
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transgenic mice, reductions in RAD51 but not 53 BP1 expression are evident in the hippocampus
of both young and aging mice [91]. RAD51 and 53BP1 are essential in HR and NHE] respectively
(Figure 2). Evidence thus supports a major contribution of HR defects in DSB accumulation in AD.

4. Defects in Base Excision Repair (BER) in AD

Cells are more prone to SSB compared to DSB; mammalian cells are estimated to have approximately
10* oxidized base and SSB [113] in comparison to approximately 50 DSBs daily [114]. This concept
is supported by a large amount of evidence revealing ROS as a major source of DNA damage in
terminally differentiated neurons of CNS [48]. Oxidized bases are repaired via BER [49]. Repair starts
with the recognition and removal of an oxidized base by a DNA glycosylase, including 8-oxoguanine
(8-0x0G) DNA glycosylase/OGG1, NHT1, NEIL1, or NEIL2 (Figure 3). The end products are modified
by AP (apurine/apirimidine) endonuclease 1 (APE-1) or polynucleotide kinase phosphatase (PNKP)
to make the ends competent for DNA synthesis (Figure 3). The gap is filled by DNA polymerase
3 (POLP), followed by ligation with DNA ligase Il (LIG3x) with assistance from the X-ray repair
cross-complementing protein 1 (XRCC1) (Figure 3); this process of gap filling by incorporation of
single nucleotide is known as short-patch BER (SP-BER). Alternatively, the gap is filled by long-patch
BER (LP-BER) with the incorporation of 2-8 nucleotides (Figure 3). ROS can produce SSB, which is
recognized by poly(ADP) ribose polymerase 1 (PARP1); the ends are then processed by PNKP, ataxia
with oculomotor apraxia (APTX), or tyrosyl-DNA phosphodiesterase 1 (TDP1), followed by gap filling
with either SP- or LP-BER (Figure 3) [49,115-117].
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Figure 3. An illustration demonstrating BER. ROS induces oxidized base lesion or SSB. The oxidized
bases are removed by DNA glycosylase OGG1 and NHT1 or NEIL1 and NEIL2; the ends are then
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processed, followed by filling the gap with synthesis of a single nucleotide or 2-8 nucleotides; ligation
via a ligase will then complete the repair. SSB was first recognized by PARP1; different ends produced by
end processing are accordingly modified by the indicated proteins, followed by gap filling using either
the SP-BER or the LP-BER pathway. APE-1: AP (apurine/apirimidine) endonuclease 1; APTX: ataxia
with oculomotor apraxia; BER: base excision repair; dRP: 3" phosphor-c, 3-unsaturated aldehyde; FEN1:
Figure 1. LIG: DNA ligase; NEIL1: Nei like DNA glycosylase 1; NEIL2: Nei like DNA glycosylase 2;
NTH1: Nth like DNA glycosylase; OGG1: DNA glycosylase; PARP1: poly(ADP) ribose polymerase
1; PNKP: polynucleotide kinase phosphatase; POLB: DNA polymerase {3; ROS: reactive oxygen
species; SSB: single strand DNA break; TDP1: tyrosyl-DNA phosphodiesterase 1; XRCC1: X-ray repair
cross-complementing protein 1.

4.1. Reductions of DNA Glycosylase Activity in AD

Decreases in 8-oxoguanine (8-oxoG) DNA glycosylase activities occur in the neurons of
hippocampus and other regions of AD brains (n = 10) compared to age-matched brains (n = 8) [118].
Reductions in DNA glycosylase activities and POL expression were also observed in AD brains (1
= 10) in comparison to age-matched control brains (n = 10) [119]. Downregulation of mitochondrial
BER activity in AD brain was also reported [120]. Furthermore, impairment of BER also occurs in MCI
brains (n = 9) [119], indicating an important role of BER capacity decreases in AD pathogenesis.

Deletion of codon C796 of OGG1 was detected in 2 AD brains out of 14 samples; protein encoded
by the deletion leads to complete loss of 8-oxoG DNA glycosylase activity [121]. Mutations leading
to change of alanine 53 to threonine (A53T) and A288V (valine) were detected in AD brains [121];
the substitutions result in significant decreases in 8-oxoG DNA glycosylase activity (Table 1) [121].
Both A53T and A288V variants decrease interaction with PARP1 and XRCC1; while A53T reduces
binding to substrates, A288V compromises AP lyase activity [122]. Significant decreases of the NEIL1
DNA glycosylase protein expression were detected in AD brains (n = 6) compared to control brains (1
= 6) [120]. NEIL1 null mice are defective in memory retention in a water maze test [123]. NEIL1 and
NEIL2 are members of the Nei family of DNA glycosylase [124-127]; their expressions are increased
during rat brain development [128], suggesting the importance of NEIL1 and NEIL2 in maintaining
genome integrity of CNS. Taken together, evidence supports that declines in NEIL1 expression in brain
facilitate AD.

Table 1. Downregulation of BER in Alzheimer’s disease (AD).

Factors Observation Cohort (n) Ref.
DNA glycosylase Activity decrease in AD 20 [118,119]
0OGG1 Deletion of codon C796; loss of 8-oxoG DG activity 2/14 [121]
0GG1 AB3T and A288V; s]i:)g(r;liiicctail:itt;eduction in 8-0xoG 1/14 for each mutation [121]
NEIL1 Decrease protein expression in AD 6 [120]
PARP1 Activity increase in AD 20 [129]
POLB Downregulation 10 [119]

OGG1: DNA glycosylase; NEIL1: Nei like DNA glycosylase 1; PARP1: poly(ADP) ribose polymerase 1; POLS:
DNA polymerase (3.

4.2. Reductions of PARP1 Activity in AD

The impact of PARP1 on AD is complex. By ADP-ribosylation of target proteins though utilization
of nicotinamide adenine dinucleotide+ (NDP+), PARP1 regulates metabolism; persistent PARP1
activation results in depletion of cellular NDP+, which leads to decreases in ATP production and
alterations in other cellular events including induction of apoptosis [130,131]. AP peptides activate
PARP1 via induction of oxidative stress in the hippocampus of adult rats [132], which likely contributes
to AD via affecting brain metabolism [133]. Elevations in PARP1 activity and increases of PAR level in
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neurons were observed in AD brains compared to controls (Table 1) [129,133]. Evidence suggests a
toxic impact of high levels of PARP1 activity in part through NAD+ depletion, as administration of
exogenous NAD+ reduces Af-caused toxic effects in primary rat cortical neurons [134]. Concurrently,
addition of NAD+ also protects neurons from Afp-induced DNA damage [134], consistent with the
concept that defects in PARP1-derived DNA repair contribute to AD. Of note, decreases in nucleolar
PARP1 in hippocampal neurons of AD brains (n = 8) were recently reported [135]. Evidence thus
indicates an insufficient level of NAD+ in AD brains as a cause of PARP1 dysfunction. In the
3xTgAD (transgenic co-expression of the Swedish APP mutations KM670/671NL, PSEN1 mutation
M146V, and Tau mutation P301L) mice, reductions of NAD+ in cerebrum occur. In these AD mice,
normalization of NAD+ by nicotinamide riboside (NR) treatment attenuate the Tau pathology but
not AP accumulation with concurrent reductions in DNA damage and improvement of cognitive
function [136]. These benefits are greater in 3XTgAD/POLf3+/— mice than in 3xTgAD mice [136],
supporting that the NR treatment improves BER. Additionally, Af,3_35 and Af31_4» increase oxidative
DNA damage, SSB, and DSB in rat cortical neurons in vitro and addition of nicotinamide adenine
dinucleotide (NAD) reduces all these toxic events [134]. Collectively, these studies highlight a possible
clinical management of AD patients using NAD-related approaches. Polymorphisms of PARP1 are
associated with AD risk [137,138]; nonetheless, the impact of these polymorphisms on PARP1 activity
remains unclear.

4.3. A Major Contribution of Decreases in POLS to AD

POLS plays a role in AD [119]. The protein is expressed at reduced levels during aging in multiple
tissues, including brain, kidney, liver, spleen, and testes in mice [139] and in the aging neurons of rat [140].
Loss of POLf leads to senescence, indicating a major role of POLf in anti-aging [141]. This concept is
supported by a major contribution of defects in BER caused by POLf reduction to Down syndrome
(DS) [142,143], a typical process of precocious aging [144]. These observations comprehensively support
a critical role of POL in regulating aging progression. As aging is the strongest risk factor of AD, it is
conceivable that POLB may play an important role in AD. This hypothesis is in accordance with the
observation that almost all patients with DS developing AD pathology by their 40s [145-148].

Decreases in DNA synthesis-dependent gap filling activities occur in MCI and AD brains, which
is in part attributable to a significant reduction of POL( expression (Table 1) [119]. Mice with
genetic downregulation of POLS (POLB+/-) in the 3xTgAD background display neuron death and
worsen memory and synaptic plasticity with concurrent increases in DNA damage in comparison to
age-matched 3xTgAD mice [149]. In comparison to 3xTgAD mice, 3xTgAD/ POL3+/—mice exacerbate
olfactory deficit in part via attenuation of neuron generation by neural progenitor cells [150].

While these data clearly reveal a critical role of POLJ in AD pathogenesis, reduction of POLf
alone is not sufficient to initiate AD; POL{+/— mice express POL{ at a comparable level at 6 month
old and a reduced level at 14 month old compared to 3xTgAD mice, the latter genotype mice develop
AD pathology [149].

4.4. Coordination of BER Defects in AD

The high rate of metabolism and oxygen utilization as well as a low ratio of antioxidant to
pro-oxidant enzymes in post-mitotic neurons of CNS [48] make these cells rely on BER to manage
oxidative DNA damage. This knowledge agrees with an important contribution of BER capacity
reductions to AD pathogenesis. However, it seems not all major components of BER as illustrated in
Figure 3 are clearly affected in AD. For instance, the polymorphism of R194W (arginine 194 to tryptophan
194) of XRCC1 does not appear to be a significant risk factor of AD [151,152]. While reagent limitations
restrained the detection of APE1 in post-mortem brain by immunohistochemistry [153], the APE1
mRNA level is decreased in entorhinal cortex in AD brains compared to controls (Figure 4) [154].
It thus remains to be determined whether BER dysfunction in AD is resulted through a coordinated
manner. A recent report has systemically determined the expression of OGG1, APE1, PARP1, and POLf3
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in a cohort of 42 ADs and 9 controls using quantitative real-time PCR [154]. Consistent with the
discussions in Section 4.2, PARP1 mRNA expression is increased in hippocampus and entorhinal cortex
(Figure 4) [154]; while APE1 mRNA is only reduced in entorhinal cortex, POL is significantly reduced
in frontal cortex, hippocampus, and entorhinal cortex (Figure 4) [154], suggesting a possibility for
alterations in more than one factor to impair BER during AD pathogenesis.

Front : Entorhinal

cortex Hippocampus cortex Cerebellum
0GG1 ND ND ND ND
APE1 ND ND v ND

PARP1 ND A A v
oy y n

Figure 4. Summary of expression of the indicated BER genes in AD brains compared to
age-matched controls. Arrows indicate upregulation and downregulation respectively. APE-1:
AP (apurine/apirimidine) endonuclease 1; ND: no differences; OGG1: DNA glycosylase; PARP1:
poly(ADP) ribose polymerase 1; and POLB: DNA polymerase (3.

5. Other AD Risk Factors Affecting DNA Repair

5.1. Role of CDK5 Abnormalities in AD Via Affecting DNA Damage

Unlike of majority of the cyclin-dependent kinase (CDK) family, CDKS5 is most well-studied for
its neuron-specific functions owing to the identification of its neuron-specific activators p35 and p39
in 1994 and 1995 [155-157]. Accumulative studies in the past 2 decades established essential roles
of CDKS5 in CNS development in mice, including synaptic plasticity and memory [158], the major
neuronal functions that are compromised in AD. In this regard, abnormalities in CDKS5 activation play
major roles in AD pathogenesis [159]. In response to increases in calcium concentration, p35 is cleaved
to p25 which is more stable and causes CDK5 hyper-activation; additionally, CDK5/p25 complex has
changes in substrate specificity and cellular localization [160]. Abnormal CDKS5 activity promotes
the major AD pathology: Extracellular senile plaque and intracellular neurofibrillary tangles (NFTs)
through facilitating A production and tau phosphorylation [7,159,161-163], and thus impairs synaptic
plasticity and induces neuronal cell death [159]. Abnormal CDKS5 activation leads to ROS accumulation
in neuronal cells including Neuro-2a cells [164,165], suggesting a role of CDK5 dysfunction in DNA
damage in neurons. Of note, induction of transgenic expression of p25 in postnatal mouse forebrain
results in AD progression, Af3 accumulation, tau neurofibrillary tangles, synaptic density reduction,
neuron loss, and accumulation of DSBs [8,166].

Mechanistically, CDKS5 contributes to DNA damage in neurons likely via multiple pathways.
In line with HSV-1 infection as a well-recognized risk factor of AD [102,103] in part via inducing DSB
accumulation in neurons [105], the virus stimulates CDKS5 activation, changes its subcellular location,
and induces YH2AX nuclear foci (DSB marker) in infected mouse neurons [167]. CDK5 facilitates
DSB-induced DDR via enhancing ATM activation in primary cerebellar granule neurons isolated
from rats (Figure 5) [168]. How this action contributes to DSB accumulation remains unclear, as
ATM activation is required for HR-mediated repair of DSBs. Nonetheless, CDK5 induces neuronal
cell death partly via ATM activation [168] (Figure 5) and the connection of CDK5/p25-ATM is a
cause of DDR-induced neurodegeneration in a mouse model for fragile-X-associated tremor/ataxia
syndrome (FXTAS) [169]. Protein phosphatase 4 (PP4) dephosphorylates 53BP1 in late mitosis,
an event required for 53BP1 recruitment to DSB in G1 phase for NHE]J-mediated repair of DSBs.
CDKS5 phosphorylates PP4R33, the PP4 regulatory subunit, which facilitates PP4 action and contributes
to cell proliferation-associated NHE]J [170]. However whether this function is active in post-mitotic
neurons remains to be determined.
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CDK5
‘Ahosphorylatich‘
A ATM APE1 y
Cell cycle
re-entry
Cell death BER

Figure 5. Anillustration shows the effects of CDK5 in regulating DNA repair in neurons. Arrows indicate
enhancing (upward direction) and reducing (downward direction) the protein’s functions respectively.
CDKS activity towards ATM in neurons is likely via p25. APE-1: AP (apurine/apirimidine) endonuclease
1; ATM: ataxia-telangiectasia mutated; BER: base excision repair; CDK5: cyclin-dependent kinase 5.

CDKS reduces BER in neurons. CDKS interacts with APE1 and phosphorylates it at threonine 232
(T232), which reduces APE1’s activity in cleavage of abasic (AP) sites and thus inhibits BER in mouse
cortical neurons (Figure 5) [171].

5.2. Downregulation of Sirtuine 6 (SIRT6) Facilitating AD in Part Via Decreases in DNA Repair

SIRT6 is an emerging risk factor of AD [172] with 12 articles listed in PubMed under “SIRT6” AND
“Alzheimer’s disease” (January 22, 2020). SIRT6 is a longevity gene [172,173]. The anti-aging activities
of SIRT6 can be attributable to its NAD+ dependent histone deacetylase activity that functions in energy
metabolism, inflammation, telomere maintenance, genome integrity and DNA repair [172,174-178].
SIRT6 null mice display genome instability and premature aging [176]. Mice with brain-specific SIRT6
deficiency showed impaired learning by the age of 4 months, elevated DNA damage, and development
of tau phosphorylation-dependent toxicity [179]. Importantly, SIRT6 expression is significantly reduced
at the protein level in AD brains (1 = 7) compared to controls (n = 7) [179,180]; at the mRNA level,
decreases in SIRT6 expression are associated with AD progression from Braak stage iii (n = 11) to v (n
=11) or vi (n = 23) [179]. In a cohort consisting of postmortem AD brains (1 = 32) and control subjects
(n = 47), reductions of SIRT6 occur in temporal cortex and hippocampus [179]. In the 5XFAD mouse
model for AD [expressing three APP mutants (Swedish K670N/M671L, Florida 1716V, and London
V7171) and 2 PSEN1 (M146L and L286V) mutants], SIRT6 expression is reduced in hippocampus and
frontal cortex [180]. AP42 reduces SIRT6 expression and induces DNA damage in mouse hippocampal
neurons; overexpression of SIRT6 prevents the DNA damage [180]. SIRT6 contributes to BER and
DSB repair [172]. SIRT6-mediated protection of neuron injury is inhibited by miR-34a-derived SIRT6
downregulation [181]. Collectively, evidence reveals SIRT6 to show protective effect for AD in part
via enhancing DNA repair. Intriguingly, SIRT6 was reported to promote hippocampal neurogenesis
in SIRT6 overexpressing adult mice [182], implying a role of SIRT6 in facilitating progenitor-derived
neurogenesis in part via repairing oxidative stress-induced DNA damage.

5.3. A role of DNA Damage in AD Via Affecting Neurogenesis

Neurons of CNS are regenerated in the adult brain via a process that is mediated by neural stem cells
(NSCs); compromising neurogenesis is a cause of neurodegeneration diseases, including AD [183,184].
Oxidative DNA damage and its repairing process affect NSC proliferation and differentiation [184].
For instance, SIRT6 exerts anti-AD function in part via facilitating neurogenesis of hippocampal
neurons via enhancing BER and DSB repair [182]. Maintenance of the stemness of NSC requires BMI1
(B lymphoma Mo-MLYV insertion region 1) [185-190]; the process is partly mediated by suppression
of the INK4A/ARF locus [191], which encodes two important tumor suppressors p16INK4A and
p14ARF (or p19ARF in mice) [192,193]. BMI1 is emerging to facilitate DSB repair through both the
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HR and NHE] pathways [194-197]. BMI1 protein expression is reduced in post-mortem AD brains (1
= 2) in comparison to age-matched controls (n = 2) [198]; the downregulation is detected in LOAD
brain but not in early-onset familial AD (FAD) [199]. BMI1 heterozygous mice develop cognitive
deficiency with accumulation of tau phosphorylation, A plaques, and neuron loss [198]; the animals
also display reductions in DDR [198]. Additionally, knockout of BMI1 in post-mitotic neurons induces
A deposition and tau hyperphosphorylation [199]. Collectively, evidence suggests a role of BMI1 in
reducing AD via facilitating neurogenesis partially through DNA repair.

BRCAL1 plays an essential role in HR-mediated repair of DSB [80,84,85,200]. In neurons produced
from iPSCs that were reprogrammed from FAD patients, elevations of BRCAL1 activity are associated
with events of cell cycle progression (phosphorylation of CDC25C at serine 216) with concurrent
increases in A3, suggesting an association of cell cycle re-entry with the utilization of HR in post-mitotic
neurons that are regenerated [89]. Cell cycle re-entry induces apoptosis in neurons [201].

In NSCs, A4, oligomers (APO) induces ROS and DSBs with concomitant impairment of
NHE]J-mediated DSB repair; enhancing DNA-PK function protects NSCs from ABO-induced
toxicity [202]. Taken together, evidence supports a need to maintain genome integrity in neuron
regeneration, which plays an anti-AD role.

5.4. Contributions of Chromosome Instability to AD

Chromosome instability (CIN) is a typical outcome of defects in DDR and activates DDR [203,204].
Accumulative evidence reveals increases in somatic aneuploidy as a feature of aging [205]. The rate of
mosaic CIN increases from 0.23% for cancer-free individual under 50 years to 1.91% for those with
ages of 75-79 years [205]. Brain has a high level of aneuploidy and the frequency increases with
aging [206]. CIN is associated with neurodegeneration [207]. X chromosome aneuploidy is associated
with AD [207,208]. Down syndrome is associated with chromosome 21 trisomy and all DS patients
develop AD [145-148]. The existence of the A4 gene encoding APP in chromosome 21 is likely a
contributing factor for the high rate of AD in DS patients [209]. However, this does not exclude a major
role of CIN-associated genome instability in AD pathogenesis; in addition to chromosome 21, AD has
a higher rate of aneuploidy in chromosomes 18 and X [208,210].

6. Systemic Alterations of DNA Repair Genes in AD Patients

In addition to changes in genes functioning HR and BER in AD brains, polymorphisms in these
genes have been detected in blood and are associated with AD risk [211,212]. Using peripheral blood
mononuclear cells (PBMCs) isolated from AD patients (n = 22) and healthy individuals (n = 13),
profiling of mRNA expression identified 593 differentially expressed genes (DEGs) in AD subjects
with 428 DEGs upregulated and 165 DEGs downregulated. These DEGs are enriched in pathways
regulating inflammation, DDR, cell cycle, and neuronal processes [211]. Interestingly, DNA lesions are
elevated in PBMCs of AD patients [213]. Compared to control subjects (1 = 40), YH2AX, indicative of
DSBs, is increased in lymphocytes of AD patients [214]. The increase can stratify AD patients from
control individuals with an area under the curve (AUC) value of 0.91, sensitivity of 0.85 and specificity
of 0.92 [214], suggesting a potential biomarker value of DSB in AD diagnosis. Clearly, the results need
to be confirmed, as the cohort used in this study is quite small. In a similar study, increases in YH2AX
were observed in lymphocytes of MCI subjects compared to controls [215].

Consistent with BER playing an essential role in repair oxidative DNA damage in neurons of
CSN, there are numerous investigation of changes in BER genes in the circulation of AD patients [216].
In a study of PBMCs from 105 AD patients and 130 controls, the polymorphisms of ¢.580C>T and
c.1196A>G of XRCC1 and ¢.977C>G of OGGI1 are significantly associated with AD risk (Table 2) [216];
both XRCC1 and OGGI function in BER (Figure 3). In comparison to 110 controls, significant increases
in 8-ox0G DNA content with concomitant downregulations of 8-oxoG DNA glycosylase OGG1 and
MUTYH [217], other DNA glycosylase NEIL1, APE1, and PARP1 were demonstrated in the PBMCs of
AD patients (n = 100) (Table 2) [218,219]. Elevations in serum 8-OHdG was reported in AD patients (n
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= 30) compared to age-matched controls (1 = 30) [220]. Polymorphisms of XRCC1 rs25487 (c.1196A > G;
https://www.ncbi.nlm.nih.gov/snp/rs25487) (odds ratio/OR 3.72, 95% confidence interval/CI 1.739-7.891)
and PARP1 rs1136410 (OR 4.159, 95% CI; 1.978—8.745) are significantly associated with AD risk [212].
The expression of the catalytic subunit POLD1 of DNA polymerase 6 is significantly reduced in PBMCs
of AD patients (n = 60) compared to controls (1 = 40) (Table 2) [221]. Decreases in the expression
of these BER genes in PBMCs of AD patients (Table 2) are not likely due to promoter methylation.
In a study of LOAD patients (n = 56) and controls (n = 55) using PBMCs, no difference in promoter
methylation was detected for OGG1, PARP1, BRCA1, MRELLA, MLH1, and MGMT [222]. Collectively,
evidence supports biomarker values of alterations of BER genes in AD diagnosis (Table 2).

Table 2. Alteration of BER genes in PBMCs of AD patients.

BER Genes Changesi AD Patients Controls Ref
Reduction n =100 n =110 [218,219]

0GG1 c.977C>G n =105 n =130 [216]

MUTYH reduction n =100 n =110 [219]

NEIL1 reduction n =100 n=110 [219]

APE1 reduction n =100 n =110 [219]

Reduction n =100 n =110 [219]

PARP1 rs1136410 n =120 n =110 [212]

XCCR1 ¢.580C>T, c.1196A>G n =105 n =130 [216]

1s25487 (c.1196A>G) n =120 n=110 [212]

POLD1 reduction n =60 n =40 [221]

i: AD vs control; AD: Alzheimer’s disease; APE-1: AP (apurine/apirimidine) endonuclease 1; OGG1: DNA
glycosylase; MUTYH: MYH glycosylase; NEIL1: Nei like DNA glycosylase 1; PARP1: poly(ADP) ribose polymerase
1; POLD1: the catalytic subunit of DNA polymerase §; XRCC1: X-ray repair cross-complementing protein 1.

7. Conclusions

AD, particularly sporadic LOAD, is a multi-factorial disease, including metabolic dysfunction,
insulin resistance, and others [223]. Among these factors, DNA damage is clearly an important one.
In view of the typical AD pathology of A(3-based senile plaques and hyperphosphorylated tau-formed
neurofibrillary tangles, both A3 peptides and tau affect genome instability. For example, nuclear tau
plays a role in maintaining pericentromeric heterochromatin (PCH); loss of tau disrupts PCH, leading
accumulation of DNA breaks [224]. Tau aggregation in the cytosol will deplete the nuclear pool of tau,
abolishing tau-derived protection of genome integrity [225]. This concept is supported by the inability
of hyperphosphorylated tau in the protection of DNA from thermal denaturation [226] and the loss of
heterochromatin in tau transgenic Drosophila and mice, which contributes to neurodegeneration [227].
These associations of A3 peptides and tau pathology with DNA damage clear strengthen the importance
of DNA damage in AD pathogenesis. Accumulative evidence reviewed here collectively reveals the
critical contributions of abnormalities in DNA lesion repair for both DSB and SSB in AD pathogenesis.
In addition to neurons, DNA damage also occurs in oligodendrocytes, which has a major impact on
AD [228,229]. Oligodendrocytes are exclusively responsible to produce myelin ensheathing axons
of CNS [230,231]. Myelination is essential for the high speed transmission in the neural network;
myelinated fibers have at minimum 10-fold faster conduct velocity than unmyelinated fibers with the
same diameter [232]. Loss in myelination impairs performance of CNS, leads to neurodegeneration,
and is among the earliest abnormalities during AD pathogenesis (see review [233]). Oligodendrocytes
are vulnerable to oxidative DNA damage, which contributes to loss of neurons and onset of AD
(see review [228]). This concept is in accordance with the observed declines of brain white matter, of
which myelin constitutes 50%—-60% [234], during aging [235,236].
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8. Future Perspectives

For many years, AD research and drug development have been largely focused on the
amyloid-cascade hypothesis which places A at the apical position in AD pathogenesis. Because of fails
in all phase 3 clinical trials on drug targeting the A3 process, it is apparent that the hypothesis misses
some major components particularly for LOAD cases. For instance, tau pathology seems to show
higher match with AD development than with A pathology [31]. Based on a study using human NSC
line hNS1, A342 at low concentration promotes hNSCs proliferation without compromising neuronal
differentiation [237]. DNA damage clearly is a major contributing factor to AD. The pathogenicity of
DNA damage is not only strengthened by its association with the typical AD pathological factors (Af3
peptide and tau pathology, see Section 7) but also impairment of DNA damage repair occurs prior to
the onset of AD [55,78,79,238].

Considering aging being the strongest risk factor of AD and accumulative DNA damage as
a well-established influence on aging, the concept of DNA damage abnormalities as the major
contributor of AD is appealing. Although this concept is supported by a large amount of preclinical
and clinical evidence as reviewed here, the pathological cause of DNA damage in AD remains to be
demonstrated. This task is not only challenging but also should be cautiously considered. AD is a
progressive neurodegenerative disease and likely also a systemic disease, in which abnormalities in
DNA damage are an aspect. Nonetheless, evidence supports a major contribution of DSB accumulation
in AD-associated loss of memory and neuron; for instance knockdown of BRCAL1 in mice causes DSB,
loss of neurons, as well as deficits in learning and memory [239]. Additionally, DSBs may occur prior
to the onset of AD [78,79]. In view of AD being a progressive neurodegenerative disease, the current
knowledge indicates a utility of early disease intervention through prevention or reduction of DSBs or
other type of DNA damage. This strategy could delay the systemic alterations that progressively occur
during AD development.

The common detection of alterations of the BER genes in circulation (Table 2) and their potential
in stratification of AD risk support their diagnostic applications. Although more research is clearly
needed for these applications, their potential should certainly be carefully investigated, particularly
considering the lack of biochemistry-based means in current AD diagnosis (https://www.mayoclinic.
org/diseases-conditions/alzheimers-disease/diagnosis-treatment/drc-20350453) and the non-invasive
nature of obtaining PBMCs. The presence of alterations of the BER genes in circulation is in line with
the hypothesis of AD being a systemic disease. The concept of AD, particularly LOAD cases (the vast
majority of AD), as a systemic disease is consistent with DNA damage being a major factor of aging.
In this regard, there is a need to develop a bona fide animal model for aging in which DNA damage
accumulates in the brain during the aging process in order to systemically study AD. Owing to its
unique anti-aging function, SIRT6-based animal models will be appealing. The mutation rate increases
following aging in mouse liver but not in the animal brain [40], thus mouse models of AD likely have
major limitations in studying aging process of LOAD.
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Abbreviations

8-OHdG 8-hydroxy-2’-deoxyguanosine
8-OHG 8-hydroxyguanine

AD Alzheimer’s disease

AR amyloid-p

AICD APP intracellular domain
APE-1 AP (apurine/apirimidine) endonuclease 1
APP amyloid precursor protein
APTX ataxia with oculomotor apraxia
ATM ataxia-telangiectasia mutated
AUC area under the curve

BER base excision repair

CDK cyclin-dependent kinase

CIN Chromosome instability

CNS central nervous system

CSF cerebrospinal fluid

DEGs differentially expressed genes
DSBs double strand breaks

FEN1 FLAP endonuclease 1

FXTAS fragile-X-associated tremor/ataxia syndrome
HR homologous recombination
HSV-1 herpes simplex virus-type 1
iPSC induced pluripotent stem cells
LOAD sporadic late onset AD

MCI mild cognitive impairment
MUTYH  MYH glycosylase

NDP adenine dinucleotide

NHE] non-homologous end joining
NEIL1 Nei like DNA glycosylase 1
NTH1 Nth like DNA glycosylase
OGG1 DNA glycosylase

PARP1 poly(ADP) ribose polymerase 1
PBMCs peripheral blood mononuclear cells

PCAD preclinical AD

PNKP polynucleotide kinase phosphatase

POLB DNA polymerase 3

POLD1 the catalytic subunit of DNA polymerase &
PP4 Protein phosphatase 4

ROS reactive oxygen species

SSBs single strand breaks

TDP1 tyrosyl-DNA phosphodiesterase 1

TOP23 topoisomerase Ii[3

WHO World Health Organization

XRCC1 X-ray repair cross-complementing protein 1.
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