Somatostatin Analogs in Clinical Practice: A Review
Abstract
:1. Introduction
2. Physiological Actions of Somatostatin
3. Somatostatin Receptors (SSTRs)
4. Somatostatin Analogs (SSAs)
5. SSA in Clinical Practice
5.1. Pituitary Adenomas
5.1.1. Somatotropinomas
5.1.2. Thyrotropinomas
5.1.3. Corticotropinomas
5.1.4. Gonadotropinomas
5.1.5. Prolactinomas
5.2. Gastroenteropancreatic Neuroendocrine Tumors (GEP-NETs)
5.2.1. Functioning Pancreatic NETs
5.2.2. Antiproliferative Effects in GEP-NETs
5.2.3. Carcinoid Syndrome
5.2.4. GEP-NETs in Multiple Endocrine Neoplasia Type 1 (MEN-1)
5.3. Other Diseases
5.3.1. Congenital Hyperinsulinism (CHI)/Persistent Hyperinsulinemic Hypoglycemia of Infancy
5.3.2. Diabetic Retinopathy (DR) and Diabetic Macular Edema (DME)
5.3.3. Graves’ Orbitopathy
5.3.4. Dumping Syndrome
5.3.5. Digestive and Lymphatic Fistulas
5.3.6. Acute Bleeding from the Gastrointestinal Tract
5.3.7. Hepatorenal Polycystosis
5.3.8. Refractory Chronic Diarrhea
5.3.9. Non-Endocrine Tumors
6. Adverse Events
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SSAs | Somatostatin Analogs |
SST | Somatostatin |
SSTR | Somatostatin Receptor |
IGF | Insulin-like Growth Factor |
DAs | Dopamine Agonists |
DARPs | Dopamine Agonist-resistant prolactinomas |
NETs | Neuroendocrine Tumors |
GEP-NETs | Gastroenteropancreatic neuroendocrine tumors |
GH | Growth Hormone |
LAR | Long-acting release |
ATG | Autogel |
PRL | Prolactin |
ACTH | Corticotropin |
TSH | Thyrotropin |
MRI | Magnetic Resonance Image |
ECL | Enterochromaffin-like |
DR | Diabetic Retinopathy |
DME | Diabetic macular edema |
CHI | Congenital hyperinsulinism |
PSA | Prostate-specific antigen |
References
- Brazeau, P.; Vale, W.; Burgus, R.; Ling, N.; Butcher, M.; Rivier, J.; Guillemin, R. Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 1973, 179, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Günther, T.; Tulipano, G.; Dournaud, P.; Bousquet, C.; Csaba, Z.; Kreienkamp, H.-J.; Lupp, A.; Korbonits, M.; Castaño, J.P.; Wester, H.-J.; et al. International union of basic and clinical pharmacology. CV. somatostatin receptors: Structure, function, ligands, and new nomenclature. Pharmacol. Rev. 2018, 70, 763–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benuck, M.; Marks, N. Differences in the degradation of hypothalamic releasing factors by rat and human serum. Life Sci. 1976, 19, 1271–1276. [Google Scholar] [CrossRef]
- Martel, G.; Dutar, P.; Epelbaum, J.; Viollet, C. Somatostatinergic systems: An update on brain functions in normal and pathological aging. Front. Endocrinol. 2012, 3, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Møller, L.N.; Stidsen, C.E.; Hartmann, B.; Holst, J.J. Somatostatin receptors. Biochim. Biophys. Acta 2003, 1616, 1–84. [Google Scholar] [CrossRef] [Green Version]
- Van der Lely, A.J.; de Herder, W.W.; Lamberts, S.W.J. A risk-benefit assessment of octreotide in the treatment of acromegaly. Drug Saf. 1997, 17, 317–324. [Google Scholar] [CrossRef]
- Lamberts, S.W.J.; van der Lely, A.J.; Hofland, L.J. New somatostatin analogs: Will they fulfil old promises? Eur. J. Endocrinol. 2002, 146, 701–705. [Google Scholar] [CrossRef] [Green Version]
- Patel, Y.C. Somatostatin and its receptor family. Front. Neuroendocrinol. 1999, 20, 157–198. [Google Scholar] [CrossRef]
- Barnett, P. Somatostatin and somatostatin receptor physiology. Endocrine 2003, 20, 255–264. [Google Scholar] [CrossRef]
- Rai, U.; Thrimawithana, T.R.; Valery, C.; Young, S.A. Therapeutic uses of somatostatin and its analogues: Current view and potential applications. Pharmacol. Ther. 2015, 152, 98–110. [Google Scholar] [CrossRef]
- Grozinsky-Glasberg, S.; Shimon, I.; Korbonits, M.; Grossman, A.B. Somatostatin analogues in the control of neuroendocrine tumours: Efficacy and mechanisms. Endocr. Relat. Cancer 2008, 15, 701–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandostatin® LAR Depot (Octreotide Acetate) for Injectable Suspension Dosing & Administration|HCP. Available online: https://www.hcp.novartis.com/products/sandostatin-lar-depot/carcinoid-syndrome/dosing-administration/ (accessed on 22 December 2019).
- Melmed, S.; Popovic, V.; Bidlingmaier, M.; Mercado, M.; van der Lely, A.J.; Biermasz, N.; Bolanowski, M.; Coculescu, M.; Schopohl, J.; Racz, K.; et al. Safety and efficacy of oral octreotide in acromegaly: Results of a multicenter phase III trial. J. Clin. Endocrinol. Metab. 2015, 100, 1699–1708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buscail, L.; Delesque, N.; Estève, J.P.; Saint-Laurent, N.; Prats, H.; Clerc, P.; Robberecht, P.; Bell, G.I.; Liebow, C.; Schally, A.V. Stimulation of tyrosine phosphatase and inhibition of cell proliferation by somatostatin analogues: Mediation by human somatostatin receptor subtypes SSTR1 and SSTR2. Proc. Natl. Acad. Sci. USA 1994, 91, 2315–2319. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, J.M.; Basin, C.; Mollard, M.; de Rougé, B.; Baudoin, C.; Obach, R.; Tolis, G. Pharmacokinetic study and effects on growth hormone secretion in healthy volunteers of the new somatostatin analogue BIM 23014. Eur. J. Clin. Pharmacol. 1993, 45, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, J.M.; Legrand, A.; Ruiz, J.M.; Obach, R.; De Ronzan, J.; Thomas, F. Pharmacokinetic and pharmacodynamic properties of a long-acting formulation of the new somatostatin analogue, lanreotide, in normal healthy volunteers. Br. J. Clin. Pharmacol. 1994, 38, 213–219. [Google Scholar] [CrossRef] [Green Version]
- Lightman, S. Somatuline Autogel: An extended release lanreotide formulation. Hosp. Med. Lond. Engl. 2002, 63, 162–165. [Google Scholar] [CrossRef]
- Bruns, C.; Lewis, I.; Briner, U.; Meno-Tetang, G.; Weckbecker, G. SOM230: A novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur. J. Endocrinol. 2002, 146, 707–716. [Google Scholar] [CrossRef]
- Hofland, L.J.; van der Hoek, J.; Feelders, R.; van Aken, M.O.; van Koetsveld, P.M.; Waaijers, M.; Sprij-Mooij, D.; Bruns, C.; Weckbecker, G.; de Herder, W.W.; et al. The multi-ligand somatostatin analogue SOM230 inhibits ACTH secretion by cultured human corticotroph adenomas via somatostatin receptor type 5. Eur. J. Endocrinol. 2005, 152, 645–654. [Google Scholar] [CrossRef]
- Panetta, R.; Patel, Y.C. Expression of mRNA for all five human somatostatin receptors (hSSTR1-5) in pituitary tumors. Life Sci. 1995, 56, 333–342. [Google Scholar] [CrossRef]
- Greenman, Y.; Melmed, S. Expression of three somatostatin receptor subtypes in pituitary adenomas: Evidence for preferential SSTR5 expression in the mammosomatotroph lineage. J. Clin. Endocrinol. Metab. 1994, 79, 724–729. [Google Scholar]
- Miller, G.M.; Alexander, J.M.; Bikkal, H.A.; Katznelson, L.; Zervas, N.T.; Klibanski, A. Somatostatin receptor subtype gene expression in pituitary adenomas. J. Clin. Endocrinol. Metab. 1995, 80, 1386–1392. [Google Scholar] [PubMed] [Green Version]
- Swearingen, B.; Barker, F.G.; Katznelson, L.; Biller, B.M.K.; Grinspoon, S.; Klibanski, A.; Moayeri, N.; Black, P.M.; Zervas, N.T. Long-term mortality after transsphenoidal surgery and adjunctive therapy for acromegaly. J. Clin. Endocrinol. Metab. 1998, 83, 3419–3426. [Google Scholar] [CrossRef] [PubMed]
- Nomikos, P.; Buchfelder, M.; Fahlbusch, R. The outcome of surgery in 668 patients with acromegaly using current criteria of biochemical ‘cure’. Eur. J. Endocrinol. 2005, 152, 379–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buchfelder, M.; Feulner, J. Neurosurgical treatment of acromegaly. Prog. Mol. Biol. Transl. Sci. 2016, 138, 115–139. [Google Scholar] [PubMed]
- Katznelson, L.; Laws, E.R.; Melmed, S.; Molitch, M.E.; Murad, M.H.; Utz, A.; Wass, J.A.H. Endocrine Society Acromegaly: An endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 2014, 99, 3933–3951. [Google Scholar] [CrossRef]
- Bevan, J.S. Clinical review: The antitumoral effects of somatostatin analog therapy in acromegaly. J. Clin. Endocrinol. Metab. 2005, 90, 1856–1863. [Google Scholar] [CrossRef] [Green Version]
- Luque, R.M.; Ibáñez-Costa, A.; Neto, L.V.; Taboada, G.F.; Hormaechea-Agulla, D.; Kasuki, L.; Venegas-Moreno, E.; Moreno-Carazo, A.; Gálvez, M.Á.; Soto-Moreno, A.; et al. Truncated somatostatin receptor variant sst5TMD4 confers aggressive features (proliferation, invasion and reduced octreotide response) to somatotropinomas. Cancer Lett. 2015, 359, 299–306. [Google Scholar] [CrossRef] [Green Version]
- Gadelha, M.R.; Kasuki, L.; Korbonits, M. Novel pathway for somatostatin analogs in patients with acromegaly. Trends Endocrinol. Metab. 2013, 24, 238–246. [Google Scholar] [CrossRef]
- Luque-Ramírez, M.; Carreño, A.; Alvarez Escolá, C.; del Pozo Picó, C.; Varela da Costa, C.; Fajardo Montañana, C.; Gilabert, M.; Webb, S. Grupo Español del estudio OASIS [The OASIS study: Therapeutic management of acromegaly in standard clinical practice. Assessment of the efficacy of various treatment strategies]. Endocrinol. Nutr. Organo Soc. Espanola Endocrinol. Nutr. 2011, 58, 478–486. [Google Scholar]
- Sesmilo, G.; Gaztambide, S.; Venegas, E.; Picó, A.; Del Pozo, C.; Blanco, C.; Torres, E.; Álvarez-Escolà, C.; Fajardo, C.; García, R.; et al. Changes in acromegaly treatment over four decades in spain: Analysis of the spanish acromegaly registry (REA). Pituitary 2013, 16, 115–121. [Google Scholar] [CrossRef]
- Giustina, A.; Chanson, P.; Kleinberg, D.; Bronstein, M.D.; Clemmons, D.R.; Klibanski, A.; van der Lely, A.J.; Strasburger, C.J.; Lamberts, S.W.; Ho, K.K.Y.; et al. Expert consensus document: A consensus on the medical treatment of acromegaly. Nat. Rev. Endocrinol. 2014, 10, 243–248. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Escolá, C.; Venegas-Moreno, E.M.; García-Arnés, J.A.; Blanco-Carrera, C.; Marazuela-Azpiroz, M.; Gálvez-Moreno, M.Á.; Menéndez-Torre, E.; Aller-Pardo, J.; Salinas-Vert, I.; Resmini, E.; et al. ACROSTART: A retrospective study of the time to achieve hormonal control with lanreotide Autogel treatment in Spanish patients with acromegaly. Endocrinol. Diabetes Nutr. 2019, 66, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Ronchi, C.L.; Rizzo, E.; Lania, A.G.; Pivonello, R.; Grottoli, S.; Colao, A.; Ghigo, E.; Spada, A.; Arosio, M.; Beck-Peccoz, P. Preliminary data on biochemical remission of acromegaly after somatostatin analogs withdrawal. Eur. J. Endocrinol. 2008, 158, 19–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez-Escola, C.; Cardenas-Salas, J. Active postoperative acromegaly: Sustained remission after discontinuation of somatostatin analogues. Endocrinol. Diabetes Metab. Case Rep. 2016, 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gadelha, M.R.; Bronstein, M.D.; Brue, T.; Coculescu, M.; Fleseriu, M.; Guitelman, M.; Pronin, V.; Raverot, G.; Shimon, I.; Lievre, K.K.; et al. Pasireotide versus continued treatment with octreotide or lanreotide in patients with inadequately controlled acromegaly (PAOLA): A randomised, phase 3 trial. Lancet Diabetes Endocrinol. 2014, 2, 875–884. [Google Scholar] [CrossRef]
- Gadelha, M.; Bex, M.; Colao, A.; Pedroza García, E.M.; Poiana, C.; Jimenez-Sanchez, M.; Yener, S.; Mukherjee, R.; Bartalotta, A.; Maamari, R.; et al. Evaluation of the efficacy and safety of switching to pasireotide in patients with acromegaly inadequately controlled with first-generation somatostatin analogs. Front. Endocrinol. 2020, 10. [Google Scholar] [CrossRef] [Green Version]
- Van der Hoek, J.; de Herder, W.W.; Feelders, R.A.; van der Lely, A.-J.; Uitterlinden, P.; Boerlin, V.; Bruns, C.; Poon, K.W.; Lewis, I.; Weckbecker, G.; et al. A single-dose comparison of the acute effects between the new somatostatin analog SOM230 and octreotide in acromegalic patients. J. Clin. Endocrinol. Metab. 2004, 89, 638–645. [Google Scholar] [CrossRef] [Green Version]
- Saveanu, A.; Gunz, G.; Dufour, H.; Caron, P.; Fina, F.; Ouafik, L.; Culler, M.D.; Moreau, J.P.; Enjalbert, A.; Jaquet, P. Bim-23244, a somatostatin receptor subtype 2- and 5-selective analog with enhanced efficacy in suppressing growth hormone (GH) from octreotide-resistant human GH-secreting adenomas. J. Clin. Endocrinol. Metab. 2001, 86, 140–145. [Google Scholar]
- Buchfelder, M.; van der Lely, A.-J.; Biller, B.M.K.; Webb, S.M.; Brue, T.; Strasburger, C.J.; Ghigo, E.; Camacho-Hubner, C.; Pan, K.; Lavenberg, J.; et al. Long-term treatment with pegvisomant: Observations from 2090 acromegaly patients in acrostudy. Eur. J. Endocrinol. 2018, 179, 419–427. [Google Scholar] [CrossRef] [Green Version]
- Trainer, P.J.; Drake, W.M.; Katznelson, L.; Freda, P.U.; Herman-Bonert, V.; van der Lely, A.J.; Dimaraki, E.V.; Stewart, P.M.; Friend, K.E.; Vance, M.L.; et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N. Engl. J. Med. 2000, 342, 1171–1177. [Google Scholar] [CrossRef]
- Trainer, P.J. ACROSTUDY: The first 5 years. Eur. J. Endocrinol. 2009, 161, S19–S24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neggers, S.J.C.M.M.; van der Lely, A.J. Combination treatment with somatostatin analogues and pegvisomant in acromegaly. Growth Horm. IGF Res. 2011, 21, 129–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franck, S.E.; Muhammad, A.; van der Lely, A.J.; Neggers, S.J.C.M.M. Combined treatment of somatostatin analogues with pegvisomant in acromegaly. Endocrine 2016, 52, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jørgensen, J.O.L.; Feldt-Rasmussen, U.; Frystyk, J.; Chen, J.-W.; Kristensen, L.Ø.; Hagen, C.; Ørskov, H. Cotreatment of acromegaly with a somatostatin analog and a growth hormone receptor antagonist. J. Clin. Endocrinol. Metab. 2005, 90, 5627–5631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Franck, S.E.; Gatto, F.; van der Lely, A.J.; Janssen, J.A.M.J.L.; Dallenga, A.H.G.; Nagtegaal, A.P.; Hofland, L.J.; Neggers, S.J.C.M.M. Somatostatin receptor expression in gh-secreting pituitary adenomas treated with long-acting somatostatin analogues in combination with pegvisomant. Neuroendocrinology 2017, 105, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.-Q.; Quan, Z.; Tian, H.-L.; Cheng, M. Preoperative lanreotide treatment improves outcome in patients with acromegaly resulting from invasive pituitary macroadenoma. J. Int. Med. Res. 2012, 40, 517–524. [Google Scholar] [CrossRef]
- Abe, T.; Lüdecke, D.K. Effects of preoperative octreotide treatment on different subtypes of 90 GH-secreting pituitary adenomas and outcome in one surgical centre. Eur. J. Endocrinol. 2001, 145, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Colao, A.; Ferone, D.; Cappabianca, P.; del Basso De Caro, M.L.; Marzullo, P.; Monticelli, A.; Alfieri, A.; Merola, B.; CalÌ, A.; de Divitiis, E.; et al. Effect of Octreotide Pretreatment on Surgical Outcome in Acromegaly. J. Clin. Endocrinol. Metab. 1997, 82, 3308–3314. [Google Scholar] [CrossRef]
- Yang, C.; Li, G.; Jiang, S.; Bao, X.; Wang, R. Preoperative somatostatin analogues in patients with newly-diagnosed acromegaly: A systematic review and meta-analysis of comparative studies. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Beck-Peccoz, P.; Persani, L.; Faglia, G. Glycoprotein hormone α-subunit in pituitary adenomas. Trends Endocrinol. Metab. 1992, 3, 41–45. [Google Scholar] [CrossRef]
- Ezzat, S.; Horvath, E.; Kovacs, K.; Smyth, H.S.; Singer, W.; Asa, S.L. Basic fibroblast growth factor expression by two prolactin and thyrotropin-producing pituitary adenomas. Endocr. Pathol. 1995, 6, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Socin, H.V.; Chanson, P.; Delemer, B.; Tabarin, A.; Rohmer, V.; Mockel, J.; Stevenaert, A.; Beckers, A. The changing spectrum of TSH-secreting pituitary adenomas: Diagnosis and management in 43 patients. Eur. J. Endocrinol. 2003, 148, 433–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck-Peccoz, P.; Brucker-Davis, F.; Persani, L.; Smallridge, R.C.; Weintraub, B.D. Thyrotropin-secreting pituitary tumors. Endocr. Rev. 1996, 17, 610–638. [Google Scholar] [PubMed] [Green Version]
- Brucker-Davis, F.; Oldfield, E.H.; Skarulis, M.C.; Doppman, J.L.; Weintraub, B.D. Thyrotropin-secreting pituitary tumors: Diagnostic criteria, thyroid hormone sensitivity, and treatment outcome in 25 patients followed at the national institutes of health. J. Clin. Endocrinol. Metab. 1999, 84, 476–486. [Google Scholar] [CrossRef]
- Caron, P.; Arlot, S.; Bauters, C.; Chanson, P.; Kuhn, J.-M.; Pugeat, M.; Marechaud, R.; Teutsch, C.; Vidal, E.; Sassano, P. Efficacy of the long-acting octreotide formulation (octreotide-lar) in patients with thyrotropin-secreting pituitary adenomas. J. Clin. Endocrinol. Metab. 2001, 86, 2849–2853. [Google Scholar] [CrossRef]
- Mampalam, T.J.; Tyrrell, J.B.; Wilson, C.B. Transsphenoidal microsurgery for Cushing disease. A report of 216 cases. Ann. Intern. Med. 1988, 109, 487–493. [Google Scholar] [CrossRef]
- Swearingen, B.; Biller, B.M.; Barker, F.G.; Katznelson, L.; Grinspoon, S.; Klibanski, A.; Zervas, N.T. Long-term mortality after transsphenoidal surgery for cushing disease. Ann. Intern. Med. 1999, 130, 821–824. [Google Scholar] [CrossRef]
- Trainer, P.J.; Lawrie, H.S.; Verhelst, J.; Howlett, T.A.; Lowe, D.G.; Grossman, A.B.; Savage, M.O.; Afshar, F.; Besser, G.M. Transsphenoidal resection in Cushing’s disease: Undetectable serum cortisol as the definition of successfuI treatment. Clin. Endocrinol. 1993, 38, 73–78. [Google Scholar] [CrossRef]
- Ibáñez-Costa, A.; Rivero-Cortés, E.; Vázquez-Borrego, M.C.; Gahete, M.D.; Jiménez-Reina, L.; Venegas-Moreno, E.; de la Riva, A.; Arráez, M.Á.; González-Molero, I.; Schmid, H.A.; et al. Octreotide and pasireotide (dis)similarly inhibit pituitary tumor cells in vitro. J. Endocrinol. 2016, 231, 135–145. [Google Scholar] [CrossRef] [Green Version]
- De Herder, W.W.; Lamberts, S.W.J. Is there a role for somatostatin and its analogs in Cushing’s syndrome? Metabolism 1996, 45, 83–85. [Google Scholar] [CrossRef]
- Van der Hoek, J.; Lamberts, S.W.J.; Hofland, L.J. The role of somatostatin analogs in Cushing’s disease. Pituitary 2004, 7, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Petersenn, S.; Newell-Price, J.; Findling, J.W.; Gu, F.; Maldonado, M.; Schoenherr, U.; Mills, D.; Salgado, L.R.; Biller, B.M.K.; et al. A 12-month phase 3 study of pasireotide in Cushing’s disease. N. Engl. J. Med. 2012, 366, 914–924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleseriu, M.; Petersenn, S.; Biller, B.M.K.; Kadioglu, P.; De Block, C.; T’Sjoen, G.; Vantyghem, M.-C.; Tauchmanova, L.; Wojna, J.; Roughton, M.; et al. Long-term efficacy and safety of once-monthly pasireotide in Cushing’s disease: A Phase III extension study. Clin. Endocrinol. 2019, 91, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Lamberts, S.W.; de Herder, W.W.; Krenning, E.P.; Reubi, J.C. A role of (labeled) somatostatin analogs in the differential diagnosis and treatment of cushing’s syndrome. J. Clin. Endocrinol. Metab. 1994, 78, 17–19. [Google Scholar]
- Isidori, A.M.; Sbardella, E.; Zatelli, M.C.; Boschetti, M.; Vitale, G.; Colao, A.; Pivonello, R. ABC study group conventional and nuclear medicine imaging in ectopic cushing’s syndrome: A systematic review. J. Clin. Endocrinol. Metab. 2015, 100, 3231–3244. [Google Scholar] [CrossRef] [Green Version]
- Chaidarun, S.S.; Klibanski, A. Gonadotropinomas. Semin. Reprod. Med. 2002, 20, 339–348. [Google Scholar] [CrossRef]
- Mercado, M.; Melgar, V.; Salame, L.; Cuenca, D. Clinically non-functioning pituitary adenomas: Pathogenic, diagnostic and therapeutic aspects. Endocrinol. Diabetes Nutr. 2017, 64, 384–395. [Google Scholar] [CrossRef]
- Colao, A.; Filippella, M.; Di Somma, C.; Manzi, S.; Rota, F.; Pivonello, R.; Gaccione, M.; De Rosa, M.; Lombardi, G. Somatostatin analogs in treatment of non-growth hormone-secreting pituitary adenomas. Endocrine 2003, 20, 279–283. [Google Scholar] [CrossRef]
- Colao, A.; Pivonello, R.; Di Somma, C.; Savastano, S.; Grasso, L.F.S.; Lombardi, G. Medical therapy of pituitary adenomas: Effects on tumor shrinkage. Rev. Endocr. Metab. Disord. 2009, 10, 111–123. [Google Scholar] [CrossRef]
- Warnet, A.; Harris, A.G.; Renard, E.; Martin, D.; James-Deidier, A.; Chaumet-Riffaud, P. A prospective multicenter trial of octreotide in 24 patients with visual defects caused by nonfunctioning and gonadotropin-secreting pituitary adenomas. French multicenter octreotide study group. Neurosurgery 1997, 41, 786–795. [Google Scholar] [CrossRef]
- Evaluate the Efficacy and Safety of Pasireotide LAR (Long Acting Release) on the Treatment of Patients with Clinically Non-Functioning Pituitary Adenoma—Study Results—ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/results/NCT01283542 (accessed on 21 January 2020).
- Losa, M.; Mortini, P.; Barzaghi, R.; Franzin, A.; Giovanelli, M. Endocrine inactive and gonadotroph adenomas: Diagnosis and management. J. Neurooncol. 2001, 54, 167–177. [Google Scholar] [CrossRef] [PubMed]
- Balcázar-Hernández, L.J.; Benítez-Rodríguez, F.J.; Jandete-Medina, M.Á.; Murillo-Galindo, K.V.; Sánchez-Mentado, J.A.; Torres-Paniagua, J.L.; González-Virla, B.; Mendoza-Zubieta, V.; Gregor-Gooch, J.M.; Vargas-Ortega, G. Multimodal treatment of non-functional recidivant hypophyseal adenomas. A case report and literature review. Rev. Fac. Med. UNAM 2017, 60, 19–26. [Google Scholar]
- Colao, A.; Somma, C.D.; Pivonello, R.; Faggiano, A.; Lombardi, G.; Savastano, S. Medical therapy for clinically non-functioning pituitary adenomas. Endocr. Relat. Cancer 2008, 15, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Colao, A.; Grasso, L.F.S.; Pivonello, R.; Lombardi, G. Therapy of aggressive pituitary tumors. Expert Opin. Pharmacother. 2011, 12, 1561–1570. [Google Scholar] [CrossRef]
- Vroonen, L.; Daly, A.F.; Beckers, A. Epidemiology and management challenges in prolactinomas. Neuroendocrinology 2019, 109, 20–27. [Google Scholar] [CrossRef]
- Molitch, M.E. Pharmacologic resistance in prolactinoma patients. Pituitary 2005, 8, 43–52. [Google Scholar] [CrossRef]
- Gillam, M.P.; Molitch, M.E.; Lombardi, G.; Colao, A. Advances in the treatment of prolactinomas. Endocr. Rev. 2006, 27, 485–534. [Google Scholar] [CrossRef] [Green Version]
- Delgrange, E.; Duprez, T.; Maiter, D. Influence of parasellar extension of macroprolactinomas defined by magnetic resonance imaging on their responsiveness to dopamine agonist therapy. Clin. Endocrinol. 2006, 64, 456–462. [Google Scholar] [CrossRef]
- Morange, I.; Barlier, A.; Pellegrini, I.; Brue, T.; Enjalbert, A.; Jaquet, P. Prolactinomas resistant to bromocriptine: Long-term efficacy of quinagolide and outcome of pregnancy. Eur. J. Endocrinol. 1996, 135, 413–420. [Google Scholar] [CrossRef] [Green Version]
- Delgrange, E.; Daems, T.; Verhelst, J.; Abs, R.; Maiter, D. Characterization of resistance to the prolactin-lowering effects of cabergoline in macroprolactinomas: A study in 122 patients. Eur. J. Endocrinol. 2009, 160, 747–752. [Google Scholar] [CrossRef] [Green Version]
- Maiter, D. Management of dopamine agonist-resistant prolactinoma. Neuroendocrinology 2019, 109, 42–50. [Google Scholar] [CrossRef]
- Chanson, P.; Maiter, D. Prolactinoma. In The Pituitary; ScienceDirect: Cambridge, MA, USA, 2017; pp. 467–514. ISBN 978-0-12-804169-7. [Google Scholar]
- Cuny, T.; Mohamed, A.; Graillon, T.; Roche, C.; Defilles, C.; Germanetti, A.-L.; Couderc, B.; Figarella-Branger, D.; Enjalbert, A.; Barlier, A.; et al. Somatostatin receptor sst2 gene transfer in human prolactinomas in vitro: Impact on sensitivity to dopamine, somatostatin and dopastatin, in the control of prolactin secretion. Mol. Cell. Endocrinol. 2012, 355, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Acunzo, J.; Thirion, S.; Roche, C.; Saveanu, A.; Gunz, G.; Germanetti, A.L.; Couderc, B.; Cohen, R.; Figarella-Branger, D.; Dufour, H.; et al. Somatostatin receptor sst2 decreases cell viability and hormonal hypersecretion and reverses octreotide resistance of human pituitary adenomas. Cancer Res. 2008, 68, 10163–10170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coopmans, E.C.; van Meyel, S.W.F.; Pieterman, K.J.; van Ipenburg, J.A.; Hofland, L.J.; Donga, E.; Daly, A.F.; Beckers, A.; van der Lely, A.-J.; Neggers, S.J.C.M.M. Excellent response to pasireotide therapy in an aggressive and dopamine-resistant prolactinoma. Eur. J. Endocrinol. 2019, 181, K21–K27. [Google Scholar] [CrossRef] [PubMed]
- Anaizi, A.; Rizvi-Toner, A.; Valestin, J.; Schey, R. Large cell neuroendocrine carcinoma of the lung presenting as pseudoachalasia: A case report. J. Med. Case Rep. 2015, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papotti, M.; Croce, S.; Bellò, M.; Bongiovanni, M.; Allìa, E.; Schindler, M.; Bussolati, G. Expression of somatostatin receptor types 2, 3 and 5 in biopsies and surgical specimens of human lung tumours. Correlation with preoperative octreotide scintigraphy. Virchows Arch. Int. J. Pathol. 2001, 439, 787–797. [Google Scholar] [CrossRef]
- Qian, Z.R.; Li, T.; Ter-Minassian, M.; Yang, J.; Chan, J.A.; Brais, L.K.; Masugi, Y.; Thiaglingam, A.; Brooks, N.; Nishihara, R.; et al. Association between somatostatin receptor expression and clinical outcomes in neuroendocrine tumors. Pancreas 2016, 45, 1386–1393. [Google Scholar] [CrossRef] [Green Version]
- Janson, E.T.; Oberg, K. Neuroendocrine tumors--somatostatin receptor expression and somatostatin analog treatment. Cancer Chemother. Biol. Response Modif. 2003, 21, 535–546. [Google Scholar]
- Modlin, I.M.; Pavel, M.; Kidd, M.; Gustafsson, B.I. Review article: Somatostatin analogues in the treatment of gastroenteropancreatic neuroendocrine (carcinoid) tumours. Aliment. Pharmacol. Ther. 2010, 31, 169–188. [Google Scholar]
- Clark, O.H.; Benson, A.B.; Berlin, J.D.; Choti, M.A.; Doherty, G.M.; Engstrom, P.F.; Gibbs, J.F.; Heslin, M.J.; Kessinger, A.; Kulke, M.H.; et al. NCCN clinical practice guidelines in oncology: Neuroendocrine tumors. J. Natl. Compr. Cancer Netw. JNCCN 2009, 7, 712–747. [Google Scholar]
- Vezzosi, D.; Bennet, A.; Rochaix, P.; Courbon, F.; Selves, J.; Pradere, B.; Buscail, L.; Susini, C.; Caron, P. Octreotide in insulinoma patients: Efficacy on hypoglycemia, relationships with Octreoscan scintigraphy and immunostaining with anti-sst2A and anti-sst5 antibodies. Eur. J. Endocrinol. 2005, 152, 757–767. [Google Scholar] [CrossRef] [PubMed]
- Tirosh, A.; Stemmer, S.M.; Solomonov, E.; Elnekave, E.; Saeger, W.; Ravkin, Y.; Nir, K.; Talmor, Y.; Shimon, I. Pasireotide for malignant insulinoma. Horm. Athens Greece 2016, 15, 271–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maton, P.N. Use of octreotide acetate for control of symptoms in patients with islet cell tumors. World J. Surg. 1993, 17, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Tomassetti, P.; Migliori, M.; Caletti, G.C.; Fusaroli, P.; Corinaldesi, R.; Gullo, L. Treatment of type II gastric carcinoid tumors with somatostatin analogues. N. Engl. J. Med. 2000, 343, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Tomassetti, P.; Campana, D.; Piscitelli, L.; Mazzotta, E.; Brocchi, E.; Pezzilli, R.; Corinaldesi, R. Treatment of zollinger-ellison syndrome. World J. Gastroenterol. 2005, 11, 5423–5432. [Google Scholar] [CrossRef] [PubMed]
- Prommegger, R.; Bale, R.; Ensinger, C.; Sauper, T.; Profanter, C.; Knoflach, M.; Moncayo, R. Gastric carcinoid type I tumour: New diagnostic and therapeutic method. Eur. J. Gastroenterol. Hepatol. 2003, 15, 705–707. [Google Scholar] [CrossRef] [PubMed]
- Tomassetti, P.; Migliori, M.; Corinaldesi, R.; Gullo, L. Treatment of gastroenteropancreatic neuroendocrine tumours with octreotide LAR. Aliment. Pharmacol. Ther. 2000, 14, 557–560. [Google Scholar] [CrossRef]
- Wermers, R.A.; Fatourechi, V.; Wynne, A.G.; Kvols, L.K.; Lloyd, R.V. The glucagonoma syndrome. Clinical and pathologic features in 21 patients. Medicine 1996, 75, 53–63. [Google Scholar] [CrossRef]
- Casadei, R.; Tomassetti, P.; Rossi, C.; la Donna, M.; Migliori, M.; Marrano, D. Treatment of metastatic glucagonoma to the liver: Case report and literature review. Ital. J. Gastroenterol. Hepatol. 1999, 31, 308–312. [Google Scholar]
- Ghaferi, A.A.; Chojnacki, K.A.; Long, W.D.; Cameron, J.L.; Yeo, C.J. Pancreatic VIPomas: Subject review and one institutional experience. J. Gastrointest. Surg. Off. J. Soc. Surg. Aliment. Tract 2008, 12, 382–393. [Google Scholar] [CrossRef]
- Song, S.; Shi, R.; Li, B.; Liu, Y. Diagnosis and treatment of pancreatic vasoactive intestinal peptide endocrine tumors. Pancreas 2009, 38, 811–814. [Google Scholar] [CrossRef] [PubMed]
- Nakayama, S.; Yokote, T.; Kobayashi, K.; Hirata, Y.; Hiraiwa, T.; Komoto, I.; Miyakoshi, K.; Yamakawa, Y.; Takubo, T.; Tsuji, M.; et al. VIPoma with expression of both VIP and VPAC1 receptors in a patient with WDHA syndrome. Endocrine 2009, 35, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Angeletti, S.; Corleto, V.; Schillaci, O.; Marignani, M.; Annibale, B.; Moretti, A.; Silecchia, G.; Scopinaro, F.; Basso, N.; Bordi, C.; et al. Use of the somatostatin analogue octreotide to localise and manage somatostatin-producing tumours. Gut 1998, 42, 792–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rinke, A.; Müller, H.-H.; Schade-Brittinger, C.; Klose, K.-J.; Barth, P.; Wied, M.; Mayer, C.; Aminossadati, B.; Pape, U.-F.; Bläker, M.; et al. Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: A report from the promid study group. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2009, 27, 4656–4663. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med. 2014, 371, 224–233. [Google Scholar] [CrossRef]
- Caplin, M.E.; Pavel, M.; Ćwikła, J.B.; Phan, A.T.; Raderer, M.; Sedláčková, E.; Cadiot, G.; Wolin, E.M.; Capdevila, J.; Wall, L.; et al. Anti-tumour effects of lanreotide for pancreatic and intestinal neuroendocrine tumours: The CLARINET open-label extension study. Endocr. Relat. Cancer 2016, 23, 191–199. [Google Scholar] [CrossRef]
- Wolin, E.M.; Jarzab, B.; Eriksson, B.; Walter, T.; Toumpanakis, C.; Morse, M.A.; Tomassetti, P.; Weber, M.M.; Fogelman, D.R.; Ramage, J.; et al. Phase III study of pasireotide long-acting release in patients with metastatic neuroendocrine tumors and carcinoid symptoms refractory to available somatostatin analogues. Drug Des. Dev. Ther. 2015, 9, 5075–5086. [Google Scholar] [CrossRef] [Green Version]
- Yao, J.C.; Chan, J.A.; Mita, A.C.; Kundu, M.G.; Hermosillo Reséndiz, K.; Hu, K.; Ravichandran, S.; Strosberg, J.R.; Wolin, E.M. Phase I dose-escalation study of long-acting pasireotide in patients with neuroendocrine tumors. OncoTargets Ther. 2017, 10, 3177–3186. [Google Scholar] [CrossRef] [Green Version]
- Panzuto, F.; Di Fonzo, M.; Iannicelli, E.; Sciuto, R.; Maini, C.L.; Capurso, G.; Milione, M.; Cattaruzza, M.S.; Falconi, M.; David, V.; et al. Long-term clinical outcome of somatostatin analogues for treatment of progressive, metastatic, well-differentiated entero-pancreatic endocrine carcinoma. Ann. Oncol. 2006, 17, 461–466. [Google Scholar] [CrossRef]
- Palazzo, M.; Lombard-Bohas, C.; Cadiot, G.; Matysiak-Budnik, T.; Rebours, V.; Vullierme, M.-P.; Couvelard, A.; Hentic, O.; Ruszniewski, P. Ki67 proliferation index, hepatic tumor load, and pretreatment tumor growth predict the antitumoral efficacy of lanreotide in patients with malignant digestive neuroendocrine tumors. Eur. J. Gastroenterol. Hepatol. 2013, 25, 232–238. [Google Scholar] [CrossRef]
- Laskaratos, F.-M.; Walker, M.; Naik, K.; Maragkoudakis, E.; Oikonomopoulos, N.; Grant, L.; Meyer, T.; Caplin, M.; Toumpanakis, C. Predictive factors of antiproliferative activity of octreotide LAR as first-line therapy for advanced neuroendocrine tumours. Br. J. Cancer 2016, 115, 1321–1327. [Google Scholar] [CrossRef] [Green Version]
- Carmona-Bayonas, A.; Jiménez-Fonseca, P.; Lamarca, Á.; Barriuso, J.; Castaño, Á.; Benavent, M.; Alonso, V.; Riesco-Martínez, M.D.C.; Alonso-Gordoa, T.; Custodio, A.; et al. Prediction of progression-free survival in patients with advanced, well-differentiated, neuroendocrine tumors being treated with a somatostatin analog: The getne-trasgu study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019, 37, 2571–2580. [Google Scholar] [CrossRef] [PubMed]
- Lamberti, G.; Faggiano, A.; Brighi, N.; Tafuto, S.; Ibrahim, T.; Brizzi, M.P.; Pusceddu, S.; Albertelli, M.; Massironi, S.; Panzuto, F.; et al. Non-conventional doses of somatostatin analogs in patients with progressing well differentiated neuroendocrine tumor. J. Clin. Endocrinol. Metab. 2020, 105, dgz035. [Google Scholar] [CrossRef] [PubMed]
- Gaztambide Sáenz, S. Diagnosis and characteristics of intestinal carcinoid tumors. Carcinoid syndrome. Endocrinol. Nutr. 2007, 54, 9–14. [Google Scholar] [CrossRef]
- Romeu, J.; Miró, J.M.; Sirera, G.; Mallolas, J.; Arnal, J.; Valls, M.E.; Tortosa, F.; Clotet, B.; Foz, M. Efficacy of octreotide in the management of chronic diarrhoea in AIDS. AIDS Lond. Engl. 1991, 5, 1495–1499. [Google Scholar] [CrossRef] [PubMed]
- Modlin, I.M.; Latich, I.; Kidd, M.; Zikusoka, M.; Eick, G. Therapeutic options for gastrointestinal carcinoids. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2006, 4, 526–547. [Google Scholar] [CrossRef] [PubMed]
- O’Toole, D.; Ducreux, M.; Bommelaer, G.; Wemeau, J.L.; Bouché, O.; Catus, F.; Blumberg, J.; Ruszniewski, P. Treatment of carcinoid syndrome: A prospective crossover evaluation of lanreotide versus octreotide in terms of efficacy, patient acceptability, and tolerance. Cancer 2000, 88, 770–776. [Google Scholar] [CrossRef]
- Ruszniewski, P.; Ish-Shalom, S.; Wymenga, M.; O’Toole, D.; Arnold, R.; Tomassetti, P.; Bax, N.; Caplin, M.; Eriksson, B.; Glaser, B.; et al. Rapid and sustained relief from the symptoms of carcinoid syndrome: Results from an open 6-month study of the 28-day prolonged-release formulation of lanreotide. Neuroendocrinology 2004, 80, 244–251. [Google Scholar] [CrossRef]
- Vinik, A.I.; Wolin, E.M.; Liyanage, N.; Gomez-Panzani, E.; Fisher, G.A. ELECT Study Group * evaluation of lanreotide depot/autogel efficacy and safety as a carcinoid syndrome treatment (elect): A randomized, double-blind, placebo-controlled trial. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 2016, 22, 1068–1080. [Google Scholar]
- Ruszniewski, P.; Valle, J.W.; Lombard-Bohas, C.; Cuthbertson, D.J.; Perros, P.; Holubec, L.; Delle Fave, G.; Smith, D.; Niccoli, P.; Maisonobe, P.; et al. Patient-reported outcomes with lanreotide Autogel/Depot for carcinoid syndrome: An international observational study. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2016, 48, 552–558. [Google Scholar] [CrossRef] [Green Version]
- Kvols, L.K.; Oberg, K.E.; O’Dorisio, T.M.; Mohideen, P.; de Herder, W.W.; Arnold, R.; Hu, K.; Zhang, Y.; Hughes, G.; Anthony, L.; et al. Pasireotide (SOM230) shows efficacy and tolerability in the treatment of patients with advanced neuroendocrine tumors refractory or resistant to octreotide LAR: Results from a phase II study. Endocr. Relat. Cancer 2012, 19, 657–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubin, J.; Ajani, J.; Schirmer, W.; Venook, A.P.; Bukowski, R.; Pommier, R.; Saltz, L.; Dandona, P.; Anthony, L. Octreotide acetate long-acting formulation versus open-label subcutaneous octreotide acetate in malignant carcinoid syndrome. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 1999, 17, 600–606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davar, J.; Connolly, H.M.; Caplin, M.E.; Pavel, M.; Zacks, J.; Bhattacharyya, S.; Cuthbertson, D.J.; Dobson, R.; Grozinsky-Glasberg, S.; Steeds, R.P.; et al. Diagnosing and managing carcinoid heart disease in patients with neuroendocrine tumors: An expert statement. J. Am. Coll. Cardiol. 2017, 69, 1288–1304. [Google Scholar] [CrossRef] [PubMed]
- Thakker, R.V.; Newey, P.J.; Walls, G.V.; Bilezikian, J.; Dralle, H.; Ebeling, P.R.; Melmed, S.; Sakurai, A.; Tonelli, F.; Brandi, M.L.; et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). J. Clin. Endocrinol. Metab. 2012, 97, 2990–3011. [Google Scholar] [CrossRef] [PubMed]
- Ramundo, V.; Del Prete, M.; Marotta, V.; Marciello, F.; Camera, L.; Napolitano, V.; De Luca, L.; Circelli, L.; Colantuoni, V.; Di Sarno, A.; et al. Impact of long-acting octreotide in patients with early-stage MEN1-related duodeno-pancreatic neuroendocrine tumours. Clin. Endocrinol. 2014, 80, 850–855. [Google Scholar] [CrossRef] [Green Version]
- Faggiano, A.; Modica, R.; Lo Calzo, F.; Camera, L.; Napolitano, V.; Altieri, B.; de Cicco, F.; Bottiglieri, F.; Sesti, F.; Badalamenti, G.; et al. Lanreotide therapy vs. active surveillance in men1-related pancreatic neuroendocrine tumors <2 cm. J. Clin. Endocrinol. Metab. 2020, 105, 78–84. [Google Scholar] [CrossRef]
- Marciello, F. Combined biological therapy is effective to control all neuroendocrine tumor manifestations in a patient with men1 syndrome. J. Genet. Syndr. Gene Ther. 2013, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Hussain, K. Diagnosis and management of hyperinsulinaemic hypoglycaemia of infancy. Horm. Res. 2008, 69, 2–13. [Google Scholar] [CrossRef]
- Aynsley-Green, A.; Hussain, K.; Hall, J.; Saudubray, J.; Nihoul-Fekete, C.; De Lonlay-Debeney, P.; Brunelle, F.; Otonkoski, T.; Thornton, P.; Lindley, K. Practical management of hyperinsulinism in infancy. Arch. Dis. Child. Fetal Neonatal Ed. 2000, 82, F98–F107. [Google Scholar] [CrossRef]
- Demirbilek, H.; Hussain, K. Congenital hyperinsulinism: Diagnosis and treatment update. J. Clin. Res. Pediatr. Endocrinol. 2017, 9, 69–87. [Google Scholar] [CrossRef]
- Croxen, R.; Baarsma, G.S.; Kuijpers, R.W.A.M.; van Hagen, P.M. Somatostatin in diabetic retinopathy. Pediatr. Endocrinol. Rev. PER 2004, 1, 518–524. [Google Scholar] [PubMed]
- Simó, R.; Carrasco, E.; García-Ramírez, M.; Hernández, C. Angiogenic and antiangiogenic factors in proliferative diabetic retinopathy. Curr. Diabetes Rev. 2006, 2, 71–98. [Google Scholar] [CrossRef] [PubMed]
- Simó, R.; Lecube, A.; Sararols, L.; García-Arumí, J.; Segura, R.M.; Casamitjana, R.; Hernández, C. Deficit of somatostatin-like immunoreactivity in the vitreous fluid of diabetic patients: Possible role in the development of proliferative diabetic retinopathy. Diabetes Care 2002, 25, 2282–2286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simó-Servat, O.; Hernández, C.; Simó, R. Somatostatin and diabetic retinopathy: An evolving story. Endocrine 2018, 60, 1–3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plewe, G.; Noelken, G.; Krause, U.; Beyer, J.; del Pozo, E. Suppression of growth hormone and somatomedin C by long-acting somatostatin analog SMS 201-995 in type I diabetes mellitus. Horm. Res. 1987, 27, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Hyer, S.L.; Sharp, P.S.; Brooks, R.A.; Burrin, J.M.; Kohner, E.M. Continuous subcutaneous octreotide infusion markedly suppresses IGF-I levels whilst only partially suppressing GH secretion in diabetics with retinopathy. Acta Endocrinol. 1989, 120, 187–194. [Google Scholar] [CrossRef]
- Boehm, B.O. Use of long-acting somatostatin analogue treatment in diabetic retinopathy. Dev. Ophthalmol. 2007, 39, 111–121. [Google Scholar]
- Grant, M.B.; Mames, R.N.; Fitzgerald, C.; Hazariwala, K.M.; Cooper-DeHoff, R.; Caballero, S.; Estes, K.S. The efficacy of octreotide in the therapy of severe nonproliferative and early proliferative diabetic retinopathy: A randomized controlled study. Diabetes Care 2000, 23, 504–509. [Google Scholar] [CrossRef] [Green Version]
- Durak, I.; Durak, H.; Ergin, M.; Yürekli, Y.; Kaynak, S. Somatostatin receptors in the orbits. Clin. Nucl. Med. 1995, 20, 237–242. [Google Scholar] [CrossRef]
- Susini, C.; Buscail, L. Rationale for the use of somatostatin analogs as antitumor agents. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2006, 17, 1733–1742. [Google Scholar] [CrossRef]
- Krassas, G.E.; Dumas, A.; Pontikides, N.; Kaltsas, T. Somatostatin receptor scintigraphy and octreotide treatment in patients with thyroid eye disease. Clin. Endocrinol. 1995, 42, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Krassas, G.E.; Doumas, A.; Kaltsas, T.; Halkias, A.; Pontikides, N. Somatostatin receptor scintigraphy before and after treatment with somatostatin analogues in patients with thyroid eye disease. Thyroid Off. J. Am. Thyroid Assoc. 1999, 9, 47–52. [Google Scholar] [CrossRef] [PubMed]
- Chang, T.C.; Kao, S.C.; Huang, K.M. Octreotide and Graves’ ophthalmopathy and pretibial myxoedema. BMJ 1992, 304, 158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, T.C.; Yao, W.C.; Chang, C.C. Octreotide and urinary glycosaminoglycan in Graves’ disease. BMJ 1992, 304, 1444. [Google Scholar] [CrossRef] [Green Version]
- Kung, A.W.; Michon, J.; Tai, K.S.; Chan, F.L. The effect of somatostatin versus corticosteroid in the treatment of Graves’ ophthalmopathy. Thyroid Off. J. Am. Thyroid Assoc. 1996, 6, 381–384. [Google Scholar] [CrossRef]
- Krassas, G.E.; Kaltsas, T.; Dumas, A.; Pontikides, N.; Tolis, G. Lanreotide in the treatment of patients with thyroid eye disease. Eur. J. Endocrinol. 1997, 136, 416–422. [Google Scholar] [CrossRef]
- Ukleja, A. Dumping syndrome: Pathophysiology and treatment. Nutr. Clin. Pract. Off. Publ. Am. Soc. Parenter. Enter. Nutr. 2005, 20, 517–525. [Google Scholar] [CrossRef]
- Gray, J.L.; Debas, H.T.; Mulvihill, S.J. Control of dumping symptoms by somatostatin analogue in patients after gastric surgery. Arch. Surg. 1991, 126, 1231–1236. [Google Scholar] [CrossRef]
- Li-Ling, J.; Irving, M. Therapeutic value of octreotide for patients with severe dumping syndrome—A review of randomised controlled trials. Postgrad. Med. J. 2001, 77, 441–442. [Google Scholar] [CrossRef] [Green Version]
- Sato, D.; Morino, K.; Ohashi, N.; Ueda, E.; Ikeda, K.; Yamamoto, H.; Ugi, S.; Yamamoto, H.; Araki, S.; Maegawa, H. Octreotide improves early dumping syndrome potentially through incretins: A case report. Endocr. J. 2013, 60, 847–853. [Google Scholar] [CrossRef] [Green Version]
- Long, R.G.; Adrian, T.E.; Bloom, S.R. Somatostatin and the dumping syndrome. Br. Med. J. 1985, 290, 886–888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarpignato, C. The place of octreotide in the medical management of the dumping syndrome. Digestion 1996, 57, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Geer, R.J.; Richards, W.O.; O’Dorisio, T.M.; Woltering, E.O.; Williams, S.; Rice, D.; Abumrad, N.N. Efficacy of octreotide acetate in treatment of severe postgastrectomy dumping syndrome. Ann. Surg. 1990, 212, 678–687. [Google Scholar] [CrossRef] [PubMed]
- Penning, C.; Vecht, J.; Masclee, A.A.M. Efficacy of depot long-acting release octreotide therapy in severe dumping syndrome. Aliment. Pharmacol. Ther. 2005, 22, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Tack, J.; Aberle, J.; Arts, J.; Laville, M.; Oppert, J.-M.; Bender, G.; Bhoyrul, S.; McLaughlin, T.; Yoshikawa, T.; Vella, A.; et al. Safety and efficacy of pasireotide in dumping syndrome-results from a phase 2, multicentre study. Aliment. Pharmacol. Ther. 2018, 47, 1661–1672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haffejee, A.A. Surgical management of high output enterocutaneous fistulae: A 24-year experience. Curr. Opin. Clin. Nutr. Metab. Care 2004, 7, 309–316. [Google Scholar] [CrossRef]
- Jamil, M.; Ahmed, U.; Sobia, H. Role of somatostatin analogues in the management of enterocutaneous fistulae. J. Coll. Phys. Surg. Pak. Jcpsp 2004, 14, 237–240. [Google Scholar]
- Sitges-Serra, A.; Guirao, X.; Pereira, J.A.; Nubiola, P. Treatment of gastrointestinal fistulas with sandostatin. Digestion 1993, 54, 38–40. [Google Scholar] [CrossRef]
- Nubiola-Calonge, P.; Badía, J.M.; Sancho, J.; Gil, M.J.; Segura, M.; Sitges-Serra, A. Blind evaluation of the effect of octreotide (SMS 201-995), a somatostatin analogue, on small-bowel fistula output. Lancet Lond. Engl. 1987, 2, 672–674. [Google Scholar] [CrossRef]
- Leandros, E.; Antonakis, P.T.; Albanopoulos, K.; Dervenis, C.; Konstadoulakis, M.M. Somatostatin versus octreotide in the treatment of patients with gastrointestinal and pancreatic fistulas. Can. J. Gastroenterol. J. Can. Gastroenterol. 2004, 18, 303–306. [Google Scholar] [CrossRef] [Green Version]
- Wiest, R.; Tsai, M.H.; Groszmann, R.J. Octreotide potentiates PKC-dependent vasoconstrictors in portal-hypertensive and control rats. Gastroenterology 2001, 120, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Imperiale, T.F.; Teran, J.C.; McCullough, A.J. A meta-analysis of somatostatin versus vasopressin in the management of acute esophageal variceal hemorrhage. Gastroenterology 1995, 109, 1289–1294. [Google Scholar] [CrossRef]
- D’Amico, G.; Pagliaro, L.; Bosch, J. Pharmacological treatment of portal hypertension: An evidence-based approach. Semin. Liver Dis. 1999, 19, 475–505. [Google Scholar] [CrossRef] [PubMed]
- Corley, D.A.; Cello, J.P.; Adkisson, W.; Ko, W.F.; Kerlikowske, K. Octreotide for acute esophageal variceal bleeding: A meta-analysis. Gastroenterology 2001, 120, 946–954. [Google Scholar] [CrossRef]
- Zhou, X.; Tripathi, D.; Song, T.; Shao, L.; Han, B.; Zhu, J.; Han, D.; Liu, F.; Qi, X. Terlipressin for the treatment of acute variceal bleeding: A systematic review and meta-analysis of randomized controlled trials. Medicine 2018, 97, e13437. [Google Scholar] [CrossRef]
- Wang, C.; Han, J.; Xiao, L.; Jin, C.-E.; Li, D.-J.; Yang, Z. Efficacy of vasopressin/terlipressin and somatostatin/octreotide for the prevention of early variceal rebleeding after the initial control of bleeding: A systematic review and meta-analysis. Hepatol. Int. 2015, 9, 120–129. [Google Scholar] [CrossRef]
- Torres, V.E. Cyclic AMP, at the hub of the cystic cycle. Kidney Int. 2004, 66, 1283–1285. [Google Scholar] [CrossRef] [Green Version]
- Ruggenenti, P.; Remuzzi, A.; Ondei, P.; Fasolini, G.; Antiga, L.; Ene-Iordache, B.; Remuzzi, G.; Epstein, F.H. Safety and efficacy of long-acting somatostatin treatment in autosomal-dominant polycystic kidney disease. Kidney Int. 2005, 68, 206–216. [Google Scholar] [CrossRef] [Green Version]
- Szilagyi, A.; Shrier, I. Systematic review: The use of somatostatin or octreotide in refractory diarrhoea. Aliment. Pharmacol. Ther. 2001, 15, 1889–1897. [Google Scholar] [CrossRef]
- Smid, W.M.; Dullaart, R.P. Octreotide for medullary thyroid carcinoma associated diarrhoea. Neth. J. Med. 1992, 40, 240–243. [Google Scholar]
- Keskin, O.; Yalcin, S. A review of the use of somatostatin analogs in oncology. OncoTargets Ther. 2013, 6, 471–483. [Google Scholar]
- Durán-Prado, M.; Gahete, M.D.; Hergueta-Redondo, M.; Martínez-Fuentes, A.J.; Córdoba-Chacón, J.; Palacios, J.; Gracia-Navarro, F.; Moreno-Bueno, G.; Malagón, M.M.; Luque, R.M.; et al. The new truncated somatostatin receptor variant sst5TMD4 is associated to poor prognosis in breast cancer and increases malignancy in MCF-7 cells. Oncogene 2012, 31, 2049–2061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watt, H.L.; Kharmate, G.; Kumar, U. Biology of somatostatin in breast cancer. Mol. Cell. Endocrinol. 2008, 286, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Bogden, A.E.; Taylor, J.E.; Moreau, J.P.; Coy, D.H. Treatment of R-3327 prostate tumors with a somatostatin analogue (somatuline) as adjuvant therapy following surgical castration. Cancer Res. 1990, 50, 2646–2650. [Google Scholar] [PubMed]
- Maulard, C.; Richaud, P.; Droz, J.P.; Jessueld, D.; Dufour-Esquerré, F.; Housset, M. Phase I–II study of the somatostatin analogue lanreotide in hormone-refractory prostate cancer. Cancer Chemother. Pharmacol. 1995, 36, 259–262. [Google Scholar] [CrossRef]
- Mitsogiannis, I.C.; Skolarikos, A.; Deliveliotis, C. Somatostatin analog lanreotide in the treatment of castration-resistant prostate cancer (CRPC). Expert Opin. Pharmacother. 2009, 10, 493–501. [Google Scholar] [CrossRef]
- Colucci, R.; Blandizzi, C.; Ghisu, N.; Florio, T.; Del Tacca, M. Somatostatin inhibits colon cancer cell growth through cyclooxygenase-2 downregulation. Br. J. Pharmacol. 2008, 155, 198–209. [Google Scholar] [CrossRef]
- Schmitz, F.; Otte, J.M.; Stechele, H.U.; Reimann, B.; Banasiewicz, T.; Fölsch, U.R.; Schmidt, W.E.; Herzig, K.H. CCK-B/gastrin receptors in human colorectal cancer. Eur. J. Clin. Invest. 2001, 31, 812–820. [Google Scholar] [CrossRef]
- O’Byrne, K.J.; Schally, A.V.; Thomas, A.; Carney, D.N.; Steward, W.P. Somatostatin, its receptors and analogs, in lung cancer. Chemotherapy 2001, 47, 78–108. [Google Scholar] [CrossRef]
- Macaulay, V.M.; Smith, I.E.; Everard, M.J.; Teale, J.D.; Reubi, J.C.; Millar, J.L. Experimental and clinical studies with somatostatin analogue octreotide in small cell lung cancer. Br. J. Cancer 1991, 64, 451–456. [Google Scholar] [CrossRef] [Green Version]
- Zarogoulidis, K.; Eleftheriadou, E.; Kontakiotis, T.; Gerasimou, G.; Zarogoulidis, P.; Sapardanis, I.; Galaktidou, G.; Sakkas, L.; Gotzamani-Psarrakou, A.; Karatzas, N. Long acting somatostatin analogues in combination to antineoplastic agents in the treatment of small cell lung cancer patients. Lung Cancer Amst. Neth. 2012, 76, 84–88. [Google Scholar] [CrossRef] [PubMed]
- Van Hoek, M.; Hofland, L.J.; de Rijke, Y.B.; van Nederveen, F.H.; de Krijger, R.R.; van Koetsveld, P.M.; Lamberts, S.W.J.; van der Lely, A.J.; de Herder, W.W.; Feelders, R.A. Effects of somatostatin analogs on a growth hormone-releasing hormone secreting bronchial carcinoid, in vivo and in vitro studies. J. Clin. Endocrinol. Metab. 2009, 94, 428–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kouroumalis, E.A. Octreotide for cancer of the liver and biliary tree. Chemotherapy 2001, 47, 150–161. [Google Scholar] [CrossRef] [PubMed]
- Becker, G.; Allgaier, H.-P.; Olschewski, M.; Zähringer, A.; Blum, H. Long-acting octreotide versus placebo for treatment of advanced HCC: A randomized controlled double-blind study. Hepatol. Baltim. Md 2007, 45, 9–15. [Google Scholar] [CrossRef]
- Öberg, K.; Kvols, L.; Caplin, M.; Delle Fave, G.; de Herder, W.; Rindi, G.; Ruszniewski, P.; Woltering, E.A.; Wiedenmann, B. Consensus report on the use of somatostatin analogs for the management of neuroendocrine tumors of the gastroenteropancreatic system. Ann. Oncol. 2004, 15, 966–973. [Google Scholar] [CrossRef]
- Grasso, L.F.S.; Auriemma, R.S.; Pivonello, R.; Colao, A. Adverse events associated with somatostatin analogs in acromegaly. Expert Opin. Drug Saf. 2015, 14, 1213–1226. [Google Scholar] [CrossRef] [Green Version]
- Hutchinson, J.M.; Jennings, J.S.R.; Jones, R.L. Long-acting somatostatin analogue therapy in obscure-overt gastrointestinal bleeding in noncirrhotic portal hypertension: A case report and literature review. Eur. J. Gastroenterol. Hepatol. 2010, 22, 754–758. [Google Scholar] [CrossRef]
- Alvarez-Escola, C.; Cárdenas-Salas, J.J.; Pelegrina, B.; Sanz-Valtierra, A.; Lecumberri, B. Severe scalp hair loss in a female patient with acromegaly treated with lanreotide autogel after unsuccessful surgery. Clin. Case Rep. 2015, 3, 945–948. [Google Scholar] [CrossRef] [Green Version]
- Faggiano, A.; Lo Calzo, F.; Pizza, G.; Modica, R.; Colao, A. The safety of available treatments options for neuroendocrine tumors. Expert Opin. Drug Saf. 2017, 16, 1149–1161. [Google Scholar] [CrossRef]
On-Label |
Endocrinological indications |
(a) First generation SSAs: —Acromegaly * —Symptoms associated with functional GEP-NETs —Unresectable, well-or moderately-differentiated, locally advanced or metastatic GEP-NETs —Thyrotropinomas * |
(b) Second generation SSAs: —Acromegaly * —Cushing’s disease * |
Digestive indications |
(a) First generation SSAs: —Prevention of complications after pancreatic surgery —Upper gastrointestinal hemorrhage due to gastroesophageal varices in patients with cirrhosis |
Off-label |
Endocrinological indications |
—Gonadotropinomas * —DARPs —GEP-NETs in MEN-1 —Refractory diarrhea associated with medullary thyroid cancer —Congenital hyperinsulinism or persistent hyperinsulinemic hypoglycemia of infancy —Diabetic retinopathy and diabetic macular edema —Graves’ orbitopathy |
Digestive indications |
—Dumping syndrome —Digestive and lymphatic fistulas —Hepatorenal polycystosis —Refractory chronic diarrhea |
Non-endocrinological tumors |
—Breast cancer —Colon cancer —Prostate cancer —Small cell lung cancer —Exocrine pancreatic cancer —Hepatocellular cancer |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomes-Porras, M.; Cárdenas-Salas, J.; Álvarez-Escolá, C. Somatostatin Analogs in Clinical Practice: A Review. Int. J. Mol. Sci. 2020, 21, 1682. https://doi.org/10.3390/ijms21051682
Gomes-Porras M, Cárdenas-Salas J, Álvarez-Escolá C. Somatostatin Analogs in Clinical Practice: A Review. International Journal of Molecular Sciences. 2020; 21(5):1682. https://doi.org/10.3390/ijms21051682
Chicago/Turabian StyleGomes-Porras, Mariana, Jersy Cárdenas-Salas, and Cristina Álvarez-Escolá. 2020. "Somatostatin Analogs in Clinical Practice: A Review" International Journal of Molecular Sciences 21, no. 5: 1682. https://doi.org/10.3390/ijms21051682
APA StyleGomes-Porras, M., Cárdenas-Salas, J., & Álvarez-Escolá, C. (2020). Somatostatin Analogs in Clinical Practice: A Review. International Journal of Molecular Sciences, 21(5), 1682. https://doi.org/10.3390/ijms21051682