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Abstract: Manganese oxidizing bacteria can produce biogenic manganese oxides (BMO) on their
cell surface and have been applied in the fields of agriculture, bioremediation, and drinking water
treatment to remove toxic contaminants based on their remarkable chemical reactivity. Herein,
we report for the first time the synthetic application of the manganese oxidizing bacteria, Pseudomonas
putida MnB1 as a whole-cell biocatalyst for the effective oxidation of β-keto ester with excellent
yield. Differing from known chemical protocols toward this transformation that generally necessitate
the use of organic solvents, stoichiometric oxygenating agents and complex chemical catalysts, our
strategy can accomplish it simply under aqueous and mild conditions with higher efficiency than that
provided by chemical manganese oxides. Moreover, the live MnB1 bacteria are capable of continuous
catalysis for this C-O bond forming reaction for several cycles and remain proliferating, highlighting
the favorable merits of this novel protocol for sustainable chemistry and green synthesis.

Keywords: Pseudomonas putida MnB1; biogenic manganese oxides; abiotic manganese oxides;
α-Hydroxy-β-keto esters; whole-cell biocatalysis

1. Introduction

Developing sustainable biocatalytic processes for chemical synthesis has attracted considerable
attention due to the ever-increasing environment concerns [1–3]. Conventional chemical production
provides organic compounds that fulfil fundamental demands of modern society in pharmaceutical,
agricultural, material and other fields, however, often at the expense of environment pollution and
energy consumption. As such, biocatalysis provides a more favorable alternative considering its
merits such as high catalytic activity and selectivity, mild reaction conditions (physiological pH
and temperature), and environmental credentials (enzymes, organic solvent-free medium) [4–6].
In particular, whole-cell biocatalysis possesses unique advantages and extraordinary attractiveness.
First, enzymes inside cells are to some extent in a protected environment and therefore often more
stable than their isolated counterparts [7]. Besides, whole-cell biocatalysis integrates the benefits of
enzyme cascades in a bacterial system and the fast proliferation of a living microbe, thus being more
energy efficient, sustainable and easily recyclable [8]. However, the whole-cell catalytic reactions
necessitate fast transportation of non-toxic substrates across the cell envelope to contact the enzymes,
which essentially limits the substrate scope and reaction rate [9]. Therefore, novel strategies to utilize
microorganisms for useful organic transformations are demanded to broaden the application of
whole-cell biocatalysis in sustainable synthesis of fine chemicals.

Manganese dioxide (MnO2) is a classic oxidant in organic synthesis with broad substrate scope
and high reaction selectivity, as seen in alcohol oxidation, aromatization, oxidative coupling, and
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thiol oxidation [10–14]. In nature, biogenic manganese oxides (BMO) produced by Mn(II) oxidizing
bacteria is widely present in soil and sediment, which has been extensively studied as a chemical
catalyst or oxidizing reagent to remove various organic pollutants [15–17]. Of note, the main content
of BMO is MnO2, which was found to have even larger specific surface area and higher reactivity than
chemically prepared equivalents [18,19]. BMO producing bacteria can be directly applied in the fields
of agriculture, bioremediation, and drinking water treatment to remove toxic contaminants [20–23],
exhibiting extraordinary advantages such as high efficiency, low cost and environmental safety.
Moreover, since the BMO is produced on the surface of bacteria and even secretes to the environment,
these microbes can catalyze reactions without requiring the cell uptake of substrates and thus might
benefit the reaction kinetics. Despite remarkable advances in various fields, the use of Mn(II) oxidizing
bacteria as a whole-cell catalyst for synthesizing fine chemicals has not been explored (Figure 1).
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Figure 1. α-hydroxy-β-keto ester (1) by whole-cell biocatalysis based on biogenic manganese oxides
(BMO).

Pseudomonas putida MnB1, one of the most studied Mn(II) oxidizing bacteria, is ubiquitous in
freshwater and soil, and can be cultivated even in complicated environments [20]. It would oxidize
Mn(II) in liquid and solid media to Mn(IV) and accumulate BMO precipitates on the cell surface [24].
The robustness of P. putida MnB1 lays the groundwork for their prospective synthetic application as
potential biocatalyst. To prove the concept of Mn(II) oxidizing bacteria whole-cell biocatalysis for organic
synthesis, α-hydroxylation of β-keto ester (1) (methyl 1-oxo-2,3-dihydro-1H-indene-2-carboxylate)
was selected as model reaction. This reaction provides the most straightforward access to the
α-hydroxy-β-dicarbonyl, an intriguing moiety commonly found in various biologically active natural
products, agrochemicals, and pharmaceuticals [25–27]. Notably, a number of chemical protocols are
available to accomplish this oxidation to yield product 2 [28–33]. For instance, Lu et al. reported
a Brønsted acid catalytic method with nitrosobenzene as the oxygen source [28], and Meng and
co-workers documented a Zr(IV)/organic peroxide system [30]. In general, the use of organic solvents
and stoichiometric oxygenating agents were necessitated in conjunction with complex chemical
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catalysts, thus strongly compromising reaction economy and environmental friendliness. Herein,
the BMO-based MnB1 catalyzed α-hydroxylation of β-keto ester (1) can be successfully achieved in
water with superior performance than that of chemically produced MnO2. Moreover, the live MnB1
bacteria can be recycled with ease and remain proliferating, thus they are capable of continuously
catalyzing the conversion of substrates. Therefore, this is a sustainable whole-cell biocatalytic system
for efficient oxidation reaction that holds marked advantages for industrial applications due to the
high efficiency, low cost and potential for flow chemistry.

2. Results

2.1. Biogenic Manganese Oxides (BMO) Formation

The reaction was firstly tested with lyophilized powder of the BMO mineralized MnB1 bacteria
(noted as dry m-MnB1). To prepare it, MnB1 was cultured in Lept medium containing 1 mM Mn2+ for
mineralization and the formation of BMO was observed by the production of dark brown sediments
after 35 h. The bacteria were continuously cultured for 5 d before harvesting by centrifugation and
lyophilization. The Mn content in the dry m-MnB1 was determined to be 28.8% according to inductively
coupled plasma optical emission spectrometer (ICP-OES) (Figure S1). This result is consistent with the
respective literature data (18–30%) [18,19].

2.2. Reactivity Comparison of the Dry m-MnB1 with Chemical Manganese Oxides (CMO) toward the
Oxidation of β-Keto Ester

2.2.1. Solvent Effects on Oxidation Rate

The dry m-MnB1 containing the BMO lyophilized together with MnB1 bacteria was mixed with
β-keto ester (1) to test the oxidation reactivity. The performance of dry m-MnB1 was first compared
with commercially available MnO2 powder (CMO) in different media consisting of H2O and acetonitrile
(MeCN) under otherwise identical conditions. The Mn content was adjusted to be the same for both
dry m-MnB1 and CMO. The oxidized product was characterized by 1H NMR spectroscopy (Figure S2).
The yield of product 2 was determined by high performance liquid chromatography (HPLC) using
comparably normalized standards (Figure S3). It was found that the mixed solvent system comprised
of 90% H2O and 10% MeCN gave the highest yield of product 2 for both BMO and CMO (3 h, 94.1%
and 54.7%, respectively) (Figure 2a). Increasing the organic proportion was detrimental. For instance,
the respective yield dropped to 21.8% and 12.7% in MeCN/H2O (3:1). However, a small amount of
MeCN was still necessary to dissolve the organic substrate. Nevertheless, the aqueous system adopted
herein is much more favorable than known protocols exclusively using organic solvents.
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Figure 2. Comparing the synthesis of α-hydroxy-β-keto ester by the BMO (biogenic manganese oxides)
from dry m-MnB1 and CMO (chemical manganese oxides): (a) Effects of reaction media consisting
of H2O/MeCN with different ratios; (b) Effects of dosage of BMO and CMO in H2O/MeCN (9:1);
(c) Correlation of yield of 2 with time; (d) Pseudo-first-order plots of α-hydroxylation of β-keto Ester
by BMO and CMO in the first 3 h.

Notably, in all tested solvent conditions, BMO in dry m-MnB1 revealed significantly higher
reactivity than CMO, and almost 2-fold higher yields were attainable in any given medium
(Figure 2a). These results proved that the dry m-MnB1 possesses superior reactivity and selectivity
than conventional CMO.

2.2.2. Influence of Dosage of Manganese Oxides on Reaction Rate

We subsequently explored the effects of dosage of manganese oxides on the oxidation of compound
1. A mixture of H2O/MeCN (9:1) was employed as the reaction medium and the reaction time was set
at 1 h. As shown in Figure 2b, the ratio of manganese oxides to substrate 1 was found to significantly
impact the oxidation process. As the dosage of BMO from dry m-MnB1 was increased from 0.5 eq. to
1.0 eq., the yield of 2 raised from 42% to 72%. The outcome could be further improved to 91% with
2.0 eq of oxidant, and it became marginally higher with further addition of BMO. These results suggest
2.0 eq. of BMO is adequate. As the substrate 1 dissolved in the reaction medium was originally 5.0 mM,
the factor limiting it from approaching full conversion might be the extremely low concentration at this
point. Analogously, the same set of experiments were conducted with CMO. Although the conversion
of substrate 1 was also evidently promoted along the addition of oxidant, the yield of 2 was constantly
lower than BMO under identical conditions, for instance, as seen from 56% yield versus 93% yield
with 2.5 eq. of manganese oxides. The results also back the notion that the BMO from dry m-MnB1 is
more efficient than the CMO for this oxidation reaction.

2.2.3. Reaction Kinetics

The kinetic parameters for both BMO and CMO mediated oxidation were studied (Figure 2c,d).
It was found that α-hydroxylation of substrate 1 with both BMO from dry m-MnB1 and CMO in



Int. J. Mol. Sci. 2020, 21, 1709 5 of 12

the first 3 h followed Pseudo-first order kinetics, which were expressed as in equation (1), with C:
concentration of 1 (mmol/L) at time t (h), C0: the initial concentration of 1 (mmol/L), and k: the rate
constant (h−1). By transforming Equation (1) into Equation (2),

C = C0·e−k·t (1)

ln
(

c
c0

)
= −k·t (2)

the rate constant can be calculated from the slope of the graph as depicted in Figure 2d. An average
value for the rate constant k of 0.9843 ± 0.0215 h−1 was calculated with BMO from dry m-MnB1, while
on the contrary, the rate constant of CMO was merely 0.296 ± 0.0286 h−1 (Table 1). It is clear that the
oxidation activity of the BMO from dry m-MnB1 is higher than CMO.

Table 1. Kinetic parameters of manganese oxides.

Data Dried BMO 1 CMO 2

Rate constant (k, h−1) 0.9843 ± 0.0215 0.296 ± 0.0286
R2 0.97~0.98 0.98~0.99
1 BMO: biogenic manganese oxides; 2 CMO: chemical manganese oxides.

2.3. Effects of β-Keto Ester 1 on Bacteria Growth

In order to achieve the α-hydroxylation of 1 by directly using live MnB1 bacteria, we moved on
to investigate the influence substrate 1 on the growth of P. putida MnB1 at different concentrations.
As illustrated in Figure 3a and Figure S4, the MnB1 growth profile did not deviate notably from the
standard strain incubation in the presence of 5.0 mM of substrate, while larger concentration (10.0 mM)
exhibited obvious toxicity. Further increase of concentration to 15.0 and 20.0 mM both significantly
suppressed the bacterial growth. Nevertheless, the bacteria were still proliferating even with 20.0 mM
substrate, highlighting the robustness of MnB1.
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2.4. Effects of β-Keto Ester 1 on Manganese Mineralization

The effects of various concentrations of 1 on the manganese mineralization by the model strain
were also probed. However, the manganese mineralization of MnB1 was found to be much more
sensitive to substrate 1. A concentration of 5.0 mM has already shown a significant inhibition on
mineralization process, which was found to be completely repressed at 10.0 mM or higher (Figure 3b).
Since the generation of BMO by P. putida MnB1 was fundamentally accomplished via multicopper
oxidase-catalyzed oxidation of Mn(II) into Mn(VI) in cell extracts within its active center with three
Cu(II) sites [34–36], and the β-keto ester is known to chelate divalent metal ions, we speculate that



Int. J. Mol. Sci. 2020, 21, 1709 6 of 12

compound 1 might potentially act as a multicopper oxidase inhibitor [37] to prohibit manganese
oxide mineralization. Therefore, a maximum substrate concentration of 5.0 mM was selected for the
following whole-cell biocatalytic oxidation of substrate 1.

2.5. Continuous Live MnB1 Catalyzed Synthesis of α-Hydroxy-β-Keto Ester

As the whole-cell catalysts have been previously demonstrated as a continuous and repeated-batch
reaction system [38], herein we explored such potential of live MnB1 forα-hydroxylation of 1. The MnB1
bacteria were cultivated in Lept medium containing 1.0 mM MnCl2 until 0.45 mM BMO were formed
according to leucoberbelin blue (LBB) test [39]. The substrate 1 was then directly added to the culture
medium to reach the concentration of 5.0 mM. During the first round of synthesis, the reaction progress
was monitored as shown in Figure 4a. The reaction rate was fast at the initial stage but slowed
down with the BMO being consumed. The highest conversion could reach 92% after 24 h (Figure 4b).
Afterwards, the MnB1 bacteria were recycled by centrifugation, and washed by PBS before re-culturing
in a fresh medium. The same concentration of fresh substrate was added to the medium when the
BMO concentration reached 0.45 mM again. The yield of product 2 was consistently determined after
24 h. Notably, in consecutive four cycles, virtually identical yield was attainable for each run, and all
were over 90% (92%, 91%, 93% and 94% respectively, Figure 4c). These results clearly suggest that
the MnB1-based whole-cells catalyst can be easily regenerated and recycled for continuous reactions,
which is highly valuable for low cost and sustainable catalysis and flow chemistry.
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3. Discussion

Manganese oxides are known to be generated via oxidation of Mn2+ through both abiotic and
biotic channels in the environment. Related reports indicated that the abiotic manganese oxidation
pathway is much slower than biological processes, which are performed by a large variety of bacteria
and fungi [40,41]. Here, we used P. putida MnB1 as the model strain to generate the BMO. Notably,
P. putida MnB1 is ubiquitous in the freshwater and soil, and its optimal growth temperature is
26~30 ◦C [20], which indicates that the strains are readily available and can be cultivated even in
complicated environments. Thus, the robustness of P. putida MnB1 lays the groundwork for the
prospective industrial application of BMO.
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In recent years, BMO have received broad attention due to its marked redox reactivity, for instance,
for the degradation of the organic pollutants, removal of heavy metal ions, etc. [42,43]. Although these
processes involve various organic transformations, no rational synthesis of organic compounds with
specific bond formation using BMO has been disclosed. In this study, we realized the synthesis of
valuable α-hydroxy-β-keto ester 2 by utilizing BMO as an oxidant to promote the highly selective
C-O bond formation event. Its superior performance than commercially available CMO highlights
a strong capacity for synthetic oxidative reactions, and this is consistent with the previous studies
on degradation applications [44]. In fact, oxidation of substrate 1 with BMO was a spot-to-spot
process based on thin layer chromatography (TLC) analysis, and it was much faster and cleaner than
that with CMO. Mechanistically, BMO produced by the P. putida MnB1 is known to contain larger
inter-layer space and less structural Mn(III) than the CMO [45], thus providing larger specific surface
areas [46]. We presume that these characteristics of BMO are beneficial to render defined interaction
with substrates, and likely account for their better performance observed in our experiments.

Despite remarkable performance of isolated BMO for the oxidation of β-keto ester 1, we were
further motivated to develop an environmentally friendly and efficient catalytic system by using
whole-cell bacteria as a novel type of catalyst. However, tremendous challenges need to be taken
into consideration, such as the compatibility with reaction media, the toxicity of substrate to cells and
others [47]. Results of solvent optimization (Figure 2a) guided us to take mixture of H2O and MeCN
as a suitable reaction medium. However, toxicity experiments showed that higher concentration
(10 mM) of substrate would drastically inhibit the mineralization function of bacteria (Figure 3b).
Jung [35] and Francis [34] independently concluded that the generation of BMO by P. putida MnB1
was fundamentally accomplished by multicopper oxidase, which catalytically oxidizes Mn(II) into
Mn(VI) in cell extracts within its active center with three Cu(II) sites. This activity would get inhibited
by heating or by treatment with a protease. The β-keto ester is known to chelate divalent metal
ions, an essential component in the active site that interacts with amino acid residues of the enzyme.
Therefore, this type of substrate might potentially act as a protein inhibitor [37]. We estimated that
the higher concentration of β-keto ester 1 suppressed the manganese oxidizing partially due to the
toxicity of substrate to the bacteria growth (Figure 3a and Figure S4), and this was probably a result
of the impact of substrate on the activity of the multicopper oxidase. Based on these findings, we
chose 5 mM as an appropriate concentration of substrate to conduct the whole-cell biocatalysis. As the
content of β-keto ester 1 was 5-fold to Mn(II), the obtained 92% yield of product 2 clearly indicates
Mn is operative in a catalytic manner, i.e., the regeneration of BMO by P. putida MnB1. Although a
similar notion has been offered in the degradation of organic pollutants by Ko et al. [18], however, the
recyclability of the bacteria for continuous catalysis has never been demonstrated.

In conclusion, we have realized the synthesis of valuable α-hydroxy-β-keto ester (2) by utilizing
BMO as an oxidant to promote the highly selective C-O bond formation. Its superior performance than
commercially available CMO highlights a strong capacity for synthetic oxidative reactions. Consecutive
repeated-batch synthesis with recovered bacteria by the whole-cell catalytic system was achieved with
consistently high levels of yield recorded [38]. Collectively, the whole-cell catalytic P. putida MnB1 with
biogenic manganese oxides is highly robust, even amenable to organic transformation with somewhat
toxic substrates. As Mn(IV) is extensively utilized in oxidative organic reactions, we anticipate that
this efficient biological system is promising for the benign synthesis of various bioactive substances as
well as bulk fine chemicals to meet the increasing demand for sustainable chemistry.

4. Materials and Methods

4.1. Preparation of Freeze-Dried BMO

The bacterial strain Pseudomonas putida MnB1 [American Type Culture Collection (ATCC) no.
23483] was cultured in the Lept medium (0.5 g/L yeast extract (Ruji, Shanghai, China), 0.5 g/L
Casamino Acids (Coolaber, Beijing, China), 5 mM D(+)-glucose (Macklin, Shanghai, China), 10 mM
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HEPES (N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid, pH 7.5, GBCBIO, Guangzhou, China),
0.48 mM CaC12 (Macklin), 0.83 mM MgSO4 (Macklin), 3.7 µM FeCl3 (Macklin), and 1 mL of trace
element solution (10 mg/L CuSO4•5H2O, 44 mg/L ZnSO4•7H2O, 20 mg CoCl2•6H2O and 13 mg/L
Na2MoO4•2H2O, (Macklin)) containing 1mM MnCl2 (Aladdin, Shanghai, China) at 30 ◦C and shaken
at 150 rpm for 5 d [48]. The suspensions were centrifuged at 8000× g for 20 m and the supernatant was
discarded, sediments of bacteria and BMO were diluted three times with deionized water by means of
centrifugation (20 m at 8000× g), then the mixture of precipitates were collected for freeze-drying to
obtain the dried BMO sample.

4.2. Quantification of Freeze-Dried BMO by Inductive Coupled Plasma Optical Emission Spectrometry
(ICP-OES)

The 25 µg dry m-MnB1 was treated with 200 µL 90% HNO3 overnight and heated at 70 ◦C for
30 min, then was added H2O2 (30%, 200 µL). The resulting mixture was treated to evaporate at 200 ◦C
for 1 h and then dissolved in deionized water to 4 mL solution to be measured by Inductive Coupled
Plasma Optical Emission Spectrometry (ICP-OES 7000 Plus, ThermoFisher, Waltham, MA, USA) to
quantify the amount of Mn2+. ICP-OES combined with a water cross-flow nebulizer and Ar was
run as the carrier gas; auxiliary energy flow, coolant flow, and nebulizer flow were set as 0.7 L/min,
13.00 L/min, and 0.7 L/min, respectively. The analyses were calibrated by gravimetric standards with
different concentrations (2 ppm, 4 ppm, 8 ppm, 16 and 32 ppm, respectively) that were measured
before sample quantification.

4.3. Synthesis of α-Hydroxy-β-Keto Ester by the Dry m-MnB1 and CMO

A reaction mixture (400 µL, MeCN: H2O = 1:1) containing 50 mM β-keto ester 1, 5.0 mg dry
m-MnB1 or 1.75 mg CMO was shaken at 150 rpm, 30 ◦C for 3 h. A control experiment was conducted
without manganese oxide under otherwise identical reaction conditions. All reaction mixtures were
monitored by TLC (hexanes/ethyl acetate = 3:1). Then, the resulting samples were centrifuged at
8000× g for 5 m, supernatant was extracted with dichloromethane and evaporated under reduced
pressure. The dried residues were purified by silica gel chromatography with hexanes/ethyl acetate
(20:1–10:1) to get desired products for the NMR analysis. Finally, the purified samples were used as
standards for the following HPLC detection.

4.3.1. Optimization of the Reaction Medium

The reaction mixtures (400 µL, MeCN: H2O = 3:1, 1:1, 1:3, 1:6 or 1:9) containing 50 mM β-keto
ester (1) (Preparation of this substrate followed a known protocol [49]), 5.0 mg dry m-MnB1 or 1.75 mg
CMO (Aladdin) were shaken at 150 rpm, 30 ◦C for 3 h. The reaction samples were centrifuged at
8000× g for 5 m and supernatant was analyzed using HPLC to calculate the yield of oxidation product.

4.3.2. Assays of Different Dosage of Manganese Oxides on the Oxidation Reaction

Substrate 1 (0.02 mmol) and dry m-MnB1/CMO (Chemical manganese oxides, Innochem, Beijing,
China) (0.01, 0.02, 0.03, 0.04, or 0.05 mmol) were added to test tubes and dissolved in MeCN (40 µL)
and H2O (360 µL). The reaction samples were stirred at 150 rpm, 30 ◦C for 1.5 h. Then, the reaction
systems were centrifuged at 8000× g for 5 m and supernatants were analyzed using HPLC to obtain
the yield of the oxidation product.

4.3.3. Kinetic Measurements of Dry m-MnB1 and CMO

To further compare the reaction efficiency of dry m-MnB1 and CMO, kinetic parameters were
detected. The reaction mixtures (1 (0.02 mmol), dried-BMO/CMO (0.02 mmol), MeCN (40 µL) and
H2O (360 µL) were stirred at 150 rpm, 30 ◦C, and the reaction progress was monitored by yield of the
oxidation product.
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4.4. Bioassays of Substrate β-Keto Ester Tolerance of Pseudomonas putida MnB1

The bacterial strain Pseudomonas putida MnB1 was precultured overnight in LB medium (10 g/L
tryptone, 10 g/L NaCl, 5 g/L yeast extract) at 150 rpm, 30 ◦C and transferred into fresh Lept medium
containing 1 mM MnCl2 and various concentrations of 1 (0 mM, 5 mM, 10 mM, 15 and 20 mM,
respectively). The colony forming units (CFU) were quantified by using the standard spread plate
method [50] every 5 h until the generation of BMO. Simultaneously, the OD600 nm level of bacteria was
performed with microplate reader (3020-675, ThermoFisher).

4.5. Investigation of the Effects of Substrate on Manganese Mineralization

The oxidized Mn content generated in the suspension that was described in the Section 4.1 was
measured at the indicated time points by using leucoberbelin blue (LBB, Sigma-Aldrich, St. Louis, MO,
USA) method as illustrated by Krumbein [39]. With negligible modifications, bacteria culture (10 µL)
was added to 50 µL LBB. After 15 m in the dark at room temperature, deposits were removed by
centrifugation. KMnO4 was used as the standard to confirm the absorbance at 620 nm of supernatant.

4.6. Continuous Biocatalytic Experiments by Whole Cells Based on BMO

The bacterial strain Pseudomonas putida MnB1 was cultured in the Lept medium containing 1 mM
MnCl2 at 150 rpm, 30 ◦C for 5 d to generate the BMO. The concentration of BMO was quantified by LBB
method before adding the 5 mM substrate 1 to the medium. The mixture was then continued to shake
at 150 rpm, 30 ◦C to get target product and the reaction progress was monitored by HPLC analysis.
After the first-round reaction, the bacteria with BMO were collected by centrifugation and diluted
three times with deionized water. The precipitates were added to fresh Lept medium containing 1 mM
MnCl2 to allow the continuous mineralization of manganese at 30 ◦C and 150 rpm. The mixture was
used for the second-round reactions under comparable conditions when the concentration of BMO
was similar with the first-round initial content. Four consecutive rounds of biocatalysis by whole-cell
were conducted and yield of product in each round was measured. All procedures were performed
under rigorous aseptic conditions.

4.7. Methods and Conditions of HPLC Analysis

For HPLC detection, all of the collected supernatant samples were filtered over a 0.22 µm filter
(Millipore, Billerica, MA, USA) and analyzed by HPLC system containing a LC-UV 100 absorbance
detector (Wufeng, Shanghai, China). The compounds were separated on a reverse phase HPLC C18
column (C18 250 × 4.6 mm, 5 µm, Shodex, Tokyo, Japan) at a constant flow rate of 1.0 mL/min and
analysed by UV/Vis detection at 254 nm. Solvent A was deionized water containing 5% trifluoroacetic
acid (TFA, Aladdin) and solvent B was acetonitrile containing 5% TFA. A gradient from 0% to 70%
solvent B was applied from 0 to 5 min, the solvent B decreased 70% to 55% from 5 to 20 m, then
dropped to 5% during 5 m. All analyses were calibrated by the absorption of substrate and product
standards with different concentrations.

4.8. Statistical Analysis

All data were presented as means ± standard deviation of three replicates. Statistical analysis was
completed using SPSS 16.0 (Statistical Package for the Social Sciences, IBM Corp., Armonk, NY, USA).

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/5/1709/
s1.
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