Advances and Challenges in Bacterial Spot Resistance Breeding in Tomato (Solanum lycopersicum L.)
Abstract
:1. Introduction
2. Causal Pathogen, Race Structure, and the Distribution
3. Plant-Pathogen Interactions and BS Disease Resistance
4. Genetics and Breeding Efforts to Improve the BS Disease Resistance So Far
5. Transgenic Resistance to Tomato BS Disease
6. Novel Breeding Strategies to Enhance Tomato BS Disease Resistance
6.1. Exploiting Tomato Genomic Resources
6.2. Genomics-assisted Breeding Approaches (GBA)
6.3. Effectors-based Breeding Strategy
6.4. Genome Editing
6.5. Phenomics-Assisted Breeding
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Potnis, N.; Timilsina, S.; Strayer, A.; Shantharaj, D.; Barak, J.D.; Paret, M.L.; Vallad, G.E.; Jones, J.B. Bacterial spot of tomato and pepper: Diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Mol. Plant Pathol. 2015, 16, 907–920. [Google Scholar] [CrossRef]
- Pohronezny, K.; Volin, R.B. The effect of bacterial spot on yield and quality of fresh market tomatoes. HortScience 1983, 18, 69–70. [Google Scholar]
- Horvath, D.M.; Stall, R.E.; Jones, J.B.; Pauly, M.H.; Vallad, G.E.; Dahlbeck, D.; Staskawicz, B.J.; Scott, J.W. Transgenic resistance confers effective field level control of bacterial spot disease in tomato. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Vallad, G.E.; Timilsina, S.; Adkison, H.; Potnis, N.; Minsavage, G.; Jones, J.; Goss, E. A recent survey of Xanthomonads causing bacterial spot of tomato in Florida provides insights into management strategies. In Proceedings of the 2013 Florida Tomato Institute, Naples, FL, USA, 4 September 2013; Ozores-Hampton, M., Snodgrass, C., Eds.; University of Florida: Naples, FL, USA, 2013; p. 25. [Google Scholar]
- Ma, X.; Ivey, M.L.L.; Miller, S.A. First report of Xanthomonas gardneri causing bacterial spot of tomato in Ohio and Michigan. Plant Dis. 2011, 95, 1584. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.B.; Lacy, G.H.; Bouzar, H.; Stall, R.E.; Schaad, N.W. Reclassification of the xanthomonads associated with bacterial spot disease of tomato and pepper. Syst. Appl. Microbiol. 2004, 27, 755–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minsavage, G.; Balogh, B.; Stall, R.; Jones, J.B. New tomato races of Xanthomonas campestris pv. vesicatoria associated with mutagenesis of tomato race 3 strains. Phytopathology 2003, 93, S62. [Google Scholar]
- Astua-Monge, G.; Minsavage, G.V.; Stall, R.E.; Vallejos, C.E.; Davis, M.J.; Jones, J.B. Xv4-vrxv4: A new gene-for-gene interaction identified between Xanthomonas campestris pv. vesicatoria race T3 and the wild tomato relative Lycopersicon pennellii. Mol. Plant Microbe Interact. 2000, 13, 1346–1355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adhikari, P.; Adhikari, T.; Timilsina, S.; Meadows, I.; Jones, J.B.; Panthee, D.R.; Louws, F.J. Phenotypic and genetic diversity of Xanthomonas perforans populations from tomato in North Carolina. Phytopathology 2019, 109, 1533–1543. [Google Scholar] [CrossRef]
- Ivey, M.L.L.; Strayer, A.; Sidhu, J.K.; Minsavage, G.V. Bacterial leaf spot of tomato (Solanum lycopersicum) in Louisiana is caused by Xanthomonas perforans, tomato race 4. Plant Dis. 2016, 100, 1233. [Google Scholar] [CrossRef]
- Cuppels, D.A.; Louws, F.J.; Ainsworth, T. Development and evaluation of PCR-based diagnostic assays for the bacterial speck and bacterial spot pathogens of tomato (vol 90, pg 451, 2006). Plant Dis. 2006, 90, 969. [Google Scholar] [CrossRef] [Green Version]
- Abbasi, P.A.; Khabbaz, S.E.; Weselowski, B.; Zhang, L. Occurrence of copper-resistant strains and a shift in Xanthomonas spp. causing tomato bacterial spot in Ontario. Can. J. Microbiol. 2015, 61, 753–761. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Olson, T.N.; Peffer, N.D.; Nikolaeva, E.V.; Park, S.; Kang, S. First report of bacterial spot of tomato caused by Xanthomonas gardneri in Pennsylvania. Plant Dis. 2010, 94, 638. [Google Scholar] [CrossRef] [PubMed]
- Stukenbrock, E.H.; McDonald, B.A. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. Mol. Plant Microbe Interact. 2009, 22, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Piquerez, S.J.M.; Harvey, S.E.; Beynon, J.L.; Ntoukakis, V. Improving crop disease resistance: Lessons from research on Arabidopsis and tomato. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, J.W.; Jones, J.B. Sources of resistance to bacterial spot in tomato. HortScience 1986, 21, 304–306. [Google Scholar]
- Scott, J.W.; Jones, J.B.; Somodi, G.C.; Stall, R.E. Screening tomato accessions for resistance to Xanthomonas-campestris pv. vesicatoria, race T3. HortScience 1995, 30, 579–581. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Hutton, S.F.; Robbins, M.D.; Sim, S.C.; Scott, J.W.; Yang, W.C.; Jones, J.B.; Francis, D.M. Molecular mapping of hypersensitive resistance from tomato ’Hawaii 7981’ to Xanthomonas perforans race T3. Phytopathology 2011, 101, 1217–1223. [Google Scholar] [CrossRef] [Green Version]
- Liabeuf, D.; Francis, D.M.; Sim, S.C. Screening cultivated and wild tomato germplasm for resistance to Xanthomonas gardneri. In Proceedings of the IV International Symposium on Tomato Diseases, Orlando, FL, USA, 24–27 June 2013; Paret, M.L., Vallad, G.E., Zhang, S., Jones, J.B., Eds.; University of Florida: Naples, FL, USA, 2015; Volume 1069, pp. 65–70. [Google Scholar]
- Scott, J.W.; Miller, S.A.; Stall, R.E.; Jones, J.B.; Somodi, G.C.; Barbosa, V.; Francis, D.L.; Sahin, F. Resistance to race T2 of the bacterial spot pathogen in tomato. HortScience 1997, 32, 724–727. [Google Scholar] [CrossRef]
- Scott, J.W.; Hutton, S.F.; Shekasteband, R.; Sim, S.C.; Francis, D.M. Identification of tomato bacterial spot race T1, T2, T3, T4, and Xanthomonas gardneri resistance QTLs derived from PI 114490 populations selected for race T4. In Proceedings of the IV International Symposium on Tomato Diseases, Orlando, FL, USA, 24–27 June 2013; Paret, M.L., Vallad, G.E., Zhang, S., Jones, J.B., Eds.; University of Florida: Naples, FL, USA, 2015; Volume 1069, pp. 53–58. [Google Scholar]
- Whalen, M.C.; Wang, J.F.; Carland, F.M.; Heiskell, M.E.; Dahlbeck, D.; Minsavage, G.V.; Jones, J.B.; Scott, J.W.; Stall, R.E.; Staskawicz, B.J. Avirulence gene avrRxv from Xanthomonas campestris Pv vesicatoria specifies resistance on tomato line Hawaii-7998. Mol. Plant Microbe Interact. 1993, 6, 616–627. [Google Scholar] [CrossRef]
- Wang, J.F.; Stall, R.E.; Vallejos, C.E. Genetic analysis of a complex hypersensitive reaction to bacterial spot in tomato. Phytopathology 1994, 84, 126–132. [Google Scholar] [CrossRef]
- Yu, Z.H.; Wang, J.F.; Stall, R.E.; Vallejos, C.E. Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas-campestris pv. vesicatoria (Doidge) dye. Genetics 1995, 141, 675–682. [Google Scholar] [PubMed]
- Yang, W.; Miller, S.A.; Francis, D.M.; Sacks, E.J.; Lewis Ivey, M.L. Resistance in Lycopersicon esculentum intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 2005, 95, 519–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sim, S.C.; Robbins, M.D.; Wijeratne, S.; Wang, H.; Yang, W.C.; Francis, D.M. Association analysis for Bacterial spot resistance in a directionally selected complex breeding population of tomato. Phytopathology 2015, 105, 1437–1445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scott, J.W.; Francis, D.M.; Miller, S.A.; Somodi, G.C.; Jones, J.B. Tomato bacterial spot resistance derived from PI 114490; Inheritance of resistance to race T2 and relationship across three pathogen races. J. Am. Soc. Hort. Sci. 2003, 128, 698–703. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.F.; Jones, J.B.; Scott, J.W.; Stall, R.E. A new race of the tomato group of strains of Xanthomonas campestris pv. vesicatoria. Phytopathology 1990, 80, 1070. [Google Scholar]
- Scott, J.W.; Stall, R.E.; Jones, J.B.; Somodi, G.C. A single gene controls the hypersensitive response of Hawaii 7981 to race 3 (T3) of the bacterial spot pathogen. Rep. Tomato Genet. Coop. 1996, 46, 23. [Google Scholar]
- Jones, J.B.; Stall, R.E.; Scott, J.W.; Somodi, G.C.; Bouzar, H.; Hodge, N.C. A 3rd tomato race of Xanthomonas-campestris pv vesicatoria. Plant Dis. 1995, 79, 395–398. [Google Scholar] [CrossRef]
- Robbins, M.D.; Darrigues, A.; Sim, S.C.; Masud, M.A.T.; Francis, D.M. Characterization of hypersensitive resistance to bacterial spot race T3 (Xanthomonas perforans) from tomato accession PI 128216. Phytopathology 2009, 99, 1037–1044. [Google Scholar] [CrossRef] [Green Version]
- Pei, C.C.; Wang, H.; Zhang, J.Y.; Wang, Y.Y.; Francis, D.M.; Yang, W.C. Fine mapping and analysis of a candidate gene in tomato accession PI128216 conferring hypersensitive resistance to bacterial spot race T3. Appl. Genet. 2012, 124, 533–542. [Google Scholar] [CrossRef]
- Hutton, S. Inheritance and Mapping of Resistance to Bacterial spot race T4 (Xanthomonas perforans) in Tomato, and its Relationship to race T3 Hypersensitivity, and Inheritance of race T3 Hypersensitivity from PI 126932. Ph.D. Thesis, University of Florida, Florida, FL, USA, 2008. [Google Scholar]
- Sun, H.; Liu, X.; Li, W.; Yang, W. Preliminary mapping of a gene in tomato accession LA1589 conferring resistance to race T3 of bacterial spot. J. Agric. Univ. Hebei 2011, 6, 12. [Google Scholar]
- Hutton, S.F.; Scott, J.W.; Jones, J.B. Inheritance of resistance to bacterial spot race T4 from three tomato breeding lines with differing resistance backgrounds. J. Am. Soc. Hort. Sci. 2010, 135, 150–158. [Google Scholar] [CrossRef]
- Stall, R.E.; Jones, J.B.; Minsavage, G.V. Durability of resistance in tomato and pepper to Xanthomonads causing bacterial spot. Annu. Rev. Phytopathol. 2009, 47, 265–284. [Google Scholar] [CrossRef] [PubMed]
- Sharlach, M.; Dahlbeck, D.; Liu, L.; Chiu, J.; Jimenez-Gomez, J.M.; Kimura, S.; Koenig, D.; Maloof, J.N.; Sinha, N.; Minsavage, G.V.; et al. Fine genetic mapping of RXopJ4, a bacterial spot disease resistance locus from Solanum pennellii LA716. Appl. Genet. 2013, 126, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Hutton, S.F.; Scott, J.W.; Yang, W.; Sim, S.-C.; Francis, D.M.; Jones, J.B. Identification of QTL associated with resistance to bacterial spot race T4 in tomato. Appl. Genet. 2010, 121, 1275–1287. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.W.; Hutton, S.F.; Jones, J.B.; Francis, D.M.; Miller, S.A. Resistance to bacterial spot race T4 and breeding for durable, broad-spectrum resistance to other races. Rep. Tomato Genet. Coop. 2006, 56, 33–36. [Google Scholar]
- Yang, W.; Francis, D.M. Marker-assisted selection for combining resistance to bacterial spot and bacterial speck in tomato. J. Am. Soc. Hort. Sci. 2005, 130, 716–721. [Google Scholar] [CrossRef] [Green Version]
- Baimei, Z.; Haipeng, C.; Junjie, D.; Wencai, Y. Allelic tests and sequence analysis of three genes for resistance to Xanthomonas perforans race T3 in tomato. Hortic. Plant J. 2015, 1, 41–47. [Google Scholar]
- Bhattarai, K.; Louws, F.J.; Williamson, J.D.; Panthee, D.R. Resistance to Xanthomonas perforans race T4 causing bacterial spot in tomato breeding lines. Plant Pathol. 2017, 66, 1103–1109. [Google Scholar] [CrossRef]
- Aleksandrova, K.; Ganeva, D.; Bogatzevska, N. Xanthomonas gardneri–characterization and resistance of Bulgarian tomato varieties. Türk Tarım Ve Doğa Bilimleri 2014, 7, 1540–1545. [Google Scholar]
- Potnis, N.; Minsavage, G.; Smith, J.K.; Hurlbert, J.C.; Norman, D.; Rodrigues, R.; Stall, R.E.; Jones, J.B. Avirulence proteins AvrBs7 from Xanthomonas gardneri and AvrBs1.1 from Xanthomonas euvesicatoria contribute to a novel gene-for-gene interaction in pepper. Mol. Plant Microbe Interact. 2012, 25, 307–320. [Google Scholar] [CrossRef] [Green Version]
- Schornack, S.; Minsavage, G.V.; Stall, R.E.; Jones, J.B.; Lahaye, T. Characterization of AvrHah1, a novel AvrBs3-like effector from Xanthomonas gardneri with virulence and avirulence activity. New Phytol. 2008, 179, 546–556. [Google Scholar] [CrossRef] [PubMed]
- Tai, T.H.; Dahlbeck, D.; Clark, E.T.; Gajiwala, P.; Pasion, R.; Whalen, M.C.; Stall, R.E.; Staskawicz, B.J. Expression of the Bs2 pepper gene confers resistance to bacterial spot disease in tomato. Proc. Natl. Acad. Sci. USA 1999, 96, 14153–14158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dangl, J.L.; Horvath, D.M.; Staskawicz, B.J. Pivoting the plant immune system from dissection to deployment. Science 2013, 341, 746–751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallejos, C.E.; Jones, V.; Stall, R.E.; Jones, J.B.; Minsavage, G.V.; Schultz, D.C.; Rodrigues, R.; Olsen, L.E.; Mazourek, M. Characterization of two recessive genes controlling resistance to all races of bacterial spot in peppers. Appl. Genet. 2010, 121, 37–46. [Google Scholar] [CrossRef]
- Kunwar, S.; Iriarte, F.; Fan, Q.R.; da Silva, E.E.; Ritchie, L.; Nguyen, N.S.; Freeman, J.H.; Stall, R.E.; Jones, J.B.; Minsavage, G.V.; et al. Transgenic expression of EFR and Bs2 genes for field management of bacterial wilt and bacterial spot of tomato. Phytopathology 2018, 108, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Vleeshouwers, V.; Rietman, H.; Krenek, P.; Champouret, N.; Young, C.; Oh, S.K.; Wang, M.Q.; Bouwmeester, K.; Vosman, B.; Visser, R.G.F.; et al. Effector genomics accelerates discovery and functional profiling of potato disease resistance and Phytophthora infestans avirulence genes. PLoS ONE 2008, 3, 8. [Google Scholar] [CrossRef]
- Domazakis, E.; Lin, X.; Aguilera-Galvez, C.; Wouters, D.; Bijsterbosch, G.; Wolters, P.J.; Vleeshouwers, V. Effectoromics-based identification of cell surface receptors in potato. In Plant Pattern Recognition Receptors: Methods and Protocols; Shan, L., He, P., Eds.; Springer: Cham, Switzerland, 2017; Volume 1578, pp. 337–353. [Google Scholar]
- Huang, S.W.; van der Vossen, E.A.G.; Kuang, H.H.; Vleeshouwers, V.; Zhang, N.W.; Borm, T.J.A.; van Eck, H.J.; Baker, B.; Jacobsen, E.; Visser, R.G.F. Comparative genomics enabled the isolation of the R3a late blight resistance gene in potato. Plant J. 2005, 42, 251–261. [Google Scholar] [CrossRef]
- Zhang, M.; Coaker, G. Harnessing effector-triggered immunity for durable disease resistance. Phytopathology 2017, 107, 912–919. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.G.; Zhang, Y.Z.; Orbovic, V.; Xu, J.; White, F.F.; Jones, J.B.; Wang, N. Genome editing of the disease susceptibility gene CsLOB1 in citrus confers resistance to citrus canker. Plant Biotechnol. J. 2017, 15, 817–823. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Liu, B.; Spalding, M.H.; Weeks, D.P.; Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nat. Biotechnol. 2012, 30, 390–392. [Google Scholar] [CrossRef]
- Stewart, E.L.; McDonald, B.A. Measuring quantitative virulence in the wheat pathogen Zymoseptoria tritici using high-throughput automated image analysis. Phytopathology 2014, 104, 985–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, S.; Tabata, S.; Hirakawa, H.; Asamizu, E.; Shirasawa, K.; Isobe, S.; Kaneko, T.; Nakamura, Y.; Shibata, D.; Aoki, K.; et al. Tomato Genome, C. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 2012, 485, 635–641. [Google Scholar]
- Gao, L.; Gonda, I.; Sun, H.; Ma, Q.; Bao, K.; Tieman, D.M.; Burzynski-Chang, E.A.; Fish, T.L.; Stromberg, K.A.; Sacks, G.L.; et al. The tomato pan-genome uncovers new genes and a rare allele regulating fruit flavor. Nat. Genet. 2019, 51, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Cambiaso, V.; Pratta, G.R.; da Costa, J.H.P.; Zorzoli, R.; Francis, D.M.; Rodriguez, G.R. Whole genome re-sequencing analysis of two tomato genotypes for polymorphism insight in cloned genes and a genetic map construction. Sci. Hortic. 2019, 247, 58–66. [Google Scholar] [CrossRef]
- Menda, N.; Strickler, S.R.; Mueller, L.A. Advances in tomato research in the post-genome era. Plant Biotechnol. 2013, 30, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Ranc, N.; Muños, S.; Xu, J.; Le Paslier, M.-C.; Chauveau, A.; Bounon, R.; Rolland, S.; Bouchet, J.-P.; Brunel, D.; Causse, M. Genome-wide association mapping in tomato (Solanum lycopersicum) is possible using genome admixture of Solanum lycopersicum var. cerasiforme. G3: Genes| Genomes| Genet. 2012, 2, 853–864. [Google Scholar] [CrossRef] [Green Version]
- Bauchet, G.; Grenier, S.; Samson, N.; Bonnet, J.; Grivet, L.; Causse, M. Use of modern tomato breeding germplasm for deciphering the genetic control of agronomical traits by genome wide association study. Appl. Genet. 2017, 130, 875–889. [Google Scholar] [CrossRef]
- Sauvage, C.; Segura, V.; Bauchet, G.; Stevens, R.; Do, P.T.; Nikoloski, Z.; Fernie, A.R.; Causse, M. Genome-wide association in tomato reveals 44 candidate loci for fruit metabolic traits. Plant Physiol. 2014, 165, 1120–1132. [Google Scholar] [CrossRef] [Green Version]
- Phan, N.T.; Sim, S.C. Genomic tools and their implications for vegetable breeding. Hortic. Sci. Technol. 2017, 35, 149–164. [Google Scholar]
- Shirasawa, K.; Fukuoka, H.; Matsunaga, H.; Kobayashi, Y.; Kobayashi, I.; Hirakawa, H.; Isobe, S.; Tabata, S. Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res. 2013, 20, 593–603. [Google Scholar] [CrossRef] [Green Version]
- Potnis, N.; Branham, S.E.; Jones, J.B.; Wechter, W.P. Genome-wide association study of resistance to Xanthomonas gardneri in the USDA pepper (Capsicum) collection. Phytopathology 2019, 109, 1217–1225. [Google Scholar] [CrossRef] [PubMed]
- Duangjit, J.; Causse, M.; Sauvage, C. Efficiency of genomic selection for tomato fruit quality. Mol. Breed. 2016, 36, 29. [Google Scholar] [CrossRef]
- Liabeuf, D.; Sim, S.C.; Francis, D.M. Comparison of marker-based genomic estimated breeding values and phenotypic evaluation for selection of Bacterial spot resistance in tomato. Phytopathology 2018, 108, 392–401. [Google Scholar] [CrossRef] [Green Version]
- Du, J.; Vleeshouwers, V.G. The do’s and don’ts of effectoromics. In Plant-pathogen Interactions: Methods in Molecular Biology (Methods and Protocols); Birch, P., Jones, J., Bos, J., Eds.; Humana Press: Totowa, NJ, USA, 2014; pp. 257–268. [Google Scholar]
- Swords, K.M.; Dahlbeck, D.; Kearney, B.; Roy, M.; Staskawicz, B.J. Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J. Bacteriol. 1996, 178, 4661–4669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrahamian, P.; Timilsina, S.; Minsavage, G.V.; Kc, S.; Goss, E.M.; Jones, J.B.; Vallad, G.E. The type III effector AvrBsT enhances Xanthomonas perforans fitness in field-grown tomato. Phytopathology 2018, 108, 1355–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.J.; Wang, C.L.; Liu, P.Q.; Lei, C.L.; Hao, W.; Gao, Y.; Liu, Y.G.; Zhao, K.J. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS ONE 2016, 11, e0154027. [Google Scholar] [CrossRef] [PubMed]
- Belhaj, K.; Chaparro-Garcia, A.; Kamoun, S.; Nekrasov, V. Plant genome editing made easy: Targeted mutagenesis in model and crop plants using the CRISPR/Cas system. Plant Methods 2013, 9, 39. [Google Scholar] [CrossRef] [Green Version]
- Belhaj, K.; Chaparro-Garcia, A.; Kamoun, S.; Patron, N.; Nekrasov, V. Editing plant genomes with CRISPR/Cas9. Curr. Opin. Biotechnol. 2015, 32, 76–84. [Google Scholar] [CrossRef]
- Ainley, W.M.; Sastry-Dent, L.; Welter, M.E.; Murray, M.G.; Zeitler, B.; Amora, R.; Corbin, D.R.; Miles, R.R.; Arnold, N.L.; Strange, T.L.; et al. Trait stacking via targeted genome editing. Plant Biotechnol. J. 2013, 11, 1126–1134. [Google Scholar] [CrossRef]
- Mushtaq, M.; Sakina, A.; Wani, S.H.; Shikari, A.B.; Tripathi, P.; Zaid, A.; Galla, A.; Abdelrahman, M.; Sharma, M.; Singh, A.K.; et al. Harnessing genome editing techniques to engineer disease resistance in plants. Front. Plant Sci. 2019, 10, 550. [Google Scholar] [CrossRef] [Green Version]
- Pan, C.; Ye, L.; Qin, L.; Liu, X.; He, Y.; Wang, J.; Chen, L.; Lu, G. CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations. Sci. Rep. 2016, 6, 24765. [Google Scholar] [CrossRef] [PubMed]
- Nekrasov, V.; Wang, C.; Win, J.; Lanz, C.; Weigel, D.; Kamoun, S. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 2017, 7, 482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ortigosa, A.; Gimenez-Ibanez, S.; Leonhardt, N.; Solano, R. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol. J. 2019, 17, 665–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Zhang, H.Y.; Zhu, H.L. CRISPR technology is revolutionizing the improvement of tomato and other fruit crops. Hortic. Res. 2019, 6, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mir, R.R.; Choudhary, N.; Singh, B.; Khandy, I.A.; Bawa, V.; Sofi, P.; Wani, A.; Kumari, S.; Jain, S.; Kumar, A. Harnessing genomics through phenomics. In Phenomics in Crop Plants: Trends, Options and Limitations; Kumar, J., Pratap, A., Kumar, S., Eds.; Springer: New Delhi, India, 2015; pp. 273–283. [Google Scholar]
- Bhat, J.A.; Salgotra, R.K.; Dar, M.Y. Phenomics: A challenge for crop improvement in genomic era. Mol. Plant Breed. 2015, 6, 1–11. [Google Scholar] [CrossRef]
- Chen, D.; Chen, M.; Altmann, T.; Klukas, C. Bridging genomics and phenomics. In Approaches in Integrative Bioinformatics; Chen, M., Hofestädt, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 299–333. [Google Scholar]
- Giglioti, É.A.; Sumida, C.H.; Canteri, M.G. Disease phenomics. In Phenomics; Fritsche-Neto, R., Borém, A., Eds.; Springer: Cham, Switzerland, 2015. [Google Scholar]
- Bock, C.H.; Poole, G.H.; Parker, P.E.; Gottwald, T.R. Plant disease severity estimated visually, by digital photography and image analysis, and by hyperspectral imaging. Crit. Rev. Plant Sci. 2010, 29, 59–107. [Google Scholar] [CrossRef]
- Xie, W.L.; Yu, K.F.; Pauls, K.P.; Navabi, A. Application of image analysis in studies of quantitative disease resistance, exemplified using common bacterial blight-common bean pathosystem. Phytopathology 2012, 102, 434–442. [Google Scholar] [CrossRef] [Green Version]
Race Type | Resistance Genotype | Species a | Resistant Genes b | Chromosome c | Bacterial Effector d | Markers e | References |
---|---|---|---|---|---|---|---|
T1 (before 1989) | HI 7998 (HR) | S. lycopersicum | Rx3 | 5 | avrRxv | Rx3 -L1, SP5, TOM196 (SSR), TOM144 (SSR), COSOH57(SNP) | [16,18,22,23,24,25,26] |
Rx2 | 1 | [16,22,23,24] | |||||
Rx1 | 1 | [16,22,23,24] | |||||
PI114490 | S. lycopersicum var. cerasiformae | quantitative | 2,3,10,11 | [21] | |||
T2 (1989) | PI114490 | S. lycopersicum var. cerasiformae | quantitative | 2,3,10,11 | deletion of 680 bp region of avrRxv | [20,21,22,27,28] | |
T3 (1992) | HI 7981 (HR) | S. lycopersicum | Xv3 | 11 | avrXv3 | cLEC-24-C3 (SNP), SL10029 (SNP) | [17,18,29,30] |
PI 128216 (HR) | S. pimpenellifolium | Rx4 | 11 | avrXv3 | pcc12 | [17,31,32] | |
PI 126932 (HR) | S. pimpenellifolium | Rx4 | 11 | avrXv3 | [18,33] | ||
LA716 (HR) | S. pennelii | Xv4 | avrXv4 | [8] | |||
LA 1589 (HR) | S. pimpenellifolium | RxLA1589 | 11 | avrXv3 | [34] | ||
PI114490 | S. lycopersicum var. cerasiformae | quantitative | 2,3,10 | - | - | [21] | |
PI 126428 | quantitative | - | - | - | [17] | ||
PI 340905-S | quantitative | - | - | - | [17] | ||
PI 155372 | quantitative | - | - | - | [17] | ||
Fla7600 | breeding line | Rx3 and Xv3 | - | - | [18] | ||
Fla 8233 | breeding line | quantitative | [35] | ||||
Fla 8517 | breeding line | quantitative | [35] | ||||
Fla 8326 | breeding line | quantitative | [35] | ||||
T4 (1998) | LA 716 (HR) | S. penneli | RXopJ4 | 6 | XopJ4 | J350 & J352 | [8,36,37] |
PI114490 | S. lycopersicum var. cerasiformae | quantitative | 2,3,10,11 | - | C2_Atlg10050 for QTL on chr 11 | [21,38] | |
PI 128216 | S. pimpenellifolium | quantitative | - | - | - | [39] | |
PI 126932 | S. pimpenellifolium | quantitative | - | - | - | [39] | |
Fla 8233 | breeding line | quantitative | 11 | - | - | [35,38] | |
Fla 8517 | breeding line | quantitative | 3, 11 | - | - | [35,38] | |
Fla 8326 | breeding line | quantitative | 11 | - | - | [35,38] | |
X. gardneri | LA2533 (HR) | S. pimpenellifolium | - | - | - | - | [19] |
LA1936 (HR) | S. pimpenellifolium | - | - | - | - | [19] | |
PI 128216 (HR) | S. pimpenellifolium | - | - | - | - | [19] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adhikari, P.; Adhikari, T.B.; Louws, F.J.; Panthee, D.R. Advances and Challenges in Bacterial Spot Resistance Breeding in Tomato (Solanum lycopersicum L.). Int. J. Mol. Sci. 2020, 21, 1734. https://doi.org/10.3390/ijms21051734
Adhikari P, Adhikari TB, Louws FJ, Panthee DR. Advances and Challenges in Bacterial Spot Resistance Breeding in Tomato (Solanum lycopersicum L.). International Journal of Molecular Sciences. 2020; 21(5):1734. https://doi.org/10.3390/ijms21051734
Chicago/Turabian StyleAdhikari, Pragya, Tika B. Adhikari, Frank J. Louws, and Dilip R. Panthee. 2020. "Advances and Challenges in Bacterial Spot Resistance Breeding in Tomato (Solanum lycopersicum L.)" International Journal of Molecular Sciences 21, no. 5: 1734. https://doi.org/10.3390/ijms21051734
APA StyleAdhikari, P., Adhikari, T. B., Louws, F. J., & Panthee, D. R. (2020). Advances and Challenges in Bacterial Spot Resistance Breeding in Tomato (Solanum lycopersicum L.). International Journal of Molecular Sciences, 21(5), 1734. https://doi.org/10.3390/ijms21051734