EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression
Abstract
:1. Introduction
2. Results
2.1. Behavioral Measurements
2.2. n-3 and n-6 PUFAs Profiles in the Brain
2.3. Changes of Serum Levels of Total Cholesterol (T-CHO) and Corticosterone
2.4. Changes in the Concentration of Neurotransmitters and Metabolites in the Hippocampus
2.5. Cytokine Concentrations in the Hippocampus
2.6. Changes in Glial Activation
2.7. Hippocampal Expressions of BDNF, Trk B and p75NTR Receptors
2.8. Glial Cell-Derived Neurotrophic Factor (GDNF) and Nerve Growth Factor (NGF)Expressed in the Hippocampus
2.9. The Activity of NF-ΚB and p38 Pathways in the Hippocampus
2.10. Changes of Apoptosis Related Factors in the Hippocampus
3. Discussion
4. Materials and Methods
4.1. Animals and Experimental Procedure
4.2. Diets
4.3. Behavior Tests
4.3.1. Sucrose Preference Test
4.3.2. Forced Swimming Test
4.3.3. Open Field Test
4.4. Lipid Extraction and Gas Chromatography (GC)Analysis for Brain n3/n6 PUFA Profile
4.5. Measurement of Serum Total Cholesterol and Corticosterone Levels
4.6. High-Performance Liquid Chromatography (HPLC) Analysis of Neurotransmitters and Metabolites in the Hippocampus
4.7. Measurement of Pro-Inflammatory Cytokines Contents in the Hippocampus by ELISA Kits
4.8. Western Blotting
4.9. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
EPA | Eicosapentaenoic acid |
DHA | Docosahexaenoic acid |
CUMS | Chronic unpredictable mild stress |
IL | Interleukin |
TNF-α | Tumor necrosis factor-α |
BDNF | Brain-derived neurotrophic factor |
HPA | Hypothalamic-pituitary adrenal |
5-HT | Serotonin |
DA | Dopamine |
NE | Noradrenaline |
IDO | Indoleamine-2,3-dioxygenase |
MAPK | Mitogen-activated protein kinase |
ROS | Reactive oxygen species |
RNS | Reactive nitrogen species |
TrkB | Tyrosine kinase receptor B |
PPAR | Peroxisome proliferator-activated receptors |
PUFAs | Polyunsaturated essential fatty acids |
NGF | Nerve growth factor |
SPT | Sucrose preference test |
OFT | Open field test |
FST | Forced swimming test |
LA | Linolcic acid |
GLA | γ-linolenic acid; |
DGLA | Dinomo-γ-linolenic acid |
AA | arachidonic acid |
ALA | α-Linolenic acid |
DPA | Docosapentaenoic acid |
MHPG | 3-methoxy-4-hydroxyphenylglycol |
DOPAC | 3,4-dihydroxyphenylacetic acid |
5-HIAA | 5-hydroxyindole acetic acid |
HVA | Homov anillic acid |
5-LOX | 5-lipoxygenase |
PPARγ | Heroxisome proliferator-activated receptor gamma |
PI3 K | Hhosphoinositide 3-kinase |
ELISA | Enzyme-linked immunosorbent assay |
References
- Wee Yong, V. Inflammation in neurological disorders: A help or a hindrance? Neuroscientist 2010, 16, 408–420. [Google Scholar] [CrossRef] [PubMed]
- Czlonkowska, A.; Kurkowska-Jastrzebska, I. Inflammation and gliosis in neurological diseases—Clinical implications. J. Neuroimmunol. 2011, 231, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Maes, M. Depression is an inflammatory disease, but cell-mediated immune activation is the key component of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 664–675. [Google Scholar] [CrossRef] [PubMed]
- Leonard, B.; Maes, M. Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neurosci. Biobehav. Rev. 2012, 36, 764–785. [Google Scholar] [CrossRef]
- Heim, C.; Owens, M.J.; Plotsky, P.M.; Nemeroff, C.B. The role of early adverse life events in the etiology of depression and posttraumatic stress disorder. Focus on corticotropin-releasing factor. Ann. N. Y. Acad. Sci. 1997, 821, 194–207. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Zhang, M.Q.; Xue, Y.; Yang, R.; Tang, M.M. Dietary of n-3 polyunsaturated fatty acids influence neurotransmitter systems of rats exposed to unpredictable chronic mild stress. Behav. Brain. Res. 2019, 376, 112172. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y.P.; Li, Y.Y.; Liu, B.P.; Wang, H.Y.; Li, K.W.; Zhao, S.; Song, C. Minocycline ameliorates depressive behaviors and neuro-immune dysfunction induced by chronic unpredictable mild stress in the rat. Behav. Brain. Res. 2019, 356, 348–357. [Google Scholar] [CrossRef]
- Song, C.; Wang, H. Cytokines mediated inflammation and decreased neurogenesis in animal models of depression. Prog. Neuropsychopharmacol. Biol. Psychiatry 2011, 35, 760–768. [Google Scholar] [CrossRef]
- Miura, H.; Ozaki, N.; Sawada, M.; Isobe, K.; Ohta, T.; Nagatsu, T. A link between stress and depression: Shifts in the balance between the kynurenine and serotonin pathways of tryptophan metabolism and the etiology and pathophysiology of depression. Stress 2008, 11, 198–209. [Google Scholar] [CrossRef]
- Leff-Gelman, P.; Mancilla-Herrera, I.; Flores-Ramos, M.; Cruz-Fuentes, C.; Reyes-Grajeda, J.P.; Garcia-Cuetara Mdel, P.; Bugnot-Perez, M.D.; Pulido-Ascencio, D.E. The Immune System and the Role of Inflammation in Perinatal Depression. Neurosci. Bull. 2016, 32, 398–420. [Google Scholar] [CrossRef] [Green Version]
- Levy, O.A.; Malagelada, C.; Greene, L.A. Cell death pathways in Parkinson‘s disease: Proximal triggers, distal effectors, and final steps. Apoptosis 2009, 14, 478–500. [Google Scholar] [CrossRef] [PubMed]
- Tak, P.P.; Firestein, G.S. NF-kappaB: A key role in inflammatory diseases. J. Clin. Investig. 2001, 107, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Min, S.K.; Park, J.S.; Luo, L.; Kwon, Y.S.; Lee, H.C.; Shim, H.J.; Kim, I.D.; Lee, J.K.; Shin, H.S. Assessment of C-phycocyanin effect on astrocytes-mediated neuroprotection against oxidative brain injury using 2D and 3D astrocyte tissue model. Sci. Rep. 2015, 5, 14418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartkowska, K.; Paquin, A.; Gauthier, A.S.; Kaplan, D.R.; Miller, F.D. Trk signaling regulates neural precursor cell proliferation and differentiation during cortical development. Development 2007, 134, 4369–4380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Luikart, B.W.; Birnbaum, S.; Chen, J.; Kwon, C.H.; Kernie, S.G.; Bassel-Duby, R.; Parada, L.F. TrkB regulates hippocampal neurogenesis and governs sensitivity to antidepressive treatment. Neuron 2008, 59, 399–412. [Google Scholar] [CrossRef] [Green Version]
- Koshimizu, H.; Hazama, S.; Hara, T.; Ogura, A.; Kojima, M. Distinct signaling pathways of precursor BDNF and mature BDNF in cultured cerebellar granule neurons. Neurosci. Lett. 2010, 473, 229–232. [Google Scholar] [CrossRef]
- Teng, H.K.; Teng, K.K.; Lee, R.; Wright, S.; Tevar, S.; Almeida, R.D.; Kermani, P.; Torkin, R.; Chen, Z.Y.; Lee, F.S.; et al. ProBDNF induces neuronal apoptosis via activation of a receptor complex of p75NTR and sortilin. J. Neurosci. 2005, 25, 5455–5463. [Google Scholar] [CrossRef]
- Hoffmire, C.A.; Block, R.C.; Thevenet-Morrison, K.; van Wijngaarden, E. Associations between omega-3 poly-unsaturated fatty acids from fish consumption and severity of depressive symptoms: An analysis of the 2005–2008 National Health and Nutrition Examination Survey. Prostaglandins Leukot Essent Fatty Acids 2012, 86, 155–160. [Google Scholar] [CrossRef] [Green Version]
- Beydoun, M.A.; Fanelli Kuczmarski, M.T.; Beydoun, H.A.; Hibbeln, J.R.; Evans, M.K.; Zonderman, A.B. Omega-3 fatty acid intakes are inversely related to elevated depressive symptoms among United States women. J. Nutr. 2013, 143, 1743–1752. [Google Scholar] [CrossRef] [Green Version]
- Conklin, S.M.; Manuck, S.B.; Yao, J.K.; Flory, J.D.; Hibbeln, J.R.; Muldoon, M.F. High omega-6 and low omega-3 fatty acids are associated with depressive symptoms and neuroticism. Psychosom. Med. 2007, 69, 932–934. [Google Scholar] [CrossRef]
- Adams, P.B.; Lawson, S.; Sanigorski, A.; Sinclair, A.J. Arachidonic acid to eicosapentaenoic acid ratio in blood correlates positively with clinical symptoms of depression. Lipids 1996, 31, S157–S161. [Google Scholar] [CrossRef] [PubMed]
- Dong, Y.; Xu, M.; Kalueff, A.V.; Song, C. Dietary eicosapentaenoic acid normalizes hippocampal omega-3 and 6 polyunsaturated fatty acid profile, attenuates glial activation and regulates BDNF function in a rodent model of neuroinflammation induced by central interleukin-1beta administration. Eur. J. Nutr. 2018, 57, 1781–1791. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Li, X.; Leonard, B.E.; Horrobin, D.F. Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress, and inflammatory responses in rats. J. Lipid Res. 2003, 44, 1984–1991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.; Phillips, A.G.; Leonard, B.E.; Horrobin, D.F. Ethyl-eicosapentaenoic acid ingestion prevents corticosterone-mediated memory impairment induced by central administration of interleukin-1beta in rats. Mol. Psychiatry 2004, 9, 630–638. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Manku, M.S.; Horrobin, D.F. Long-chain polyunsaturated fatty acids modulate interleukin-1beta-induced changes in behavior, monoaminergic neurotransmitters, and brain inflammation in rats. J. Nutr. 2008, 138, 954–963. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Zhang, X.Y.; Manku, M. Increased phospholipase A2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: Effects of chronic ethyl-eicosapentaenoate treatment. J. Neurosci. 2009, 29, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Korbecki, J.; Bobinski, R.; Dutka, M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors. Inflamm. Res. 2019, 68, 443–458. [Google Scholar] [CrossRef] [Green Version]
- Ajami, M.; Eghtesadi, S.; Razaz, J.M.; Kalantari, N.; Habibey, R.; Nilforoushzadeh, M.A.; Zarrindast, M.; Pazoki-Toroudi, H. Expression of Bcl-2 and Bax after hippocampal ischemia in DHA + EPA treated rats. Neurol. Sci. 2011, 32, 811–818. [Google Scholar] [CrossRef]
- Su, K.P.; Lai, H.C.; Yang, H.T.; Su, W.P.; Peng, C.Y.; Chang, J.P.; Chang, H.C.; Pariante, C.M. Omega-3 fatty acids in the prevention of interferon-alpha-induced depression: Results from a randomized, controlled trial. Biol. Psychiatry 2014, 76, 559–566. [Google Scholar] [CrossRef]
- Song, C.; Shieh, C.H.; Wu, Y.S.; Kalueff, A.; Gaikwad, S.; Su, K.P. The role of omega-3 polyunsaturated fatty acids eicosapentaenoic and docosahexaenoic acids in the treatment of major depression and Alzheimer’s disease: Acting separately or synergistically? Prog. Lipid Res. 2016, 62, 41–54. [Google Scholar] [CrossRef]
- Grosso, G.; Micek, A.; Marventano, S.; Castellano, S.; Mistretta, A.; Pajak, A.; Galvano, F. Dietary n-3 PUFA, fish consumption and depression: A systematic review and meta-analysis of observational studies. J. Affect. Disord. 2016, 205, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Horikawa, C.; Otsuka, R.; Kato, Y.; Nishita, Y.; Tange, C.; Kakutani, S.; Rogi, T.; Kawashima, H.; Shibata, H.; Ando, F.; et al. Cross-sectional association between serum concentrations of n-3 long-chain PUFA and depressive symptoms: Results in Japanese community dwellers. Br. J. Nutr. 2016, 115, 672–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mischoulon, D.; Papakostas, G.I.; Dording, C.M.; Farabaugh, A.H.; Sonawalla, S.B.; Agoston, A.M.; Smith, J.; Beaumont, E.C.; Dahan, L.E.; Alpert, J.E.; et al. A double-blind, randomized controlled trial of ethyl-eicosapentaenoate for major depressive disorder. J. Clin. Psychiatry 2009, 70, 1636–1644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazinet, R.P.; Metherel, A.H.; Chen, C.T.; Shaikh, S.R.; Nadjar, A.; Joffre, C.; Laye, S. Brain eicosapentaenoic acid metabolism as a lead for novel therapeutics in major depression. Brain Behav. Immun. 2019, (in press). [Google Scholar] [CrossRef]
- Metherel, A.H.; Irfan, M.; Klingel, S.L.; Mutch, D.M.; Bazinet, R.P. Compound-specific isotope analysis reveals no retroconversion of DHA to EPA but substantial conversion of EPA to DHA following supplementation: A randomized control trial. Am. J. Clin. Nutr. 2019, 110, 823–831. [Google Scholar] [CrossRef]
- Stark, K.D.; Holub, B.J. Differential eicosapentaenoic acid elevations and altered cardiovascular disease risk factor responses after supplementation with docosahexaenoic acid in postmenopausal women receiving and not receiving hormone replacement therapy. Am. J. Clin. Nutr. 2004, 79, 765–773. [Google Scholar] [CrossRef] [Green Version]
- Van Reedt Dortland, A.K.; Vreeburg, S.A.; Giltay, E.J.; Licht, C.M.; Vogelzangs, N.; van Veen, T.; de Geus, E.J.; Penninx, B.W.; Zitman, F.G. The impact of stress systems and lifestyle on dyslipidemia and obesity in anxiety and depression. Psychoneuroendocrinology 2013, 38, 209–218. [Google Scholar] [CrossRef]
- Tang, M.; Jiang, P.; Li, H.; Liu, Y.; Cai, H.; Dang, R.; Zhu, W.; Cao, L. Fish oil supplementation alleviates depressant-like behaviors and modulates lipid profiles in rats exposed to chronic unpredictable mild stress. BMC Complement Altern. Med. 2015, 15, 239. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Botelho, A.V.; Martinez, G.V.; Brown, M.F. Electrostatic properties of membrane lipids coupled to metarhodopsin II formation in visual transduction. J. Am. Chem. Soc. 2002, 124, 7690–7701. [Google Scholar] [CrossRef]
- Hashimoto, M.; Hossain, S.; Shido, O. Docosahexaenoic acid but not eicosapentaenoic acid withstands dietary cholesterol-induced decreases in platelet membrane fluidity. Mol. Cell Biochem. 2006, 293, 1–8. [Google Scholar] [CrossRef]
- Du, H.; Wang, K.; Su, L.; Zhao, H.; Gao, S.; Lin, Q.; Ma, X.; Zhu, B.; Dong, X.; Lou, Z. Metabonomic identification of the effects of the Zhimu-Baihe saponins on a chronic unpredictable mild stress-induced rat model of depression. J. Pharm. Biomed. Anal. 2016, 128, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Xu, P.; Wang, K.Z.; Lu, C.; Dong, L.M.; Le Zhai, J.; Liao, Y.H.; Aibai, S.; Yang, Y.; Liu, X.M. Antidepressant-like effects and cognitive enhancement of the total phenols extract of Hemerocallis citrina Baroni in chronic unpredictable mild stress rats and its related mechanism. J. Ethnopharmacol. 2016, 194, 819–826. [Google Scholar] [CrossRef] [PubMed]
- Bondi, C.O.; Taha, A.Y.; Tock, J.L.; Totah, N.K.; Cheon, Y.; Torres, G.E.; Rapoport, S.I.; Moghaddam, B. Adolescent behavior and dopamine availability are uniquely sensitive to dietary omega-3 fatty acid deficiency. Biol. Psychiatry 2014, 75, 38–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehlers, M.R.; Ross, C.J.D.; Todd, R.M. The influence of the noradrenergic/stress system on perceptual biases for reward. Cogn. Affect. Behav. Neurosci. 2019, 19, 715–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taepavarapruk, P.; Song, C. Reductions of acetylcholine release and nerve growth factor expression are correlated with memory impairment induced by interleukin-1beta administrations: Effects of omega-3 fatty acid EPA treatment. J. Neurochem. 2010, 112, 1054–1064. [Google Scholar] [CrossRef] [PubMed]
- Bibel, M.; Barde, Y.A. Neurotrophins: Key regulators of cell fate and cell shape in the vertebrate nervous system. Genes Dev. 2000, 14, 2919–2937. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.; Horrobin, D. Omega-3 fatty acid ethyl-eicosapentaenoate, but not soybean oil, attenuates memory impairment induced by central IL-1beta administration. J. Lipid Res. 2004, 45, 1112–1121. [Google Scholar] [CrossRef] [Green Version]
- Willner, P.; Towell, A.; Sampson, D.; Sophokleous, S.; Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology 1987, 93, 358–364. [Google Scholar] [CrossRef]
- Abuelezz, S.A.; Hendawy, N.; Magdy, Y. Targeting Oxidative Stress, Cytokines and Serotonin Interactions Via Indoleamine 2, 3 Dioxygenase by Coenzyme Q10: Role in Suppressing Depressive Like Behavior in Rats. J. Neuroimmune Pharmacol. 2017, 12, 277–291. [Google Scholar] [CrossRef]
- Abel, E.L. Behavior and corticosteroid response of Maudsley reactive and nonreactive rats in the open field and forced swimming test. Physiol. Behav. 1991, 50, 151–153. [Google Scholar] [CrossRef]
- Meng, Q.; Luchtman, D.W.; El Bahh, B.; Zidichouski, J.A.; Yang, J.; Song, C. Ethyl-eicosapentaenoate modulates changes in neurochemistry and brain lipids induced by parkinsonian neurotoxin 1-methyl-4-phenylpyridinium in mouse brain slices. Eur. J. Pharmacol. 2010, 649, 127–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, M.; Li, Y.; Tang, H.; Zhang, C.; Li, W.; Zhang, Y.; Li, Y.; Zhao, Y.; Song, C. Endogenous Omega (n)-3 Fatty Acids in Fat-1 Mice Attenuated Depression-Like Behavior, Imbalance between Microglial M1 and M2 Phenotypes, and Dysfunction of Neurotrophins Induced by Lipopolysaccharide Administration. Nutrients 2018, 10, 1351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Fatty Acid mg/g Tissue | CT | CUMS | CUMS + EPA | CUMS + DHA |
---|---|---|---|---|
LA (18:2 n-6) | 0.326 ± 0.050 | 0.362 ± 0.046 | 0.364 ± 0.043 | 0.428 ± 0.047 |
GLA (18:3 n-6) | 0.348 ± 0.034 | 0.297 ± 0.034 | 0.400 ± 0.069 | 0.434 ± 0.075 |
DGLA (20:3 n-6) | 0.325 ± 0.065 | 0.355 ± 0.036 | 0.404 ± 0.066 | 0.407 ± 0.060 |
AA (20:4 n-6) | 1.189 ± 0.082 | 1.661 ± 0.113 * | 1.241 ± 0.132 # | 1.141 ± 0.126 ## |
ALA (18:3, n-3) | 0.504 ± 0.089 | 0.379 ± 0.070 | 0.412 ± 0.072 | 0.538 ± 0.133 |
EPA (20:5 n-3) | 0.230 ± 0.032 | 0.120 ± 0.027 ** | 0.591 ± 0.057 ## | 0.164 ± 0.038 |
DPA (22:5 n-3) | 0.346 ± 0.029 | 0.155 ± 0.015 * | 0.481 ± 0.170 ## | 0.232 ± 0.043 |
DHA (22:6 n-3) | 2.374 ± 0.177 | 1.596 ± 0.182 * | 1.908 ± 0.107 | 2.650 ± 0.303 ## |
Neurotransmitters ng/mg Tissue | CT | CUMS | CUMS + EPA | CUMS + DHA |
---|---|---|---|---|
MHPG | 9.258 ± 0.223 | 10.239 ± 0.264 * | 9.750 ± 0.274 | 9.697 ± 0.312 |
NE | 15.968 ± 0.474 | 13.984 ± 0.202 * | 16.462 ± 0.523 ## | 15.364 ± 0.833 |
DA | 3.045 ± 0.072 | 3.086 ± 0.086 | 3.048 ± 0.085 | 3.156 ± 0.125 |
DOPAC | 0.090 ± 0.011 | 0.094 ± 0.010 | 0.108 ± 010 | 0.119 ± 0.017 |
5-HT | 1.089 ± 0.027 | 0.960 ± 0.027 ** | 1.014 ± 0.024 | 1.090 ± 0.012 ## |
5-HIAA | 0.263 ± 0.015 | 0.265 ± 0.012 | 0.278 ± 0.020 | 0.271 ± 0.019 |
HVA | 0.477 ± 0.115 | 0.331 ± 0.046 | 0.566 ± 0.183 | 0.749 ± 0.314 |
NE/MHPG | 1.607 ± 0.111 | 1.330 ± 0.071 * | 1.610 ± 0.060 # | 1.66 ± 0.27 # |
5-HT/5-HIAA | 4.123 ± 0.266 | 3.997 ± 0.257 | 3.743 ± 0.229 | 3.932 ± 0.169 |
DA/DOPAC | 39.107 ± 8.438 | 34.868 ± 4.268 | 29.616 ± 3.191 | 28.873 ± 3.391 |
DA/HVA | 8.488 ± 1.933 | 10.411 ± 1.640 | 7.538 ± 1.375 | 6.729 ± 1.317 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Zhang, C.; Yan, L.; Zhang, Y.; Yang, Z.; Wang, J.; Song, C. EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. Int. J. Mol. Sci. 2020, 21, 1769. https://doi.org/10.3390/ijms21051769
Peng Z, Zhang C, Yan L, Zhang Y, Yang Z, Wang J, Song C. EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. International Journal of Molecular Sciences. 2020; 21(5):1769. https://doi.org/10.3390/ijms21051769
Chicago/Turabian StylePeng, Zhilan, Cai Zhang, Ling Yan, Yongping Zhang, Zhiyou Yang, Jiajia Wang, and Cai Song. 2020. "EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression" International Journal of Molecular Sciences 21, no. 5: 1769. https://doi.org/10.3390/ijms21051769
APA StylePeng, Z., Zhang, C., Yan, L., Zhang, Y., Yang, Z., Wang, J., & Song, C. (2020). EPA is More Effective than DHA to Improve Depression-Like Behavior, Glia Cell Dysfunction and Hippcampal Apoptosis Signaling in a Chronic Stress-Induced Rat Model of Depression. International Journal of Molecular Sciences, 21(5), 1769. https://doi.org/10.3390/ijms21051769