Reveals of New Candidate Active Components in Hemerocallis Radix and Its Anti-Depression Action of Mechanism Based on Network Pharmacology Approach
Abstract
:1. Introduction
2. Results
2.1. Components in Hemerocallis Radix and Pharmacokinetic evaluation
2.2. Component-Target Network Construction
2.3. Disease PPI Network Construction
2.4. Clusters of DD Target Network
2.5. Analysis of HR Target-DD Target Network
2.5.1. PPI Network of HR Targets and DD Targets
2.5.2. Clustering Analysis of HR-DD PPI Network
2.6. Potential Synergistic Mechanisms Analysis of HR Target-DD Target Network
2.6.1. GO Enrichment Analysis
2.6.2. Pathway Analysis to Explore the Therapeutic Mechanisms of HR on DD
3. Discussion
4. Materials and Methods
4.1. Chemical Database Collection and Construction
4.2. Active Components Screening
4.3. Targets fishing
4.3.1. Identified and Predicted Targets of Hemerocallis Radix
4.3.2. Targets of Depressive Disorder
4.4. Network Construction and Clustering Analysis
4.5. Gene Ontology and Pathway Enrichment Analysis
4.6. Component-Target-Pathway Network Construction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AGT | Angiotensinogen |
AKT1 | AKT Serine/Threonine Kinase 1 |
AlogP | An Octanol-Water Partition Coefficient log P |
APP | Amyloid Beta Precursor Protein |
BOILED-Egg | Brain or Intestinal Estimated Permeation Method |
BP | Biology Process |
Caco-2 | Caco-2 Permeability |
CALM1 | Calmodulin 1 |
CC | Cellular Component |
C-T | Component-Target |
CYP2B6 | Cytochrome P450 2B6 |
CYP2D6 | Cytochrome P450 Family 2 Subfamily D Member 6 |
CYP2E1 | Cytochrome P450 Family 2 Subfamily E Member 1 |
DD | Depressive Disorder |
DL | Drug-Likeness |
EGFR | Epidermal Growth Factor Receptor |
ESR1 | Estrogen Receptor 1 |
GNB1 | G Protein Subunit Beta 1 |
GNB3 | G Protein Subunit Beta 3 |
GO | Gene Ontology |
GRIN1 | Glutamate Ionotropic Receptor NMDA Type Subunit 1 |
GRIN2A | Glutamate Ionotropic Receptor NMDA Type Subunit 2A |
GRIN2B | Glutamate Ionotropic Receptor NMDA Type Subunit 2B |
GRIN2D | Glutamate Ionotropic Receptor NMDA Type Subunit 2D |
Hacc | Hydrogen Bond Acceptors |
HDAC2 | Histone Deacetylase 2 |
HDAC5 | Histone Deacetylase 5 |
Hdon | Hydrogen Bond Donors |
HR | Hemerocallis Radix |
HTR4 | 5-Hydroxytryptamine Receptor 4 |
HVA | Homovanillic Acid |
IL6 | Interleukin 6 |
INS | Insulin |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
MAOA | Monoamine Oxidase A |
MAOB | Monoamine Oxidase B |
MAPK8 | Mitogen-Activated Protein Kinase 8 |
MF | Molecular Function |
MW | Molecular Weight |
NR1D1 | Nuclear Receptor Subfamily 1 Group D Member 1 |
OB | Oral Bioavailability |
PDYN | Proenkephalin-B |
PIK3CA | Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit Alpha |
PMS1 | PMS1 Protein Homolog 1 |
PPI | Protein-Protein Interaction |
RBN | Rotatable Bond Number |
SEA | Similarity Ensemble Approach |
TCM | Traditional Chinese Medicine |
TCMSP | Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform |
T-P | Target-Pathway |
TP53 | Tumor Protein P53 |
TPSA | Topological Polar Surface Area |
References
- World Health Organization. Mental Health Action Plan 2013–2020; WHO: Geneva, Switzerland, 2013. [Google Scholar]
- Centers for Disease Control. WISQARS Fatal Injury Reports, National and Regional, 1999–2015; National Center for Injury Prevention and Control: Clifton Road Atlanta, GA, USA, 2017. [Google Scholar]
- Ministry of Health and Welfare. Number of Antidepressants user in Taiwan; Ministry of Health and Welfare: Sejong, Korea, 2019. [Google Scholar]
- Ministry of Health and Welfare. Number of Patients visit the Chinese Medication Clinic; Ministry of Health and Welfare: Sejong, Korea, 2018. [Google Scholar]
- Czerepanov, S.K. Vascular Plants of Russia and Adjacent States (the Former USSR); Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-521-04483-7. [Google Scholar]
- Griffiths, M. Index of Garden Plants: The New Royal Horticultural Society Dictionary by Mark. Griffiths; Timber Press: Portland, OR, USA, 1994. [Google Scholar]
- Wiersema, J.H. GRIN Taxonomy; US National Plant Germplasm System: Washington, DC, USA, 2019. [Google Scholar]
- Li, J. Flora of China. Harv. Pap. Bot. 2007, 13, 301–303. [Google Scholar] [CrossRef]
- Chiu, N.Y.; Chang, K.H. The Illustrated Medicinal Plants of Taiwan; SMC Publishing: Taipei, Taiwan, 1986; Volume 1. [Google Scholar]
- Ji, K. The theory of Life-Cultivation, 260AD.
- Zhao, X. Supplement to Compendium of Materia Medica, 1719.
- Li, F.-Q.; Xu, S.; Su, H.; Deng, J.-X.; Liu, J.-Y.; Hu, J.-H. Development of a gradient reversed-phase HPLC method for the determination of sodium ferulate in beagle dog plasma. J. Chromatogr. B 2007, 846, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology. Nat. Biotechnol. 2007, 25, 1110–1111. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L. Network pharmacology: The next paradigm in drug discovery. Nat. Chem. Biol. 2008, 4, 682–690. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Hunter, S.; Apweiler, R.; Attwood, T.K.; Bairoch, A.; Bateman, A.; Binns, D.; Bork, P.; Das, U.; Daugherty, L.; Duquenne, L.; et al. InterPro: The integrative protein signature database. Nucleic Acids Res. 2009, 37, D211–D215. [Google Scholar] [CrossRef] [Green Version]
- Dowlati, Y.; Herrmann, N.; Swardfager, W.; Liu, H.; Sham, L.; Reim, E.K.; Lanctôt, K.L. A meta-analysis of cytokines in major depression. Biol. Psychiatry 2010, 67, 446–457. [Google Scholar] [CrossRef]
- Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T.I.; Nudel, R.; Lieder, I.; Mazor, Y.; et al. The GeneCards Suite: From Gene Data Mining to Disease Genome Sequence Analyses. Curr. Protoc. Bioinforma. 2016, 54, 1.30.1–1.30.33. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Hsu, F.-C.; Gleichman, A.J.; Baconguis, I.; Coulter, D.A.; Lynch, D.R. Fyn-mediated Phosphorylation of NR2B Tyr-1336 Controls Calpain-mediated NR2B Cleavage in Neurons and Heterologous Systems. J. Biol. Chem. 2007, 282, 20075–20087. [Google Scholar] [CrossRef] [Green Version]
- Alexa, A.; Rahnenfuhrer, J. Gene set enrichment analysis with topGO. Bioconductor Improv 2009, 1–27. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Hochberg, Y. A sharper Bonferroni procedure for multiple tests of significance. Biometrika 1988, 75, 800–802. [Google Scholar] [CrossRef]
- Hommel, G. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 1988, 75, 383–386. [Google Scholar] [CrossRef]
- Kudryavtseva, N.N.; Smagin, D.A.; Kovalenko, I.L.; Galyamina, A.G.; Vishnivetskaya, G.B.; Babenko, V.N.; Orlov, Y.L. Serotonergic genes in the development of anxiety/depression-like state and pathology of aggressive behavior in male mice: RNA-seq data. Mol. Biol. (Mosk.) 2017, 51, 288–300. [Google Scholar] [CrossRef]
- Porcelli, S.; Drago, A.; Fabbri, C.; Gibiino, S.; Calati, R.; Serretti, A. Pharmacogenetics of antidepressant response. J. Psychiatry Neurosci. JPN 2011, 36, 87–113. [Google Scholar] [CrossRef] [Green Version]
- Jansen, R.; Penninx, B.W.J.H.; Madar, V.; Xia, K.; Milaneschi, Y.; Hottenga, J.J.; Hammerschlag, A.R.; Beekman, A.; van der Wee, N.; Smit, J.H.; et al. Gene expression in major depressive disorder. Mol. Psychiatry 2016, 21, 339–347. [Google Scholar] [CrossRef]
- Pirl, W.F.; Traeger, L.; Greer, J.A.; Bemis, H.; Gallagher, E.; Lennes, I.; Sequist, L.; Heist, R.; Temel, J.S. Tumor epidermal growth factor receptor genotype and depression in stage IV non-small cell lung cancer. Oncologist 2011, 16, 1299–1306. [Google Scholar] [CrossRef]
- Vasiliou, V.; Ziegler, T.L.; Bludeau, P.; Petersen, D.R.; Gonzalez, F.J.; Deitrich, R.A. CYP2E1 and catalase influence ethanol sensitivity in the central nervous system. Pharmacogenet. Genomics 2006, 16, 51–58. [Google Scholar] [CrossRef]
- Howard, L.A.; Ahluwalia, J.S.; Lin, S.-K.; Sellers, E.M.; Tyndale, R.F. CYP2E1*1D regulatory polymorphism: Association with alcohol and nicotine dependence. Pharmacogenetics 2003, 13, 321–328. [Google Scholar] [CrossRef]
- Fujimoto, H.; Satoh, Y.; Yamaguchi, K.; Yamazaki, M. Manoamine Oxidase Inhibitory constituents from Anixiella micropertusa. Chem. Pharm. Bull. (Tokyo) 1998, 46, 1506–1510. [Google Scholar] [CrossRef] [Green Version]
- Kong, L.D.; Cheng, C.H.K.; Tan, R.X. Inhibition of MAO A and B by some plant-derived alkaloids, phenols and anthraquinones. J. Ethnopharmacol. 2004, 91, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Paudel, P.; Seong, S.H.; Shrestha, S.; Jung, H.A.; Choi, J.S. In Vitro and in Silico Human Monoamine Oxidase Inhibitory Potential of Anthraquinones, Naphthopyrones, and Naphthalenic Lactones from Cassia obtusifolia Linn Seeds. ACS Omega 2019, 4, 16139–16152. [Google Scholar] [CrossRef] [Green Version]
- Sloley, B.D.; Urichuk, L.J.; Morley, P.; Durkin, J.; Shan, J.J.; Pang, P.K.; Coutts, R.T. Identification of kaempferol as a monoamine oxidase inhibitor and potential Neuroprotectant in extracts of Ginkgo biloba leaves. J. Pharm. Pharmacol. 2000, 52, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Pu, X.-P. Neuroprotective effect of kaempferol against a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson’s disease. Biol. Pharm. Bull. 2011, 34, 1291–1296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gidaro, M.C.; Astorino, C.; Petzer, A.; Carradori, S.; Alcaro, F.; Costa, G.; Artese, A.; Rafele, G.; Russo, F.M.; Petzer, J.P.; et al. Kaempferol as Selective Human MAO-A Inhibitor: Analytical Detection in Calabrian Red Wines, Biological and Molecular Modeling Studies. J. Agric. Food Chem. 2016, 64, 1394–1400. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Prahalathan, P.; Raja, B. Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: A dose-dependence study. Redox Rep. Commun. Free Radic. Res. 2011, 16, 208–215. [Google Scholar] [CrossRef]
- Tai, A.; Sawano, T.; Ito, H. Antioxidative properties of vanillic acid esters in multiple antioxidant assays. Biosci. Biotechnol. Biochem. 2012, 76, 314–318. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.; Khatun, A.; Nesa, M.L.; Hossain, H.; Jahan, I.A. Bioactive Polyphenols from the Methanol Extract of Cnicus arvensis (L.) Roth Demonstrated Antinociceptive and Central Nervous System Depressant Activities in Mice. Evid.-Based Complement. Altern. Med. ECAM 2015, 2015, 794729. [Google Scholar]
- Singh, J.C.H.; Kakalij, R.M.; Kshirsagar, R.P.; Kumar, B.H.; Komakula, S.S.B.; Diwan, P.V. Cognitive effects of vanillic acid against streptozotocin-induced neurodegeneration in mice. Pharm. Biol. 2015, 53, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Watari, A.; Kobayashi, M.; Tamesada, M.; Yagi, K. Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury. Biol. Pharm. Bull. 2010, 33, 983–987. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, A.; Agren, H.; Pickar, D.; Linnoila, M.; Doran, A.R.; Cutler, N.R.; Paul, S.M. Reduced CSF concentrations of homovanillic acid and homovanillic acid to 5-hydroxyindoleacetic acid ratios in depressed patients: Relationship to suicidal behavior and dexamethasone nonsuppression. Am. J. Psychiatry 1986, 143, 1539–1545. [Google Scholar] [PubMed]
- Lambert, G.; Johansson, M.; Agren, H.; Friberg, P. Reduced brain norepinephrine and dopamine release in treatment-refractory depressive illness: Evidence in support of the catecholamine hypothesis of mood disorders. Arch. Gen. Psychiatry 2000, 57, 787–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sher, L.; Mann, J.J.; Traskman-Bendz, L.; Winchel, R.; Huang, Y.; Fertuck, E.; Stanley, B.H. Lower cerebrospinal fluid homovanillic acid levels in depressed suicide attempters. J. Affect. Disord. 2006, 90, 83–89. [Google Scholar] [CrossRef]
- Figueiredo-González, M.; Reboredo-Rodríguez, P.; González-Barreiro, C.; Carrasco-Pancorbo, A.; Simal-Gándara, J.; Cancho-Grande, B. Nutraceutical Potential of Phenolics from “Brava” and “Mansa” Extra-Virgin Olive Oils on the Inhibition of Enzymes Associated to Neurodegenerative Disorders in Comparison with Those of “Picual” and “Cornicabra”. Molecules 2018, 23, 722. [Google Scholar]
- Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; et al. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, R.-Z.; Yu, S.-J.; Bai, H.; Ning, K. TCM-Mesh: The database and analytical system for network pharmacology analysis for TCM preparations. Sci. Rep. 2017, 7, 2821. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today Technol. 2004, 1, 337–341. [Google Scholar] [CrossRef]
- Chen, M.L.; Shah, V.; Patnaik, R.; Adams, W.; Hussain, A.; Conner, D.; Mehta, M.; Malinowski, H.; Lazor, J.; Huang, S.M.; et al. Bioavailability and bioequivalence: An FDA regulatory overview. Pharm. Res. 2001, 18, 1645–1650. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Zhang, W.; Huang, C.; Li, Y.; Yu, H.; Wang, Y.; Duan, J.; Ling, Y. A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci. 2012, 13, 6964–6982. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration. Code of Federal Regulations (CFR) Title 21 Food and Drugs: Part 320; Food and Drug Administration: Silver Spring, MD, USA, 2019. [Google Scholar]
- Wishart, D.S.; Feunang, Y.D.; Guo, A.C.; Lo, E.J.; Marcu, A.; Grant, J.R.; Sajed, T.; Johnson, D.; Li, C.; Sayeeda, Z.; et al. DrugBank 5.0: A major update to the DrugBank database for 2018. Nucleic Acids Res. 2018, 46, D1074–D1082. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Xu, L.; Liang, T.; Li, Y.; Zhang, S.; Duan, X. Puerarin mediates hepatoprotection against CCl4-induced hepatic fibrosis rats through attenuation of inflammation response and amelioration of metabolic function. Food Chem. Toxicol. Int. J. Publ. Br. Ind. Biol. Res. Assoc. 2013, 52, 69–75. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A BOILED-Egg To Predict Gastrointestinal Absorption and Brain Penetration of Small Molecules. ChemMedChem. 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Iram, F.; Khan, S.A.; Husain, A. Phytochemistry and potential therapeutic actions of Boswellic acids: A mini-review. Asian Pac. J. Trop. Biomed. 2017, 7, 513–523. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, R.; Li, P.; Sun, Y.; Lu, Q.; Qiu, Y.; Wang, J.; Liu, J.; Hao, K.; Ding, X. Protective effect of chrysophanol on LPS/D-GalN-induced hepatic injury through the RIP140/NF-κB pathway. RSC Adv. 2016, 6, 38192–38200. [Google Scholar] [CrossRef]
- Lengqiu, G.; Zhang, Y.; Zhang, B.; Zhang, P. Chemical Constituents and Pharmacological Research Progress of Hemerocallis fulva Roots and Flowers [J]. Chin. Arch. Tradit. Chin. Med. 2013, 1. [Google Scholar]
- Liu, X.; Vogt, I.; Haque, T.; Campillos, M. HitPick: A web server for hit identification and target prediction of chemical screenings. Bioinforma. Oxf. Engl. 2013, 29, 1910–1912. [Google Scholar] [CrossRef]
- Keiser, M.J.; Roth, B.L.; Armbruster, B.N.; Ernsberger, P.; Irwin, J.J.; Shoichet, B.K. Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 2007, 25, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; et al. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res. 2019, 47, D1102–D1109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piñero, J.; Bravo, À.; Queralt-Rosinach, N.; Gutiérrez-Sacristán, A.; Deu-Pons, J.; Centeno, E.; García-García, J.; Sanz, F.; Furlong, L.I. DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Res. 2017, 45, D833–D839. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Bader, G.D.; Hogue, C.W.V. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinform. 2003, 4, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and visualization. Bioinforma. Oxf. Engl. 2013, 29, 1830–1831. [Google Scholar] [CrossRef] [Green Version]
- Ancelin, M.-L.; Scali, J.; Ritchie, K. Hormonal therapy and depression: Are we overlooking an important therapeutic alternative? J. Psychosom. Res. 2007, 62, 473–485. [Google Scholar] [CrossRef] [Green Version]
- Osterlund, M.K. Underlying mechanisms mediating the antidepressant effects of estrogens. Biochim. Biophys. Acta 2010, 1800, 1136–1144. [Google Scholar] [CrossRef]
- Ryan, J.; Scali, J.; Carrière, I.; Peres, K.; Rouaud, O.; Scarabin, P.-Y.; Ritchie, K.; Ancelin, M.-L. Estrogen receptor alpha gene variants and major depressive episodes. J. Affect. Disord. 2012, 136, 1222–1226. [Google Scholar] [CrossRef] [Green Version]
- Andrade, T.G.C.S.; Nakamuta, J.S.; Avanzi, V.; Graeff, F.G. Anxiolytic effect of estradiol in the median raphe nucleus mediated by 5-HT1A receptors. Behav. Brain Res. 2005, 163, 18–25. [Google Scholar] [CrossRef]
- Sumner, B.E.H.; Fink, G. Estrogen increases the density of 5-Hydroxytryptamine2A receptors in cerebral cortex and nucleus accumbens in the female rat. J. Steroid Biochem. Mol. Biol. 1995, 54, 15–20. [Google Scholar] [CrossRef]
ID | Molecule Name | MW | AlogP | nHdon | nHacc | TPSA | OB | Caco-2 | DL | GI Absorption | Lipinski’s Rule |
---|---|---|---|---|---|---|---|---|---|---|---|
HR01 | Aloe-emodin | 270.25 | 1.67 | 3 | 5 | 94.83 | 83.38 | −0.12 | 0.24 | High | Yes |
HR02 | α-Boswellic acid | 456.78 | 6.42 | 2 | 3 | 57.53 | 39.32 | 0.6 | 0.75 | Low | Yes |
HR03 | Anthraquinone | 208.22 | 2.81 | 0 | 2 | 34.14 | 56.1 | 0.86 | 0.14 | High | Yes |
HR04 | β-Boswellic acid | 456.78 | 6.47 | 2 | 3 | 57.53 | 39.55 | 0.59 | 0.75 | Low | Yes |
HR05 | Chrysophanol | 254.25 | 2.76 | 2 | 4 | 74.6 | 18.64 | 0.62 | 0.21 | High | Yes |
HR06 | Colchicine | 385.45 | 1.47 | 2 | 7 | 94.09 | 39.34 | 0.12 | 0.57 | High | Yes |
HR07 | Hemerocallone | 356.35 | 2.59 | 0 | 7 | 76.36 | 63.01 | 0.77 | 0.54 | High | Yes |
HR08 | Kaempferol | 286.25 | 1.77 | 4 | 6 | 111.13 | 41.88 | 0.26 | 0.24 | High | Yes |
HR09 | Puerarin | 416.41 | −0.06 | 6 | 9 | 160.82 | 24.03 | −1.15 | 0.69 | High | Yes |
HR10 | Rhein | 284.23 | 1.88 | 3 | 6 | 111.9 | 47.07 | −0.2 | 0.28 | High | Yes |
HR11 | Vanillic acid | 168.16 | 1.15 | 2 | 4 | 66.76 | 35.47 | 0.43 | 0.04 | High | Yes |
Cluster | Score | Nodes | Edges | Gene IDs |
---|---|---|---|---|
1 | 33.613 | 63 | 1042 | ADRA2C, CNR2, ADRA2A, GNRH1, CNR1, GNA11, AGTR1, PIK3CA, CHRM2, NTS, CX3CR1, ADRBK1, OPRK1, TAC3, GNRHR, TAC1, POMC, KISS1, GALR3, GALR2, EDN1, HCRT, AVPR1B, HCRTR1, PYY, GAL, AVP, GNAQ, OXTR, PNOC, NPS, NPY, CXCL8, KISS1R, DRD2, DRD3, OXT, DRD4, GRM1, GRM3, GRM5, GRM7, HTR1D, HTR1A, HTR1B, TACR3, F2RL3, TACR1, OPRM1, GRPR, HTR2C, NPSR1, HTR2A, TRH, ADCY1, ADCY8, NPY1R, ADCY7, PROK2, PENK, ADCY5, PROKR2, PDYN |
2 | 16.667 | 25 | 200 | NMS, DRD1, ADRB1, AGT, ADRB2, CRH, DRD5, MCHR1, MC4R, PMCH, HTR4, ADCYAP1R1, ADCYAP1, HTR6, HTR7, CRHR1, CASR, CRHR2, GNB1, APP, GNAS, GNB3, TAAR6, VIPR2, MC1R |
3 | 11 | 35 | 187 | MAPK1, SERPING1, MAPK3, AP2B1, ORM1, CSF3, CSF2, M6PR, FGF2, PDGFB, CLU, PLG, IL17A, SIRT1, TP53, TGFB1, UBQLN2, IL10, ESR1, CREB1, IL13, IFNG, IL18, ARRB1, ARRB2, IL4, IL1A, IL6, PTGS2, IL1B, OCRL, A2M, HGS, IGF1, INS |
4 | 7.946 | 38 | 147 | AR, STIP1, ERBB4, CALM1, CLOCK, VEGFA, PER2, PER1, CRP, PER3, RORA, NOS1, MAPK14, GATA3, RAC1, ATF2, NR3C1, SERPINE1, HSP90AB1, NTRK1, NR3C2, ADIPOQ, CRY2, CRY1, PDGFRB, FKBP4, KIT, FKBP5, AKT1, NR1D1, EGFR, HSP90AA1, NTF3, TIMELESS, ARNTL, FGF13, NPAS2, FGFR1 |
5 | 7.4 | 11 | 37 | CDKN2A, BRCA1, OGG1, ATM, MSH6, RFC2, PMS2, MSH2, MLH1, MLH3, PMS1 |
6 | 6.72 | 26 | 84 | PRKAR1A, STAT3, MET, BDNF, NOS3, PRL, WFS1, TNF, PNPLA2, ALB, KRAS, VGF, NTRK2, RAPGEF3, RAPGEF4, NGFR, IL6R, ADAM10, LEP, PRKACA, CP, TLR4, APOE, TLR3, MAPK8, NGF |
7 | 4.944 | 37 | 89 | TNFRSF1B, KAL1, CALM3, CYP2E1, CALM2, OPTN, NOS2, GRIN1, C9orf72, FUS, FGF20, PPP3CC, GRIN2A, SOD1, CYP2B6, CD36, MT-CO3, SNAP25, MT-CO2, MT-CO1, PPARGC1A, CAT, MT-ND1, HTT, VAPB, MT-ND4, MAPT, DLG4, GRIN2B, PTGS1, CYP2C9, MT-ND6, CHMP2B, CAMK2A, NRG1, FGFR2, CYP2C19 |
Cluster | Score | Nodes | Edges | Gene IDs |
---|---|---|---|---|
1 | 4.5 | 5 | 9 | GRIN2D, GRIN1, GRIN2B, CALM1, GRIN2A |
2 | 4 | 4 | 6 | HDAC5, HDAC6, HDAC9, HDAC2 |
3 | 3 | 3 | 3 | CYP2B6, CYP2E1, CYP2C9 |
ID | Pathway | p-Value | p.adjust | Count | Gene IDs |
---|---|---|---|---|---|
hsa05034 | Alcoholism | 1.95 × 10−11 | 2.84 × 10−9 | 12 | MAOB/MAOA/HDAC5/CREB1/GRIN2D/GRIN1/HDAC2/HDAC9/GRIN2B/GRIN2A/CALM1/HDAC6 |
hsa05031 | Amphetamine addiction | 6.17 × 10−10 | 4.51 × 10−8 | 8 | MAOB/MAOA/CREB1/GRIN2D/GRIN1/GRIN2/GRIN2A/CALM1 |
hsa04015 | Rap1 signaling pathway | 4.29 × 10−6 | 8.94 × 10−5 | 8 | EGFR/GRIN1/PDGFRB/KIT/GRIN2B/GRIN2A/CSF1R/CALM1 |
hsa04014 | Ras signaling pathway | 8.96 × 10−6 | 1.45 × 10−4 | 8 | EGFR/GRIN1/PDGFRB/KIT/GRIN2B/GRIN2A/CSF1R/CALM1 |
hsa05030 | Cocaine addiction | 2.00 × 10−9 | 9.73 × 10−8 | 7 | MAOB/MAOA/CREB1/GRIN2D/GRIN1/GRIN2B/GRIN2A |
hsa00982 | Drug metabolism - cytochrome P450 | 3.18 × 10−8 | 1.16 × 10−6 | 7 | MAOB/CYP2D6/MAOA/ALDH3A1/CYP2B6/CYP2C9/CYP2E1 |
hsa00980 | Metabolism of xenobiotics by cytochrome P450 | 1.18 × 10−6 | 3.44 × 10−5 | 6 | CYP2D6/ALDH3A1/CYP2B6/CYP2C9/CYP2E1/HSD11B1 |
hsa04713 | Circadian entrainment | 4.97 × 10−6 | 9.06 × 10−5 | 6 | CREB1/GRIN2D/GRIN1/GRIN2B/GRIN2A/CALM1 |
hsa04720 | Long-term potentiation | 1.32 × 10−5 | 1.93 × 10−4 | 5 | GRIN2D/GRIN1/GRIN2B/GRIN2A/CALM1 |
hsa00340 | Histidine metabolism | 3.36 × 10−6 | 8.18 × 10−5 | 4 | MAOB/MAOA/ALDH2/ALDH3A1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, H.-Y.; Tsai, J.-C.; Wu, L.-Y.; Peng, W.-H. Reveals of New Candidate Active Components in Hemerocallis Radix and Its Anti-Depression Action of Mechanism Based on Network Pharmacology Approach. Int. J. Mol. Sci. 2020, 21, 1868. https://doi.org/10.3390/ijms21051868
Lin H-Y, Tsai J-C, Wu L-Y, Peng W-H. Reveals of New Candidate Active Components in Hemerocallis Radix and Its Anti-Depression Action of Mechanism Based on Network Pharmacology Approach. International Journal of Molecular Sciences. 2020; 21(5):1868. https://doi.org/10.3390/ijms21051868
Chicago/Turabian StyleLin, Hsin-Yi, Jen-Chieh Tsai, Lung-Yuan Wu, and Wen-Huang Peng. 2020. "Reveals of New Candidate Active Components in Hemerocallis Radix and Its Anti-Depression Action of Mechanism Based on Network Pharmacology Approach" International Journal of Molecular Sciences 21, no. 5: 1868. https://doi.org/10.3390/ijms21051868
APA StyleLin, H. -Y., Tsai, J. -C., Wu, L. -Y., & Peng, W. -H. (2020). Reveals of New Candidate Active Components in Hemerocallis Radix and Its Anti-Depression Action of Mechanism Based on Network Pharmacology Approach. International Journal of Molecular Sciences, 21(5), 1868. https://doi.org/10.3390/ijms21051868