The Current Genomic and Molecular Landscape of Philadelphia-like Acute Lymphoblastic Leukemia
Abstract
:1. Introduction
2. Initial Description and Discovery of Ph-like B-ALL
3. Clinical Features and Outcomes
4. Role of Lymphoid Transcription Factors IKAROS and PAX5
5. Role of CRLF2
6. Kinase Activating Alterations in Ph-like B-ALL
7. Diagnosis of Ph-like ALL: Screening and Subtype Confirmation
7.1. Gene Expression Profiling/Analysis
7.2. Fluorescent in Situ Hybridization (FISH)
7.3. Reverse-Transcriptase Polymerase Chain Reaction (RT-PCR)
7.4. Flow Cytometry
7.5. Next-Generation Sequencing (NGS)
8. Therapeutic Avenues
8.1. JAK/STAT Pathway Targets
8.2. mTOR Inhibition
8.3. ABL Inhibition
8.4. Other Therapeutic Avenues
8.5. Other Molecular Aberrations/Targets
9. Summary
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pui, C.; Yang, J.J.; Hunger, S.P.; Pieters, R.; Schrappe, M.; Biondi, A.; Vora, A.; Baruchel, A.; Silverman, L.B.; Schmiegelow, K.; et al. Childhood Acute Lymphoblastic Leukemia: Progress Through Collaboration. J. Clin. Oncol. 2015, 33, 2938–2948. [Google Scholar] [CrossRef] [PubMed]
- Stock, W.; Luger, S.M.; Advani, A.S.; Yin, J.; Harvey, R.C.; Mullighan, C.G.; Willman, C.L.; Fulton, N.; Laumann, K.M.; Malnassy, G.; et al. A pediatric regimen for older adolescents and young adults with acute lymphoblastic leukemia: Results of CALGB 10403. Blood 2019, 133, 1548–1559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terwilliger, T.; Abdul-Hay, M. Acute lymphoblastic leukemia: A comprehensive review and 2017 update. Blood Cancer J. 2017, 7, e577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stock, W.; Luger, S.M.; Advani, A.S.; Geyer, S.; Harvey, R.C.; Mullighan, C.G.; Willman, C.L.; Malnassy, G.; Parker, E.; Laumann, K.M.; et al. Favorable Outcomes for Older Adolescents and Young Adults (AYA) with Acute Lymphoblastic Leukemia (ALL): Early Results of U.S. Intergroup Trial C10403. Blood 2014, 124, 796. [Google Scholar] [CrossRef]
- Huguet, F.; Leguay, T.; Raffoux, E.; Thomas, X.; Beldjord, K.; Delabesse, E.; Chevallier, P.; Buzyn, A.; Delannoy, A.; Chalandon, Y.; et al. Pediatric-Inspired Therapy in Adults With Philadelphia Chromosome–Negative Acute Lymphoblastic Leukemia: The GRAALL-2003 Study. J. Clin. Oncol. 2009, 27, 911–918. [Google Scholar] [CrossRef] [Green Version]
- De Bont, J.M.; Van Der Holt, B.; Dekker, A.W.; Berg, A.V.D.D.-V.D.; Sonneveld, P.; Pieters, R. Significant difference in outcome for adolescents with acute lymphoblastic leukemia treated on pediatric vs adult protocols in the Netherlands. Leukemia 2004, 18, 2032–2035. [Google Scholar] [CrossRef]
- Barry, E.V.; DeAngelo, D.J.; Neuberg, D.S.; Stevenson, K.; Loh, M.L.; Asselin, B.L.; Barr, R.D.; Clavell, L.A.; Hurwitz, C.A.; Moghrabi, A.; et al. Favorable Outcome for Adolescents With Acute Lymphoblastic Leukemia Treated on Dana-Farber Cancer Institute Acute Lymphoblastic Leukemia Consortium Protocols. J. Clin. Oncol. 2007, 25, 813–819. [Google Scholar] [CrossRef]
- Arber, D.A.; Orazi, A.; Hasserjian, R.; Thiele, J.; Borowitz, M.J.; Le Beau, M.M.; Bloomfield, C.D.; Cazzola, M.; Vardiman, J.W. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 2016, 127, 2391–2405. [Google Scholar] [CrossRef]
- Roberts, K.G.; Reshmi, S.; Harvey, R.C.; Chen, I.-M.; Patel, K.; Stonerock, E.; Jenkins, H.; Dai, Y.; Valentine, M.; Gu, Z.; et al. Genomic and outcome analyses of Ph-like ALL in NCI standard-risk patients: A report from the Children’s Oncology Group. Blood 2018, 132, 815–824. [Google Scholar] [CrossRef] [Green Version]
- Imamura, T.; Kiyokawa, N.; Kato, M.; Imai, C.; Okamoto, Y.; Yano, M.; Ohki, K.; Yamashita, Y.; Kodama, Y.; Saito, A.; et al. Characterization of pediatric Philadelphia-negative B-cell precursor acute lymphoblastic leukemia with kinase fusions in Japan. Blood Cancer J. 2016, 6, e419. [Google Scholar] [CrossRef]
- Mullighan, C.G.; Collins-Underwood, J.R.; Phillips, L.A.A.; Loudin, M.G.; Liu, W.; Zhang, J.; Ma, J.; Coustan-Smith, E.; Harvey, R.C.; Willman, C.L.; et al. Rearrangement of CRLF2 in B-progenitor- and Down syndrome-associated acute lymphoblastic leukemia. Nat. Genet. 2009, 41, 1243–1246. [Google Scholar] [PubMed] [Green Version]
- Boer, M.L.D.; Van Slegtenhorst, M.; De Menezes, R.X.; Cheok, M.H.; Buijs-Gladdines, J.G.; Peters, S.T.; Van Zutven, L.J.; Beverloo, H.B.; Van Der Spek, P.J.; Escherich, G.; et al. A subtype of childhood acute lymphoblastic leukaemia with poor treatment outcome: A genome-wide classification study. Lancet Oncol. 2009, 10, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Boer, J.M.; Koenders, J.E.; Van Der Holt, B.; Exalto, C.; Sanders, M.A.; Cornelissen, J.J.; Valk, P.J.; Boer, M.L.D.; Rijneveld, A. Expression profiling of adult acute lymphoblastic leukemia identifies a BCR-ABL1-like subgroup characterized by high non-response and relapse rates. Haematol. 2015, 100, e261–e264. [Google Scholar]
- Roberts, K.G.; Li, Y.; Payne-Turner, D.; Harvey, R.C.; Yang, Y.; Pei, D.; McCastlain, K.; Ding, L.; Lu, C.; Song, G.; et al. Targetable kinase-activating lesions in Ph-like acute lymphoblastic leukemia. New Engl. J. Med. 2014, 371, 1005–1015. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasian, S.K.; Hurtz, C.; Wertheim, G.B.; Bailey, N.G.; Lim, M.S.; Harvey, R.C.; Chen, I.-M.; Willman, C.L.; Astles, R.; Zebrowski, A.; et al. High incidence of Philadelphia chromosome-like acute lymphoblastic leukemia in older adults with B-ALL. Leukemia 2016, 31, 981–984. [Google Scholar] [CrossRef] [Green Version]
- Jain, N.; Roberts, K.G.; Jabbour, E.; Patel, K.; Eterovic, A.K.; Chen, K.; Zweidler-McKay, P.; Lu, X.; Fawcett, G.; Wang, S.A.; et al. Ph-like acute lymphoblastic leukemia: A high-risk subtype in adults. Blood 2017, 129, 572–581. [Google Scholar] [CrossRef] [Green Version]
- Mullighan, C.G.; Miller, C.B.; Radtke, I.; Phillips, L.A.; Dalton, J.; Ma, J.; White, D.L.; Hughes, T.; Le Beau, M.M.; Pui, C.-H.; et al. BCR–ABL1 lymphoblastic leukaemia is characterized by the deletion of Ikaros. Nature 2008, 453, 110–114. [Google Scholar] [CrossRef]
- Chiaretti, S.; Li, X.; Gentleman, R.; Vitale, A.; Wang, K.S.; Mandelli, F.; Foà, R.; Ritz, J. Gene Expression Profiles of B-lineage Adult Acute Lymphocytic Leukemia Reveal Genetic Patterns that Identify Lineage Derivation and Distinct Mechanisms of Transformation. Clin. Cancer Res. 2005, 11, 7209–7219. [Google Scholar]
- Moos, P.J.; Raetz, E.A.; Carlson, M.A.; Szabo, A.; Smith, F.E.; Willman, C.L.; Wei, Q.; Hunger, S.P.; Carroll, W.L. Identification of gene expression profiles that segregate patients with childhood leukemia. Clin. Cancer Res. 2002, 8, 3118–3130. [Google Scholar]
- Ferrando, A.A.; Look, A.T. DNA microarrays in the diagnosis and management of acute lymphoblastic leukemia. Int. J. Hematol. 2004, 80, 395–400. [Google Scholar]
- Mullighan, C.G.; Su, X.; Zhang, J.; Radtke, I.; Phillips, L.A.; Miller, C.B.; Ma, J.; Liu, W.; Cheng, C.; Schulman, B.A.; et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. New Engl. J. Med. 2009, 360, 470–480. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-F.; Wang, B.-Y.; Zhang, W.-N.; Huang, J.-Y.; Li, B.-S.; Zhang, M.; Jiang, L.; Li, J.-F.; Wang, M.-J.; Dai, Y.-J.; et al. Genomic Profiling of Adult and Pediatric B-cell Acute Lymphoblastic Leukemia. EBioMedicine 2016, 8, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Totadri, S.; Singh, M.; Trehan, A.; Varma, N.; Bhatia, P. Keeping PACE with Ph Positive to Ph-Like Detection in B-Lineage Acute Lymphoblastic Leukemia: A Practical and Cost Effective (PACE) Approach in a Resource Constrained Setting. Indian J. Hematol. Blood Transfus. 2018, 34, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Roberts, K.G.; Pei, D.; Campana, D.; Payne-Turner, D.; Li, Y.; Cheng, C.; Sandlund, J.T.; Jeha, S.; Easton, J.; Becksfort, J.; et al. Outcomes of Children With BCR-ABL1–Like Acute Lymphoblastic Leukemia Treated With Risk-Directed Therapy Based on the Levels of Minimal Residual Disease. J. Clin. Oncol. 2014, 32, 3012–3020. [Google Scholar] [CrossRef] [Green Version]
- Heatley, S.; Sadras, T.; Kok, C.H.; Nievergall, E.; Quek, K.; Dang, P.; McClure, B.; Venn, N.; Moore, S.; Suttle, J.; et al. High prevalence of relapse in children with Philadelphia-like acute lymphoblastic leukemia despite risk-adapted treatment. Haematologica 2017, 102, e490–e493. [Google Scholar] [CrossRef]
- Chiaretti, S.; Messina, M.; Grammatico, S.; Piciocchi, A.; Fedullo, A.L.; Di Giacomo, F.; Peragine, N.; Gianfelici, V.; Lauretti, A.; Bareja, R.; et al. Rapid identification ofBCR/ABL1-like acute lymphoblastic leukaemia patients using a predictive statistical model based on quantitative real time-polymerase chain reaction: Clinical, prognostic and therapeutic implications. Br. J. Haematol. 2018, 181, 642–652. [Google Scholar] [CrossRef] [Green Version]
- Attarbaschi, A.; Morak, M.; Cario, G.; Cazzaniga, G.; Ensor, H.M.; Kronnie, G.T.; Bradtke, J.; Mann, G.; Vendramini, E.; Palmi, C.; et al. Treatment outcome of CRLF2-rearranged childhood acute lymphoblastic leukaemia: A comparative analysis of the AIEOP-BFM and UK NCRI-CCLG study groups. Br. J. Haematol. 2012, 158, 772–777. [Google Scholar] [CrossRef]
- Elnahass, Y.H.; Fahmy, O.A.; Samra, M.A.M.; Elrefaey, F.A.; Bokhary, M.T.; Elsherif, H.; Afifi, H.H.; Elkomy, A.S.; Hola, M.; Mahmoud, H.K. Poor Outcome of CRLF2 Rearranged Philadelphia Negative Acute Lymphoblastic Leukemia Adults Patients. Blood 2018, 132, 5290. [Google Scholar] [CrossRef]
- Ge, Z.; Gu, Y.; Zhao, G.; Li, J.; Chen, B.; Han, Q.; Guo, X.; Liu, J.; Li, H.; Yu, M.D.; et al. High CRLF2 expression associates with IKZF1 dysfunction in adult acute lymphoblastic leukemia without CRLF2 rearrangement. Oncotarget 2016, 7, 49722–49732. [Google Scholar] [CrossRef] [Green Version]
- Harvey, R.C.; Mullighan, C.G.; Chen, I.-M.; Wharton, W.; Mikhail, F.M.; Carroll, A.J.; Kang, H.; Liu, W.; Dobbin, K.K.; Smith, M.A.; et al. Rearrangement of CRLF2 is associated with mutation of JAK kinases, alteration of IKZF1, Hispanic/Latino ethnicity, and a poor outcome in pediatric B-progenitor acute lymphoblastic leukemia. Blood 2010, 115, 5312–5321. [Google Scholar] [CrossRef] [Green Version]
- Van der Veer, A.; Waanders, E.; Pieters, R.; Willemse, M.E.; Van Reijmersdal, S.V.; Russell, L.J.; Harrison, C.J.; Evans, W.E.; van der Velden, V.H.J.; Hoogerbrugge, P.M.; et al. Independent prognostic value of BCR-ABL1-like signature and IKZF1 deletion, but not high CRLF2 expression, in children with B-cell precursor ALL. Blood 2013, 122, 2622–2629. [Google Scholar] [CrossRef]
- Reshmi, S.C.; Harvey, R.C.; Roberts, K.G.; Stonerock, E.; Smith, A.; Jenkins, H.; Chen, I.-M.; Valentine, M.; Liu, Y.; Li, Y.; et al. Targetable kinase gene fusions in high-risk B-ALL: A study from the Children’s Oncology Group. Blood 2017, 129, 3352–3361. [Google Scholar] [CrossRef] [Green Version]
- Pastorczak, A.; Sedek, L.; Braun, M.; Madzio, J.; Sonsala, A.; Twardoch, M.; Fendler, W.; Nebral, K.; Taha, J.; Bielska, M.; et al. Surface expression of Cytokine Receptor-Like Factor 2 increases risk of relapse in pediatric acute lymphoblastic leukemia patients harboring IKZF1 deletions. Oncotarget 2018, 9, 25971–25982. [Google Scholar] [CrossRef]
- Hahm, K.; Ernst, P.; Lo, K.; Kim, G.S.; Turck, C.; Smale, S.T. The lymphoid transcription factor LyF-1 is encoded by specific, alternatively spliced mRNAs derived from the Ikaros gene. Mol. Cell. Boil. 1994, 14, 7111–7123. [Google Scholar] [CrossRef] [Green Version]
- Georgopoulos, K.; Moore, D.; Derfler, B. Ikaros, an early lymphoid-specific transcription factor and a putative mediator for T cell commitment. Science 1992, 258, 808–812. [Google Scholar] [CrossRef]
- Gowda, C.; Song, C.; Ding, Y.; Iyer, S.; Dhanyamraju, P.K.; McGrath, M.; Bamme, Y.; Soliman, M.; Kane, S.; Payne, J.L.; et al. Cellular signaling and epigenetic regulation of gene expression in leukemia. Adv. Boil. Regul. 2020, 75, 100665. [Google Scholar] [CrossRef]
- Ding, Y.; Zhang, B.; Payne, J.L.; Song, C.; Ge, Z.; Gowda, C.; Iyer, S.; Dhanyamraju, P.K.; Dorsam, G.; Reeves, M.E.; et al. Ikaros tumor suppressor function includes induction of active enhancers and super-enhancers along with pioneering activity. Leukemia 2019, 33, 2720–2731. [Google Scholar] [CrossRef] [Green Version]
- Georgopoulos, K.; Bigby, M.; Wang, J.-H.; Molnár, Á.; Wu, P.; Winandy, S.; Sharpe, A. The ikaros gene is required for the development of all lymphoid lineages. Cell 1994, 79, 143–156. [Google Scholar] [CrossRef]
- Yoshida, T.; Ng, S.Y.-M.; Zúñiga-Pflücker, J.C.; Georgopoulos, K. Early hematopoietic lineage restrictions directed by Ikaros. Nat. Immunol. 2006, 7, 382–391. [Google Scholar] [CrossRef]
- Hu, Y.; Yoshida, T.; Georgopoulos, K. Transcriptional circuits in B cell transformation. Curr. Opin. Hematol. 2017, 24, 345–352. [Google Scholar] [CrossRef]
- Van Der Veer, A.; Zaliova, M.; Mottadelli, F.; De Lorenzo, P.; Kronnie, G.T.; Harrison, C.; Cave, H.; Trka, J.; Saha, V.; Schrappe, M.; et al. IKZF1 status as a prognostic feature in BCR-ABL1–positive childhood ALL. Blood 2014, 123, 1691–1698. [Google Scholar] [CrossRef]
- Davis, K. Ikaros: Master of hematopoiesis, agent of leukemia. Ther. Adv. Hematol. 2011, 2, 359–368. [Google Scholar] [CrossRef] [Green Version]
- Song, C.; Gowda, C.; Pan, X.; Ding, Y.; Tong, Y.; Tan, B.-H.; Wang, H.; Muthusami, S.; Ge, Z.; Sachdev, M.; et al. Targeting casein kinase II restores Ikaros tumor suppressor activity and demonstrates therapeutic efficacy in high-risk leukemia. Blood 2015, 126, 1813–1822. [Google Scholar] [CrossRef] [Green Version]
- Arco, P.G.-D.; Maki, K.; Georgopoulos, K. Phosphorylation Controls Ikaros’s Ability To Negatively Regulate the G1-S Transition. Mol. Cell. Boil. 2004, 24, 2797–2807. [Google Scholar] [CrossRef] [Green Version]
- Gurel, Z.; Ronni, T.; Ho, S.; Kuchar, J.; Payne, K.; Turk, C.W.; Dovat, S. Recruitment of ikaros to pericentromeric heterochromatin is regulated by phosphorylation. J. Boil. Chem. 2008, 283, 8291–8300. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Song, C.; Ouyang, H.; Lai, L.; Payne, K.; Dovat, S. Cell cycle-specific function of Ikaros in human leukemia. Pediatr. Blood Cancer 2011, 59, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Adams, B.; Dörfler, P.; Aguzzi, A.; Kozmik, Z.; Urbanek, P.; Maurer-Fogy, I.; Busslinger, M. Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genome Res. 1992, 6, 1589–1607. [Google Scholar] [CrossRef] [Green Version]
- Shahjahani, M.; Norozi, F.; Ahmadzadeh, A.; Shahrabi, S.; Tavakoli, F.; Aminasnafi, A.; Saki, N. The role of Pax5 in leukemia: Diagnosis and prognosis significance. Med. Oncol. 2014, 32, 360. [Google Scholar] [CrossRef]
- Dang, J.; Wei, L.; De Ridder, J.; Su, X.; Rust, A.; Roberts, K.G.; Payne-Turner, D.; Cheng, J.; Ma, J.; Qu, C.; et al. PAX5 is a tumor suppressor in mouse mutagenesis models of acute lymphoblastic leukemia. Blood 2015, 125, 3609–3617. [Google Scholar] [CrossRef] [Green Version]
- Ou, Z.; Sherer, M.; Casey, J.; Vitullo, K.; Hu, J.; Friehling, E.; Surti, U.; Bakos, H.A.; Gollin, S.; Yatsenko, S.A. The Genomic Landscape of PAX5, IKZF1, and CDKN2A/B Alterations in B-Cell Precursor Acute Lymphoblastic Leukemia. Cytogenet. Genome Res. 2016, 150, 242–252. [Google Scholar] [CrossRef]
- Öfverholm, I.; Tran, A.N.; Heyman, M.; Zachariadis, V.; Nordenskjöld, M.; Nordgren, A.; Barbany, G. Impact of IKZF1 deletions and PAX5 amplifications in pediatric B-cell precursor ALL treated according to NOPHO protocols. Leukemia 2013, 27, 1936–1939. [Google Scholar] [CrossRef] [PubMed]
- Tonozuka, Y.; Fujio, K.; Sugiyama, T.; Nosaka, T.; Hirai, M.; Kitamura, T. Molecular cloning of a human novel type I cytokine receptor related to delta1/TSLPR. Cytogenet. Cell Genet. 2001, 93, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Levin, S.D.; Koelling, R.M.; Friend, S.L.; Isaksen, D.E.; Ziegler, S.F.; Perlmutter, R.M.; Farr, A.G. Thymic stromal lymphopoietin: A cytokine that promotes the development of IgM+ B cells in vitro and signals via a novel mechanism. J. Immunol. 1999, 162, 677–683. [Google Scholar] [PubMed]
- Pandey, A.; Ozaki, K.; Baumann, H.; Levin, S.D.; Puel, A.; Farr, A.G.; Ziegler, S.F.; Leonard, W.J.; Lodish, H.F. Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat. Immunol. 2000, 1, 59–64. [Google Scholar] [CrossRef]
- Park, L.S.; Martin, U.; Garka, K.; Gliniak, B.; Di Santo, J.P.; Müller, W.; Largaespada, D.A.; Copeland, N.; Jenkins, N.A.; Farr, A.G.; et al. Cloning of the Murine Thymic Stromal Lymphopoietin (Tslp) Receptor. J. Exp. Med. 2000, 192, 659–670. [Google Scholar] [CrossRef] [Green Version]
- Isaksen, D.E.; Baumann, H.; Trobridge, P.A.; Farr, A.G.; Levin, S.D.; Ziegler, S.F. Requirement for stat5 in thymic stromal lymphopoietin-mediated signal transduction. J. Immunol. 1999, 163, 5971–5977. [Google Scholar]
- Wohlmann, A.; Sebastian, K.; Borowski, A.; Krause, S.; Friedrich, K. Signal transduction by the atopy-associated human thymic stromal lymphopoietin (TSLP) receptor depends on Janus kinase function. Boil. Chem. 2010, 391, 181–186. [Google Scholar] [CrossRef]
- Tasian, S.K.; Doral, M.Y.; Borowitz, M.J.; Wood, B.L.; Chen, I.-M.; Harvey, R.C.; Gastier-Foster, J.M.; Willman, C.L.; Hunger, S.P.; Mullighan, C.G.; et al. Aberrant STAT5 and PI3K/mTOR pathway signaling occurs in human CRLF2-rearranged B-precursor acute lymphoblastic leukemia. Blood 2012, 120, 833–842. [Google Scholar] [CrossRef] [Green Version]
- Russell, L.J.; Capasso, M.; Vater, I.; Akasaka, T.; Bernard, O.; Calasanz, M.J.; Chandrasekaran, T.; Chapiro, E.; Gesk, S.; Griffiths, M.; et al. Deregulated expression of cytokine receptor gene, CRLF2, is involved in lymphoid transformation in B-cell precursor acute lymphoblastic leukemia. Blood 2009, 114, 2688–2698. [Google Scholar] [CrossRef]
- Loh, M.L.; Zhang, J.; Harvey, R.C.; Roberts, K.; Payne-Turner, D.; Kang, H.; Wu, G.; Chen, X.; Becksfort, J.; Edmonson, M.; et al. Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: A report from the Children’s Oncology Group TARGET Project. Blood 2013, 121, 485–488. [Google Scholar] [CrossRef] [Green Version]
- Konoplev, S.; Lu, X.; Konopleva, M.; Jain, N.; Ouyang, J.; Goswami, M.; Roberts, K.G.; Valentine, M.; Mullighan, C.G.; Bueso-Ramos, C.; et al. CRLF2-Positive B-Cell Acute Lymphoblastic Leukemia in Adult Patients: A Single-Institution Experience. Am. J. Clin. Pathol. 2017, 147, 357–363. [Google Scholar] [CrossRef]
- Pérez-Andreu, V.; Roberts, K.G.; Harvey, R.C.; Yang, W.; Cheng, C.; Pei, D.; Xu, H.; Gastier-Foster, J.; Shuyu, E.; Lim, J.Y.-S.; et al. Inherited GATA3 variants are associated with Ph-like childhood acute lymphoblastic leukemia and risk of relapse. Nat. Genet. 2013, 45, 1494–1498. [Google Scholar]
- Giddings, B.M.; Whitehead, T.P.; Metayer, C.; Miller, M. Childhood leukemia incidence in California: High and rising in the Hispanic population. Cancer 2016, 122, 2867–2875. [Google Scholar] [CrossRef]
- Bhatia, S.; Sather, H.N.; Heerema, N.A.; Trigg, M.E.; Gaynon, P.S.; Robison, L.L. Racial and ethnic differences in survival of children with acute lymphoblastic leukemia. Blood 2002, 100, 1957–1964. [Google Scholar] [CrossRef]
- Francis, O.L.; Milford, T.-A.M.; Martinez, S.R.; Baez, I.; Coats, J.S.; Mayagoitia, K.; Concepcion, K.; Ginelli, E.; Beldiman, C.; Benitez, A.; et al. A novel xenograft model to study the role of TSLP-induced CRLF2 signals in normal and malignant human B lymphopoiesis. Haematologica 2015, 101, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Maude, S.L.; Tasian, S.K.; Vincent, T.; Hall, J.W.; Sheen, W.; Roberts, K.G.; Seif, A.E.; Barrett, D.M.; Chen, I.-M.; Collins, J.R.; et al. Targeting JAK1/2 and mTOR in murine xenograft models of Ph-like acute lymphoblastic leukemia. Blood 2012, 120, 3510–3518. [Google Scholar] [CrossRef] [Green Version]
- Roberts, K.G.; Gu, Z.; Payne-Turner, D.; McCastlain, K.; Harvey, R.C.; Chen, I.-M.; Pei, D.; Iacobucci, I.; Valentine, M.; Pounds, S.B.; et al. High Frequency and Poor Outcome of Philadelphia Chromosome–Like Acute Lymphoblastic Leukemia in Adults. J. Clin. Oncol. 2017, 35, 394–401. [Google Scholar] [CrossRef]
- Boer, J.M.; Steeghs, E.M.; Marchante, J.R.; Boeree, A.; Beaudoin, J.J.; Beverloo, H.B.; Kuiper, R.P.; Escherich, G.; Van Der Velden, V.H.; Van Der Schoot, C.E.; et al. Tyrosine kinase fusion genes in pediatric BCR-ABL1-like acute lymphoblastic leukemia. Oncotarget 2016, 8, 4618–4628. [Google Scholar]
- Iacobucci, I.; Li, Y.; Roberts, K.G.; Dobson, S.M.; Kim, J.C.; Payne-Turner, D.; Harvey, R.C.; Valentine, M.; McCastlain, K.; Easton, J.; et al. Truncating Erythropoietin Receptor Rearrangements in Acute Lymphoblastic Leukemia. Cancer Cell 2016, 29, 186–200. [Google Scholar] [CrossRef] [Green Version]
- Zaliova, M.; Moorman, A.V.; Cazzaniga, G.; Stanulla, M.; Harvey, R.C.; Roberts, K.G.; Heatley, S.; Loh, M.L.; Konopleva, M.; Chen, I.-M.; et al. Characterization of leukemias with ETV6-ABL1 fusion. Haematologica 2016, 101, 1082–1093. [Google Scholar] [CrossRef] [Green Version]
- Harvey, R.C.; Kang, H.; Roberts, K.G.; Chen, I.-M.L.; Atlas, S.R.; Bedrick, E.J.; Gastier-Foster, J.M.; Zhang, J.; Gerhard, D.S.; Smith, M.A.; et al. Development and Validation Of a Highly Sensitive and Specific Gene Expression Classifier To Prospectively Screen and Identify B-Precursor Acute Lymphoblastic Leukemia (ALL) Patients With a Philadelphia Chromosome-Like (“Ph-like” or “BCR-ABL1-Like”) Signature For Therapeutic Targeting and Clinical Intervention. Blood 2013, 122, 826. [Google Scholar]
- Yoda, A.; Yoda, Y.; Chiaretti, S.; Bar-Natan, M.; Mani, K.; Rodig, S.J.; West, N.; Xiao, Y.; Brown, J.R.; Mitsiades, C.; et al. Functional screening identifies CRLF2 in precursor B-cell acute lymphoblastic leukemia. Proc. Natl. Acad. Sci. USA 2009, 107, 252–257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Shi, C.; Han, L.; Jain, N.; Roberts, K.G.; Ma, H.; Cai, T.; Cavazos, A.; Tabe, Y.; Jacamo, R.O.; et al. Inhibition of mTORC1/C2 signaling improves anti-leukemia efficacy of JAK/STAT blockade in CRLF2 rearranged and/or JAK driven Philadelphia chromosome-like acute B-cell lymphoblastic leukemia. Oncotarget 2018, 9, 8027–8041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suryani, S.; Bracken, L.S.; Harvey, R.C.; Sia, K.C.; Carol, H.; Chen, I.-M.; Evans, K.; Dietrich, P.A.; Roberts, K.G.; Kurmasheva, R.T.; et al. Evaluation of the in vitro and in vivo efficacy of the JAK inhibitor AZD1480 against JAK-mutated acute lymphoblastic leukemia. Mol. Cancer Ther. 2014, 14, 364–374. [Google Scholar] [CrossRef] [Green Version]
- Tasian, S.K.; Assad, A.; Hunter, D.S.; Du, Y.; Loh, M.L. A Phase 2 Study of Ruxolitinib with Chemotherapy in Children with Philadelphia Chromosome-like Acute Lymphoblastic Leukemia (INCB18424-269/AALL1521): Dose-Finding Results from the Part 1 Safety Phase. Blood 2018, 132, 555. [Google Scholar] [CrossRef]
- Beagle, B.R.; Nguyen, D.; Mallya, S.; Tang, S.S.; Lu, M.; Zeng, Z.; Konopleva, M.; Vo, T.-T.; Fruman, D. mTOR kinase inhibitors synergize with histone deacetylase inhibitors to kill B-cell acute lymphoblastic leukemia cells. Oncotarget 2014, 6, 2088–2100. [Google Scholar] [CrossRef] [Green Version]
- Hasan, N.; Queudeville, M.; Trentin, L.; Eckhoff, S.M.; Bronzini, I.; Palmi, C.; Barth, T.; Cazzaniga, G.; Kronnie, G.T.; Debatin, K.-M.; et al. Targeting of hyperactivated mTOR signaling in high-risk acute lymphoblastic leukemia in a pre-clinical model. Oncotarget 2014, 6, 1382–1395. [Google Scholar] [CrossRef]
- Collette, Y.; Prebet, T.; Goubard, A.; Adelaide, J.; Castellano, R.; Carbuccia, N.; Garnier, S.; Guille, A.; Arnoulet, C.; Charbonier, A.; et al. Drug response profiling can predict response to ponatinib in a patient with t(1;9)(q24;q34)-associated B-cell acute lymphoblastic leukemia. Blood Cancer J. 2015, 5, e292. [Google Scholar] [CrossRef] [Green Version]
- Kucine, N.; Marubayashi, S.; Bhagwat, N.; Papalexi, E.; Koppikar, P.; Martin, M.S.; Dong, L.; Tallman, M.S.; Paietta, E.; Wang, K.; et al. Tumor-specific HSP90 inhibition as a therapeutic approach in JAK-mutant acute lymphoblastic leukemias. Blood 2015, 126, 2479–2483. [Google Scholar] [CrossRef]
- Duployez, N.; Grzych, G.; Ducourneau, B.; Fuentes, M.A.; Grardel, N.; Boyer, T.; Chahla, W.A.; Bruno, B.; Nelken, B.; Clappier, E.; et al. NUP214-ABL1 fusion defines a rare subtype of B-cell precursor acute lymphoblastic leukemia that could benefit from tyrosine kinase inhibitors. Haematologica 2015, 101, e133–e134. [Google Scholar] [CrossRef] [Green Version]
- Köhrer, S.; Havranek, O.; Seyfried, F.; Hurtz, C.; Coffey, G.P.; Kim, E.; Hacken, E.T.; Jäger, U.; Vanura, K.; O’Brien, S.; et al. Pre-BCR signaling in precursor B-cell acute lymphoblastic leukemia regulates PI3K/AKT, FOXO1 and MYC, and can be targeted by SYK inhibition. Leukemia 2016, 30, 1246–1254. [Google Scholar] [CrossRef] [PubMed]
- Perwein, T.; Strehl, S.; König, M.; Lackner, H.; Panzer-Grümayer, R.; Mann, G.; Attarbaschi, A.; Urban, E.-C.; Haas, O.A. Imatinib-induced long-term remission in a relapsed RCSD1-ABL1-positive acute lymphoblastic leukemia. Haematologica 2016, 101, e332–e335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobayashi, K.; Miyagawa, N.; Mitsui, K.; Matsuoka, M.; Kojima, Y.; Takahashi, H.; Ootsubo, K.; Nagai, J.; Ueno, H.; Ishibashi, T.; et al. TKI dasatinib monotherapy for a patient with Ph-like ALL bearingATF7IP/PDGFRBtranslocation. Pediatr. Blood Cancer 2014, 62, 1058–1060. [Google Scholar] [CrossRef] [PubMed]
- Weston, B.W.; Hayden, M.A.; Roberts, K.G.; Bowyer, S.; Hsu, J.; Fedoriw, G.; Rao, K.W.; Mullighan, C.G. Tyrosine Kinase Inhibitor Therapy Induces Remission in a Patient With Refractory EBF1-PDGFRB–Positive Acute Lymphoblastic Leukemia. J. Clin. Oncol. 2013, 31, e413–e416. [Google Scholar] [CrossRef]
- Cheng, Y.; Chikwava, K.; Wu, C.; Zhang, H.; Bhagat, A.; Pei, D.; Choi, J.K.; Tong, W. LNK/SH2B3 regulates IL-7 receptor signaling in normal and malignant B-progenitors. J. Clin. Investig. 2016, 126, 1267–1281. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-K.; Knight, D.A.; Jones, L.R.; Vervoort, S.; Ng, A.P.; Seymour, J.F.; Bradner, J.E.; Waibel, M.; Kats, L.; Johnstone, R. JAK2 is dispensable for maintenance of JAK2 mutant B-cell acute lymphoblastic leukemias. Genome Res. 2018, 32, 849–864. [Google Scholar] [CrossRef] [Green Version]
- Sarno, J.; Savino, A.M.; Buracchi, C.; Palmi, C.; Pinto, S.; Bugarin, C.; Jager, A.; Bresolin, S.; Barber, R.C.; Silvestri, D.; et al. SRC/ABL inhibition disrupts CRLF2-driven signaling to induce cell death in B-cell acute lymphoblastic leukemia. Oncotarget 2018, 9, 22872–22885. [Google Scholar] [CrossRef] [Green Version]
- Gotesman, M.; Vo, T.-T.T.; Herzog, L.-O.; Tea, T.; Mallya, S.; Tasian, S.K.; Konopleva, M.; Fruman, D. mTOR inhibition enhances efficacy of dasatinib in ABL-rearranged Ph-like B-ALL. Oncotarget 2018, 9, 6562–6571. [Google Scholar] [CrossRef] [Green Version]
- Rheingold, S.R.; Tasian, S.K.; Whitlock, J.A.; Teachey, D.T.; Borowitz, M.J.; Liu, X.; Minard, C.G.; Fox, E.; Weigel, B.J.; Blaney, S.M. A phase 1 trial of temsirolimus and intensive re-induction chemotherapy for 2nd or greater relapse of acute lymphoblastic leukaemia: A Children’s Oncology Group study (ADVL1114). Br. J. Haematol. 2017, 177, 467–474. [Google Scholar] [CrossRef]
- Qin, H.; Cho, M.; Haso, W.; Zhang, L.; Tasian, S.K.; Oo, H.Z.; Negri, G.L.; Lin, Y.; Zou, J.; Mallon, B.S.; et al. Eradication of B-ALL using chimeric antigen receptor–expressing T cells targeting the TSLPR oncoprotein. Blood 2015, 126, 629–639. [Google Scholar] [CrossRef]
- Richmond, J.; Robbins, A.; Evans, K.; Beck, D.; Kurmasheva, R.T.; Billups, C.A.; Carol, H.; Heatley, S.; Sutton, R.; Marshall, G.M.; et al. Acute Sensitivity of Ph-like Acute Lymphoblastic Leukemia to the SMAC-Mimetic Birinapant. Cancer Res. 2016, 76, 4579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, Z.; Gu, Y.; Xiao, L.; Han, Q.; Li, J.; Chen, B.; Yu, J.; Kawasawa, Y.I.; Payne, K.; Dovat, S.; et al. Co-existence of IL7R high and SH2B3 low expression distinguishes a novel high-risk acute lymphoblastic leukemia with Ikaros dysfunction. Oncotarget 2016, 7, 46014–46027. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Feature | US COG Cohort [21] | DCOG Cohort [12] |
---|---|---|
Number of genes probed | 257 gene probe sets | 110 gene probe sets |
Methodology | Prediction analysis of microarrays | Hierarchical clustering |
Patient characteristics | High-risk patients (CNS or testicular disease, MLL rearrangement, age >10 years, male sex and WBC > 50,000) in the original cohort and all risk groups in the validation cohort | All risk groups |
Racial/ethnic differences | Presence of Hispanic/Latino ethnicity | Lack of Hispanic/Latino patients |
CRLF2 aberration/JAK2 mutation | Higher frequency | Lower frequency |
Outcomes | Poor outcomes in IKZF1-deleted or mutated cases | Six genetic subtypes of ALL identified BCR/ABL1-like had poor outcomes compared to other groups |
Kinase Target | Inhibitor | Reference |
---|---|---|
JAK, ABL, ETV6-NTRK3 fusion | Ruxolitinib, Dasatinib, Crizotinib | Roberts et al.; 2014 [14] |
JAK+MEK | AZD1480+Selumetinib | Suryani et al.; 2015 [74] |
mTOR+HDAC | mTOR inh+Vorinostat | Beagle et al.; 2015 [76] |
mTOR | mTOR inhibitor | Hasan et al.; 2015 [77] |
RCSD1-ABL1 rearr. t(1;9) | ABL inhibitor Ponatinib | Collette et al.; 2015 [78] |
HSP90/JAK | HSP90 inhibitor | Kucine et al.; 2015 [79] |
ABL1 (NUP214-abl1 fusion) | Dasatinib | Duployez et at; 2016 [80] |
SYK (spleen tyrosine kinase) | PRT318/R406 (Fostamatinib) | Kohrer et al.; 2016 [81] |
ABL1(RCSD1-ABL1) | Imatinib | Perwein et al.; 2016 [82] |
ATF71P/PDGFRB | Dasatinib | Kobayashi et al.; 2014 [83] |
EBF1-PDGFRB fusion | Imatinib | Weston et al.; 2013 [84] |
Lnk negative/ p53 negative blasts | Ruxolitinib/BEZ235 (dual mTOR and PI3K) | Cheng et al.; 2016 [85] |
C-myc and JAK2 | JQ1 (BET bromodomain) and Ruxolitinib | Kim et al.; 2018 [86] |
SRC/ABL | Dasatinib | Sarno et al.; 2018 [87] |
Sponsor/Collaborator | Trial | NCT# |
---|---|---|
Children’s Oncology Group | Phase 2 study of Ruxolitinib with chemotherapy for CRLF2- or JAK-mutated B-ALL | NCT02723994 |
University of New Mexico | ALL therapies informed by genomic analysis | Single arm, open label NCT02580981 |
University of Chicago | Phase 1 trial of Ruxolitinib in combination with pediatric-based regimen for AYAs with Ph-like ALL. | NCT03571321 (not yet recruiting as of 12/2019) |
MD Anderson Cancer Center | Ruxolitinib or Dasatinib with chemotherapy in relapsed/refractory Ph-like ALL | NCT02420717 |
St. Jude’s Children’s Research Hospital | Total therapy XVII: Dasatinib for ABL1 class fusion and Ruxolitinib for activated JAK/STAT signaling | NCT03117751 |
OHSU Knight Cancer Institute | Personalized kinase-inhibitor therapy combined with chemotherapy | NCT02779283 |
University of Washington | In vitro-sensitivity directed therapy | NCT02551718 |
St. Jude’s Children’s Research Hospital | Treatment with combination chemotherapy for relapsed or refractory ALL | NCT03515200 |
Nanfang Hospital of Southern Medical University, China | To evaluate safety and efficacy of adding Chidamide (oral histone deacetylase inhibitor) and Dasatinib (TKI) to pediatric-inspired and MRD-directed pediatric protocol for Ph-like ALL | Open label, two-arm trial |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiraz, P.; Payne, K.J.; Muffly, L. The Current Genomic and Molecular Landscape of Philadelphia-like Acute Lymphoblastic Leukemia. Int. J. Mol. Sci. 2020, 21, 2193. https://doi.org/10.3390/ijms21062193
Shiraz P, Payne KJ, Muffly L. The Current Genomic and Molecular Landscape of Philadelphia-like Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences. 2020; 21(6):2193. https://doi.org/10.3390/ijms21062193
Chicago/Turabian StyleShiraz, Parveen, Kimberly J. Payne, and Lori Muffly. 2020. "The Current Genomic and Molecular Landscape of Philadelphia-like Acute Lymphoblastic Leukemia" International Journal of Molecular Sciences 21, no. 6: 2193. https://doi.org/10.3390/ijms21062193
APA StyleShiraz, P., Payne, K. J., & Muffly, L. (2020). The Current Genomic and Molecular Landscape of Philadelphia-like Acute Lymphoblastic Leukemia. International Journal of Molecular Sciences, 21(6), 2193. https://doi.org/10.3390/ijms21062193