





**Figure S1.** Transcript levels of the cell expansion genes (**A**) and cell proliferation genes (**B**) in young panicles (about 6~7 cm length panicles) of WT, *sg2-1* and *sg2-2*. *OsActin* was used as the control. Data are given as means  $\pm$  SD. Student's t-test was used to generate the *p* values; \*\*, \* indicate *p* < 0.01, *p* < 0.05, respectively.



**Figure S2.** Allelic analysis between *sg2-1* and *sg2-2*. (**A**) Plant comparison of WT, *sg2-1*, *sg2-2*, *sg2-1/sg2-2* F<sub>1</sub> and *sg2-2/sg2-1* F<sub>1</sub> at the maturity stage. Bar = 20 cm. (**B**) Morphology of grain shape in WT, *sg2-1*, *sg2-2*, *sg2-1/sg2-2* F<sub>1</sub> and *sg2-2/sg2-1* F<sub>1</sub>. Bar = 2 mm. Statistical data of the grain length (**C**), grain width (**D**), 1,000-grain weight (**E**), plant height (**F**) in WT, *sg2-1*, *sg2-2*, *sg2-1/sg2-2* F<sub>1</sub> and *sg2-2/sg2-1* F<sub>1</sub>. Data are given as means ± SD. Student's t-test was used to generate the *p* values; \*\* indicate *p* < 0.01.



**Figure S3.** (**A**) Relative expression levels of *OsINV3* in young panicles (about 6~7 cm length panicles) of WT, *sg2-1*, *sg2-2* and complementation lines (C1-C5). (**B**) Relative expression levels of *OsINV3* in ZH11, *KOs* (*KO1-KO5*) and OEs (OE1-OE3). *OsActin* was used as the control. Data are given as means  $\pm$  SD. Student's t-test was used to generate the *p* values; \*\* indicate *p* < 0.01.



Figure S4. A phylogenetic tree of all invertase proteins of rice.



Figure S5. Subcellular localization of OsINV2 observed in rice protoplasts. Scale bar, 10µm.



**Figure S6.** Knock-out mutants of created by CRISPR/Cas9. (**A**) Schematic map of the sgRNA target sites in *INV3* and *INV2*. Black boxes, lines and white boxes represent exons, introns and the untranslated regions, respectively. The start codon (ATG) and the stop codon (TAG) are indicated. (**B**) Vector construction and sequence alignment for *INV2<sup>KO</sup>* single mutants, *INV3<sup>KO</sup>* single mutant and *INV3<sup>KO</sup>* double mutants.



**Figure S7.** Relative expression levels of *OsINV3* and *OsINV2* in young panicles (about 6~7 cm length panicles) of ZH11, *INV2<sup>K0</sup>*, *INV3<sup>K0</sup>* and *INV3<sup>K0</sup>INV2<sup>K0</sup>*. *OsActin* was used as the control. Data are given as means  $\pm$  SD. Student's t-test was used to generate the *p* values; \*\* and NS indicate *p* < 0.01 and no significant differences, respectively.



ZH11

INV2<sup>KO</sup>





**Figure S8.** Histological comparison of the spikelet hulls in ZH11, *INV2<sup>KO</sup>*, *INV3<sup>KO</sup>* and *INV3<sup>KO</sup>INV2<sup>KO</sup>*. (**A–D**) Outer epidermal cells of the lemma observed by SEM. Scale bar, 100  $\mu$ m. (**E–G**) Comparison analysis of the cell length, cell width and cell area in the outer epidermal cells. Data are given as means ± SD. Different letters indicate statistically significant differences at the *p* = 0.01 level by Student's t-test.



**Figure S9.** Total starch and amylose contents in mature grains of ZH11,  $INV2^{KO}$ ,  $INV3^{KO}$  and  $INV3^{KO}INV2^{KO}$ . Data are given as means ± SD. Student's t-test was used to generate the *p* values; \*\* indicate *p* < 0.01.

Table S1. The lemma cell characteristics of WT, *sg2-1* and *sg2-2*.

|       | Cell Length (µm)      | Cell Width (µm)      | Cell Area (µm²)           |
|-------|-----------------------|----------------------|---------------------------|
| WT    | $83.81 \pm 1.83$      | $90.45 \pm 2.58$     | $7605.62 \pm 168.53$      |
| sg2-1 | $63.71 \pm 1.69^{**}$ | $61.5 \pm 2.83^{**}$ | $3915.87 \pm 108.43^{**}$ |
| sg2-2 | $56.90 \pm 1.71^{**}$ | 69.97 ± 2.73**       | $3996.34 \pm 110.53^{**}$ |

Data are given as means  $\pm$  SD. Student's t-test was used to generate the *p* values; \*\*indicate *p* < 0.01.

| Cross    | NP  | SP  | Segregation ratio | $\chi^2_{0.05} < 3.84$ | р        |
|----------|-----|-----|-------------------|------------------------|----------|
| WT/sg2-1 | 451 | 141 | 3.20              | 0.38                   | p < 0.05 |
| sg2-1/WT | 621 | 199 | 3.12              | 0.23                   | p < 0.05 |
| WT/sg2-2 | 427 | 134 | 3.19              | 0.46                   | p < 0.05 |
| sg2-1/WT | 602 | 197 | 3.06              | 0.04                   | p < 0.05 |

Table S2. Segregation ratio of  $F_2$  populations.

Note: NP, normal grain size phenotype plants. SP, small grain size phenotype plants. The segregation ratio was tested using the chi-square test.

| Table S3. | Agronomic | traits | of HY | and | inv3 | mutant. |
|-----------|-----------|--------|-------|-----|------|---------|
|-----------|-----------|--------|-------|-----|------|---------|

|      | Grain<br>Length (mm) | Grain<br>Width<br>(mm) | Plant<br>Height<br>(cm) | 1000-Grain<br>Weight (g) |
|------|----------------------|------------------------|-------------------------|--------------------------|
| HY   | $6.53 \pm 0.33$      | $3.31 \pm 0.19$        | 103.00 ± 3.63           | $21.21 \pm 0.55$         |
| inv3 | $6.01 \pm 0.32^{**}$ | $3.00 \pm 0.23^{**}$   | $96.00 \pm 3.58$        | $12.81 \pm 0.49^{**}$    |

Data are given as means  $\pm$  SD. Student's t-test was used to generate the *p* values; \*\*indicate *p*< 0.01.

Table S4. Agronomic traits of ZH11, KOs, OEs of OsINV3.

|      | Grain Length (mm) | Grain Width (mm) | 1000-Grain Weight (g) |
|------|-------------------|------------------|-----------------------|
| ZH11 | $7.36 \pm 0.19$   | $3.39 \pm 0.09$  | $25.41 \pm 0.55$      |

| KO1 | $6.79 \pm 0.15^{**}$ | $2.94 \pm 0.09^{**}$ | $18.02 \pm 0.49^{**}$ |
|-----|----------------------|----------------------|-----------------------|
| KO2 | $6.75 \pm 0.19^{**}$ | $2.92 \pm 0.10^{**}$ | $17.88 \pm 0.35^{**}$ |
| KO3 | $6.73 \pm 0.19^{**}$ | $2.92 \pm 0.08^{**}$ | $17.77 \pm 0.42^{**}$ |
| KO4 | $6.75 \pm 0.12^{**}$ | $2.91 \pm 0.09^{**}$ | $18.08 \pm 0.39^{**}$ |
| KO5 | $6.79 \pm 0.18^{**}$ | $2.92 \pm 0.08^{**}$ | $17.95 \pm 0.41^{**}$ |
| OE1 | $7.65 \pm 0.13^{*}$  | $3.73 \pm 0.08^{**}$ | $26.94 \pm 0.43^*$    |
| OE2 | $7.64 \pm 0.14^{*}$  | $3.75 \pm 0.09^{**}$ | $26.98 \pm 0.42^*$    |
| OE3 | $7.63 \pm 0.13^{*}$  | $3.62 \pm 0.09^*$    | $26.39 \pm 0.48^*$    |

Data are given as means  $\pm$  SD. Student's t-test was used to generate the *p* values; \*\*, \* indicate *p* < 0.01, *p* < 0.05, respectively.

**Table S5.** The List of polymorphic molecular markers for mapping and the *sg2-2* mutant genomic DNA sequence amplified.

| Primer Name | Forward (5'-3')           | Reverse (5'-3')         |
|-------------|---------------------------|-------------------------|
| Os2         | GATGACGGACGAAGAAATAC      | TTTAAACCCAAAACATCGAG    |
| RM12338     | AGCTCAAGCTCAAGCTCACAACC   | TGCACTGCAACCTAAACCTTTCC |
| RM7252      | GGAGGAGGAGAAGGGTTTTG      | ACGCGCTGTCAAGTTAAAGG    |
| InDel12313  | TTGGCTGAGTGGTGGTGTC       | AGCTAGGAGCATCAACCCA     |
| RM12326     | GAGAGAGACACCAAATGATCCATCC | ACTGATTTGGCCCTTGTTCTTGG |
| RM12329     | AGGAAGAGGCGAAGGTAGATCG    | CCAATCATGCTGTGTTTCAAGG  |
| sg2-2-exon1 | CTGGCAACTGGGCCAAAT        | CCATAAAACGTTCCTCCAAAAT  |
| sg2-2-exon2 | CGCTCTGTTCGTTCGTTCTT      | CAATGGAGCCCAGTAAAAGTG   |
| sg2-2-exon3 | CATCCAGGAATGAATGCGGATA    | TCTGAAGGCCAGGCCAGC      |

## Table S6. The PCR primers used for vector construction.

| Primer Name                |         | Squence                                       | Used for        |
|----------------------------|---------|-----------------------------------------------|-----------------|
|                            | Forward | ggtacccggggatcctctagaGGAGCAGCTGGCTAATAAAATTAA |                 |
| 1300-INV3-YFP              | rormara | А                                             | Complementation |
|                            | Reverse | acgacggccagtgccaagcttTGGGGCTTGCATATTGATCTTG   |                 |
| 2200 INIV2 CEP             | Forward | atttggagagggacagggtaccATGGAGACCCGGGACGACG     | Quarayarassian  |
| 2300-IIN V 3-GFI           | Reverse | agtgtcgactctagaggatccGGCCATGTAGGCTTGGTTGTA    | Overexpression  |
| INIV2KO LIKa               | Forward | gccgCGCGACGATCATGGAGACCC                      | CDICDD          |
| 11N V 5 <sup>40</sup> -00a | Reverse | aaacGGGTCTCCATGATCGTCGCG                      | CKI51 K         |
| INV3K0INV2K0-              | Forward | gccgTCATCCAGTTCCTCTCGGGC                      | CRISPR          |
| U6a                        | Reverse | aaacGCCCGAGAGGAACTGGATGA                      | CKI51 K         |
| INV3K0INV2K0-              | Forward | gttgTCCACGCACTCCCACATGC                       | CRISPR          |
| U6b                        | Reverse | aaacGCATGTGGGAGTGCGTGGA                       | CIVIDI K        |

**Table S7.** List of primers for qRT-PCR.

| Markers | Forward (5'-3')        | <b>Reverse (5'-3')</b> |
|---------|------------------------|------------------------|
| GS2     | TGCGTCCCTTCTTTGATGAGT  | ACAGTTGGGTGCCTGAGAATG  |
| GL7     | CCCCTAGCATCGACACCAAG   | CGGGTTCCAGCACTCCTCT    |
| SRS5    | ATGAGGGAGTGCATCTCGAT   | CAAGATCGACGAAGACAGCA   |
| SRS3    | CAAGATCGACGAAGACAGCA   | CTGAGAAGCTGAAGCAGATG   |
| SMG11   | CCAACTGGAAGAGGAGAACATA | ACATGTAGTCTGTCCATTGCAA |
| GS3     | CGGAAGAACTCCTGATCCATTC | CACTTGCTCTGCACAAACAGC  |
| GW2     | CAGCAGCGCATTCCCAGTTTTC | GTGGTCAGCCGAGCACTCTC   |
| GS5     | AGTGGACTGCTTCCAGGGAAG  | CACGCAGTACCGAGAACTGA   |
| GL3     | GCTCAAGGTCACCTGATCACTC | GAACGACCACAAGATCTCTGC  |
| OsINV3  | CGGATTCCATTTCCAGCC     | ACCACTGGTCGGGAACCA     |
| OsINV2  | GGCAGCTTGGTACCTGTGCTA  | GCAGAGTTCAGCTCCCAAATC  |
| Actin   | ACCATTGGTGCTGAGCGTTT   | CAGCTTCCATTCCTATGAA    |