Imatinib Sets Pericyte Mosaic in the Retina
Abstract
:1. Introduction
2. Results
2.1. PDGFR-β Expression in the Mouse Retina Shows Colocalization with NG2
2.2. Imatinib Decreases Blood Vessel Coverage
2.3. Imatinib Treatment Decreases the Number of PCs
2.4. Imatinib Treatment Does Not Change the Total Length of Capillaries but Changes PC Coverage and Capillary Diameter
2.5. Imatinib Affected the Distribution of Capillary Branch Lengths
2.6. Imatinib Did Not Induce BRB Impairment
3. Discussion
4. Materials and Methods
4.1. Animals and Imatinib Treatment
- Imatinib intraperitoneal injection (IP) 100 mg/kg/day imatinib (dosage according to Raimondi 2014) in filtered PBS for 2 days, on n = 5 mice.
- Imatinib intravitreal injection (IV) 2 µl (8µg/µl) in filtered PBS on n = 3 mice.
- A/B equal volume injected from filtered PBS both IP and IV on n = 5 mice; used as a sham control.
4.2. Immunohistochemistry
4.3. Image Analysis
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALS | Amyotrophic lateral sclerosis |
AMD | Age-related macular degeneration |
BBB | Blood-brain barrier |
BRB | Blood–retina barrier |
BV | Blood Vessel |
C | Control |
Ch | Choroid |
CNS | Central nervous system |
Cspg4 | Chondroitin sulfate proteoglycan 4 |
DL | Deep Layer |
EC | Endothelial cell |
GCL | Ganglion cell layer |
GS-IB4 | Griffonia simplicifolia - IB4 |
IHC | Immunohistochemistry |
IL | Intermediate Layer |
INL | Inner nuclear layer |
IP | Intraperitoneal |
IPL | Inner plexiform layer |
IV | Intravitreal |
NFL | Nerve fiber layer |
NG2 | Neuron-glial antigen 2 |
NVU | Neurovascular Unit |
OIR | oxygen-induced retinal |
ONL | Outer nuclear layer |
OPL | Outer plexiform layer |
PBS | Phosphate-buffered saline |
PC | Pericytes |
PDGF | Platelet-derived growth factor |
PDGFR | Platelet-derived growth factor receptor |
PDGFR-β | Platelet-Derived Growth Factor Receptor-Beta |
PECAM1 | Platelet and endothelial cell adhesion molecule 1 |
RPE | Retinal pigment epithelium |
SD | Standard deviation |
SL | Superficial Layer |
SMC | Smooth muscle cells |
VEGF | Vascular endothelial growth factor |
References
- Stapor, P.C.; Sweat, R.S.; Dashti, D.C.; Betancourt, A.M.; Murfee, W.L. Pericyte Dynamics during Angiogenesis: New Insights from New Identities. J. Vasc. Res. 2014, 51, 163–174. [Google Scholar] [CrossRef] [Green Version]
- Hye-Ryong Shim, A.; Liu, H.; Focia, P.J.; Chen, X.; Lin, P.C.; He, X. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex. Proc. Natl. Acad. Sci. USA 2010, 107, 11307–11312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hill, R.A.; Tong, L.; Yuan, P.; Murikinati, S.; Gupta, S.; Grutzendler, J. Regional Blood Flow in the Normal and Ischemic Brain Is Controlled by Arteriolar Smooth Muscle Cell Contractility and Not by Capillary Pericytes. Neuron 2015, 87, 95–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sweeney, M.D.; Ayyadurai, S.; Zlokovic, B.V. Pericytes of the neurovascular unit: Key functions and signaling pathways. Nat. Neurosci. 2016, 19, 771–783. [Google Scholar] [CrossRef] [PubMed]
- Hall, C.N.; Reynell, C.; Gesslein, B.; Hamilton, N.B.; Mishra, A.; Sutherland, B.A.; O’Farrell, F.M.; Buchan, A.M.; Lauritzen, M.; Attwell, D. Capillary pericytes regulate cerebral blood flow in health and disease. Nature 2014, 508, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, E.; Kovacs-Oller, T.; Sagdullaev, B.T. Vascular Pericyte Impairment and Connexin43 Gap Junction Deficit Contribute to Vasomotor Decline in Diabetic Retinopathy. J. Neurosci. 2017, 37, 7580–7594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivanova, E.; Kovacs-Oller, T.; Sagdullaev, B.T. Domain-specific distribution of gap junctions defines cellular coupling to establish a vascular relay in the retina. J. Comp. Neurol. 2019. [Google Scholar] [CrossRef]
- Khennouf, L.; Gesslein, B.; Brazhe, A.; Octeau, J.C.; Kutuzov, N.; Khakh, B.S.; Lauritzen, M. Active role of capillary pericytes during stimulation-induced activity and spreading depolarization. Brain 2018, 141, 2032–2046. [Google Scholar] [CrossRef] [Green Version]
- Alarcon-Martinez, L.; Yilmaz-Ozcan, S.; Yemisci, M.; Schallek, J.; Kılıc, K.; Can, A.; Di Polo, A.; Dalkara, T. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. eLife 2018, 7. [Google Scholar] [CrossRef]
- Pfister, F.; Lin, J.; Hammes, H.-P. Pericyte Loss in the Diabetic Retina. Front. Diabetes 2009, 61–78. [Google Scholar] [CrossRef]
- Beltramo, E.; Porta, M. Pericyte Loss in Diabetic Retinopathy: Mechanisms and Consequences. Curr. Med. Chem. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, R.D.; Winkler, E.A.; Sagare, A.P.; Singh, I.; LaRue, B.; Deane, R.; Zlokovic, B.V. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron 2010, 68, 409–427. [Google Scholar] [CrossRef] [Green Version]
- Lindahl, P. Pericyte Loss and Microaneurysm Formation in PDGF-B-Deficient Mice. Science 1997, 277, 242–245. [Google Scholar] [CrossRef] [PubMed]
- Enge, M. Endothelium-specific platelet-derived growth factor-B ablation mimics diabetic retinopathy. EMBO J. 2002, 21, 4307–4316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.E.; Park, Y.S. The role of bacterial cellulose in artificial blood vessels. Mol. Cell. Toxicol. 2017, 13, 257–261. [Google Scholar] [CrossRef]
- Santos, G.S.P.; Prazeres, P.H.D.M.; Mintz, A.; Birbrair, A. Role of pericytes in the retina. Eye 2018, 32, 1476–5454. [Google Scholar] [CrossRef] [Green Version]
- Armulik, A.; Genové, G.; Mäe, M.; Nisancioglu, M.H.; Wallgard, E.; Niaudet, C.; He, L.; Norlin, J.; Lindblom, P.; Strittmatter, K.; et al. Pericytes regulate the blood–brain barrier. Nature 2010, 468, 557–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daneman, R.; Zhou, L.; Kebede, A.A.; Barres, B.A. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 2010, 468, 562–566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berthiaume, A.-A.; Grant, R.I.; McDowell, K.P.; Underly, R.G.; Hartmann, D.A.; Levy, M.; Bhat, N.R.; Shih, A.Y. Dynamic Remodeling of Pericytes In Vivo Maintains Capillary Coverage in the Adult Mouse Brain. Cell Rep. 2018, 22, 8–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, D.Y.; Lee, J.; Kim, J.; Kim, K.; Hong, S.; Han, S.; Kubota, Y.; Augustin, H.G.; Ding, L.; Kim, J.W.; et al. Plastic roles of pericytes in the blood–retinal barrier. Nat. Commun. 2017, 8, 15296. [Google Scholar] [CrossRef] [PubMed]
- Sennino, B.; Falcon, B.L.; McCauley, D.; Le, T.; McCauley, T.; Kurz, J.C.; Haskell, A.; Epstein, D.M.; McDonald, D.M. Sequential Loss of Tumor Vessel Pericytes and Endothelial Cells after Inhibition of Platelet-Derived Growth Factor B by Selective Aptamer AX102. Cancer Res. 2007, 67, 7358–7367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kovacs-Oller, T.; Ivanova, E.; Bianchimano, P.; Sagdullaev, B.T. Dynamic connectivity maps of pericytes and endothelial cells mediate neurovascular coupling in health and disease. bioRxiv 830398. [CrossRef] [Green Version]
- Druker, B.J.; Tamura, S.; Buchdunger, E.; Ohno, S.; Segal, G.M.; Fanning, S.; Zimmermann, J.; Lydon, N.B. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr–Abl positive cells. Nat. Med. 1996, 2, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Sun, X.; Huang, Z.; Zhou, T.; Zhu, X.; Liu, Y.; Wang, J.; Cheng, B.; Chang He, M.L.; Liu, X. Imatinib Ameliorated Retinal Neovascularization by Suppressing PDGFR-α and PDGFR-β. Cell. Physiol. Biochem. 2018, 48, 263–273. [Google Scholar] [CrossRef]
- Gergely, P.A.; Murnyák, B.; Bencze, J.; Kurucz, A.; Varjas, T.; Gombos, K.; Hortobágyi, T. Tyrosine Kinase Inhibitor Imatinib Mesylate Alters DMBA-Induced Early Onco/Suppressor Gene Expression with Tissue-Specificity in Mice. BioMed Res. Int. 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Biswas, S.K.; Zhao, Y.; Sandirasegarane, L. Imatinib induces apoptosis by inhibiting PDGF- but not insulin-induced PI 3-kinase/Akt survival signaling in RGC-5 retinal ganglion cells. Mol. Vis. 2009, 15, 1599–1610. [Google Scholar]
- Rajkumar, V.S.; Shiwen, X.; Bostrom, M.; Leoni, P.; Muddle, J.; Ivarsson, M.; Gerdin, B.; Denton, C.P.; Bou-Gharios, G.; Black, C.M.; et al. Platelet-Derived Growth Factor-β Receptor Activation Is Essential for Fibroblast and Pericyte Recruitment during Cutaneous Wound Healing. Am. J. Pathol. 2006, 169, 2254–2265. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Biswas, S.K.; McNulty, P.H.; Kozak, M.; Jun, J.Y.; Segar, L. PDGF-induced vascular smooth muscle cell proliferation is associated with dysregulation of insulin receptor substrates. Am. J. Physiol. Cell Physiol. 2011, 300, 1375–1385. [Google Scholar] [CrossRef] [Green Version]
- Raimondi, C.; Fantin, A.; Lampropoulou, A.; Denti, L.; Chikh, A.; Ruhrberg, C. Imatinib inhibits VEGF-independent angiogenesis by targeting neuropilin 1–dependent ABL1 activation in endothelial cells. J. Exp. Med. 2014, 211, 1167–1183. [Google Scholar] [CrossRef] [Green Version]
- Fraunfelder, F.W.; Solomon, J.; Druker, B.J.; Esmaeli, B.; Kuyl, J. Ocular Side-Effects Associated with Imatinib Mesylate (Gleevec®). J. Ocul. Pharmacol. Ther. 2003, 19, 371–375. [Google Scholar] [CrossRef]
- Gulati, A.; Saif, M. Retinal Neovascularization and Hemorrhage Associated with the Use of Imatinib (Gleevec®) in a Patient Being Treated for Gastrointestinal Stromal Tumor (GIST). Anticancer Res. 2012, 32, 1375–1377. [Google Scholar] [PubMed]
- Grzybowski, A.; Told, R.; Sacu, S.; Bandello, F.; Moisseiev, E.; Loewenstein, A.; Schmidt-Erfurth, U. Update on Intravitreal Injections: Euretina Expert Consensus Recommendations. Ophthalmologica 2018, 239, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, E.; Alam, N.M.; Prusky, G.T.; Sagdullaev, B.T. Blood-retina barrier failure and vision loss in neuron-specific degeneration. JCI Insight 2019, 5, e126747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, E. Update of the vascular model of AMD. Br. J. Ophthalmol. 2004, 88, 161–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ehrlich, R.; Harris, A.; Kheradiya, N.S.; Winston, D.M.; Ciulla, T.A.; Wirostko, B. Age-related macular degeneration and the aging eye. Clin. Interv. Aging 2008, 3, 473–482. [Google Scholar] [CrossRef] [Green Version]
- Wallow, I.H.; Bindley, C.D.; Reboussin, D.M.; Gange, S.J.; Fisher, M.R. Systemic hypertension produces pericyte changes in retinal capillaries. Investig. Ophthalmol. Vis. Sci. 1993, 34, 420–430. [Google Scholar]
- Liu, C.; Ge, H.-M.; Liu, B.-H.; Dong, R.; Shan, K.; Chen, X.; Yao, M.-D.; Li, X.-M.; Yao, J.; Zhou, R.-M.; et al. Targeting pericyte–endothelial cell crosstalk by circular RNA-cPWWP2A inhibition aggravates diabetes-induced microvascular dysfunction. Proc. Natl. Acad. Sci. USA 2019, 116, 7455–7464. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Deng, G.; Liu, J.; Ma, Y.; Lu, H. The effects of a treatment combination of anti-VEGF injections, laser coagulation and cryotherapy on patients with type 3 Coat’s disease. BMC Ophthalmol. 2017, 17. [Google Scholar] [CrossRef] [Green Version]
- Watson, A.N.; Berthiaume, A.-A.; Faino, A.V.; McDowell, K.P.; Bhat, N.R.; Hartmann, D.A.; Shih, A.Y. Mild pericyte deficiency is associated with aberrant brain microvascular flow in aged PDGFRβ+/− mice. J. Cereb. Blood Flow Metab. 2020, 0271678, 1990054. [Google Scholar] [CrossRef]
- Berthiaume, A.-A.; Hartmann, D.A.; Majesky, M.W.; Bhat, N.R.; Shih, A.Y. Pericyte Structural Remodeling in Cerebrovascular Health and Homeostasis. Front. Aging Neurosci. 2018, 10. [Google Scholar] [CrossRef]
- Vinores, S.A.; Campochiaro, P.A.; Lee, A.; McGehee, R.; Gadegbeku, C.; Green, W.R. Localization of blood-retinal barrier breakdown in human pathologic specimens by immunohistochemical staining for albumin. Lab. Investig. 1990, 62, 742–750. [Google Scholar] [PubMed]
- Coburn, P.S.; Wiskur, B.J.; Miller, F.C.; LaGrow, A.L.; Astley, R.A.; Elliott, M.H.; Callegan, M.C. Bloodstream-To-Eye Infections Are Facilitated by Outer Blood-Retinal Barrier Dysfunction. PLoS ONE 2016, 11, e0154560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medscape, Gleevec (Imatinib) Dosing, Indications, Interactions, Adverse Effects, and More. Available online: https://reference.medscape.com/drug/gleevec-imatinib-342239 (accessed on 8 August 2019).
- Kusumi, E.; Arakawa, A.; Kami, M.; Kato, D.; Yuji, K.; Kishi, Y.; Murashige, N.; Miyakoshi, S.; Ueyama, J.; Morinaga, S.; et al. Visual disturbance due to retinal edema as a complication of imatinib. Leukemia 2004, 18, 1138–1139. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Kim, S.A.; Choi, Y.A.; Park, D.Y.; Lee, J. Alpha-Smooth Muscle Actin-Positive Perivascular Cells in Diabetic Retina and Choroid. Int. J. Mol. Sci. 2020, 21, 2158. [Google Scholar] [CrossRef] [Green Version]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
PC Numbers | |||||
---|---|---|---|---|---|
Treatment | Position | Mean | SD | Dev. from Control (%) | N |
C | DL | 38.375 | 3.114 | 8 | |
IL | 28.375 | 4.502 | 8 | ||
SL | 26.125 | 3.980 | 8 | ||
IP | DL | 33.000 | 1.732 | −14.01 | 3 |
IL | 23.667 | 2.082 | −16.59 | 3 | |
SL | 21.667 | 1.528 | −17.07 | 3 | |
IV | DL | 33.714 | 4.572 | −12.15 | 7 |
IL | 27.857 | 5.669 | −1.83 | 7 | |
SL | 22.286 | 5.251 | −14.70 | 7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kovács-Öller, T.; Ivanova, E.; Szarka, G.; Tengölics, Á.J.; Völgyi, B.; Sagdullaev, B.T. Imatinib Sets Pericyte Mosaic in the Retina. Int. J. Mol. Sci. 2020, 21, 2522. https://doi.org/10.3390/ijms21072522
Kovács-Öller T, Ivanova E, Szarka G, Tengölics ÁJ, Völgyi B, Sagdullaev BT. Imatinib Sets Pericyte Mosaic in the Retina. International Journal of Molecular Sciences. 2020; 21(7):2522. https://doi.org/10.3390/ijms21072522
Chicago/Turabian StyleKovács-Öller, Tamás, Elena Ivanova, Gergely Szarka, Ádám J. Tengölics, Béla Völgyi, and Botir T. Sagdullaev. 2020. "Imatinib Sets Pericyte Mosaic in the Retina" International Journal of Molecular Sciences 21, no. 7: 2522. https://doi.org/10.3390/ijms21072522
APA StyleKovács-Öller, T., Ivanova, E., Szarka, G., Tengölics, Á. J., Völgyi, B., & Sagdullaev, B. T. (2020). Imatinib Sets Pericyte Mosaic in the Retina. International Journal of Molecular Sciences, 21(7), 2522. https://doi.org/10.3390/ijms21072522