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Abstract: Numerous studies highlighted the beneficial effects of the Mediterranean diet (MD)
in maintaining health, especially during ageing. Even neurodegeneration, which is part of the
natural ageing process, as well as the foundation of ageing-related neurodegenerative disorders like
Alzheimer’s and Parkinson’s disease (PD), was successfully targeted by MD. In this regard, olive oil
and its polyphenolic constituents have received increasing attention in the last years. Thus, this study
focuses on two main olive oil polyphenols, hydroxytyrosol (HT) and oleuropein aglycone (OLE),
and their effects on ageing symptoms with special attention to PD. In order to avoid long-lasting,
expensive, and ethically controversial experiments, the established invertebrate model organism
Caenorhabditis elegans was used to test HT and OLE treatments. Interestingly, both polyphenols were
able to increase the survival after heat stress, but only HT could prolong the lifespan in unstressed
conditions. Furthermore, in aged worms, HT and OLE caused improvements of locomotive behavior
and the attenuation of autofluorescence as a marker for ageing. In addition, by using three different
C. elegans PD models, HT and OLE were shown i) to enhance locomotion in worms suffering from
a-synuclein-expression in muscles or rotenone exposure, ii) to reduce x-synuclein accumulation in
muscles cells, and iii) to prevent neurodegeneration in a-synuclein-containing dopaminergic neurons.
Hormesis, antioxidative capacities and an activity-boost of the proteasome & phase II detoxifying
enzymes are discussed as potential underlying causes for these beneficial effects. Further biological
and medical trials are indicated to assess the full potential of HT and OLE and to uncover their mode
of action.
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1. Introduction

Neurodegenerative diseases are becoming increasingly prevalent in the ageing populations of
industrialized nations, going hand in hand with the increase in life expectancy. These disorders, which
include Alzheimer’s disease and Parkinson’s disease, share a common feature: the accumulation of
misfolded proteins in pathological inclusions [1].
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Parkinson’s disease (PD) is a chronic, age-related and adult-onset neurodegenerative disorder
characterized by the loss of dopaminergic neurons in an area of the midbrain called substantia nigra
(SN) along with intraneuronal inclusions known as Lewy bodies, which contain amyloid aggregates of
misfolded «-synuclein [2—4]. PD is considered today as the most common movement disorder that
affects 1-2 per 1000 of the population and since the prevalence is increasing with age, PD affects 1% of
the population above 60 years [5]. There are dozens of PD-related symptoms and signs but the most
typical are motor deficits including tremors, muscle rigidity, bradykinesia, and impaired gait. Among
non-motor symptoms, the most common are olfactory dysfunction, cognitive impairment, psychiatric
symptoms, and autonomic dysfunction [6]. PD is a multifactorial disorder and the majority of PD cases
are sporadic with unknown aetiology possibly caused by an association of genetic and environmental
risk factors. At least 23 loci and 19 disease-causing genes for PD have been identified and designated
as PD-causing genes [7].

Several hypotheses have been proposed regarding the cause of loss of dopaminergic neurons in
PD, whereas oxidative stress, in particular, is strongly associated with the development of PD [8,9].
Other studies have shown defects in the mitochondrial complex-I of neurons, which lead to impaired
energy metabolism and cell death [10]. Furthermore, the proteolytic hypothesis describes nigral neuron
loss in PD as a result of toxic accumulation of aggregates of misfolded proteins, notably x-synuclein,
resulting in neuro-inflammation [11]. Dopaminergic neurons of substantia nigra pars compacta appear
particularly vulnerable to the harmful effects of a-synuclein aggregates [12]. Since ageing is a major
risk for PD, it has been hypothesized that PD could be, at least in part, a type of segmental ageing,
in which the viability of dopaminergic (DA) neurons is impaired by so far unknown localized and
accelerated ageing mechanisms [13].

Neurodegenerative disorders are associated with high morbidity and mortality, and few effective
options are available for their treatment [1]. Thus, many studies have been conducted focusing
on natural compounds present in food as important molecules against neurodegenerative diseases
such as PD [14-17]. Several lines of evidence support the beneficial effect of the Mediterranean
diet (MD) in preventing neurodegeneration, possibly due to its richness in polyphenols [18,19].
Natural polyphenols exert numerous biological activities, like antioxidant, anti-inflammatory, antiviral,
antibacterial, antiproliferative, and anticarcinogenic capacities (reviewed in Stevanovic, et al. [20]),
as well as cellular redox state modulation activities through direct action on enzymes, proteins and
receptors [21,22]. In addition, in patients affected by osteoarthritis or cardiovascular diseases, beneficial
epigenetic chromatin modifications were also caused by polyphenols [23-25].

One possible mode of action of natural polyphenols is the hormesis effect. The biological processes
underlying hormetic dose-response, recently, focused attention in the field of neuroprotection, which
was mainly elucidated through the exploitation of bioactive polyphenols against the main age-related
diseases, particularly in PD [13]. In this light, low levels of exogenous and endogenous stressors
have been reported to display hormetic characteristics that induce neurophysiological mechanisms of
maintenance and repair, including heat shock, the application of pro-oxidants, as well as the application
of polyphenols from plants [26]. Recently, it has been postulated that the MD exerts healthy effects
through hormetic mechanisms, as specific olive oil polyphenols (e.g., oleuropein and hydroxytyrosol)
likely counteract the effects of neuro-inflammatory stimuli by acting as modulators of stress responsive
mechanisms, which result in adaptive stress resistance [27]. Moreover, in vivo studies suggest that a
diet rich in phytochemicals may enhance neuroplasticity and stress resistance to neuro-inflammation,
mitigating or preventing neurodegenerative changes in the brain that are typical in a number of
age-related disorders, including PD [28-30].

It has been hypothesized that extra virgin olive oil polyphenols could be among the main
determinants of the beneficial effect of the MD [31-33]. Extra virgin olive oil (EVOO) contains
approximately 36 phenolic compounds [21], which represent the main group of antioxidants found
in virgin olive oil. The main phenolic subclasses present in olive oil are phenolic alcohols, phenolic
acids, flavonoids, lignans, and secoiridoids [34], whereas the latter represent the largest quantity in



Int. ]. Mol. Sci. 2020, 21, 2588 30f23

the EVOO. The main secoiridoids in olive oil are oleuropein aglycone and ligstroside, which undergo
transformation to hydroxytyrosol or tyrosol, respectively through two enzymes (beta glucosidase and
esterase) in the gastrointestinal tract [35].

In the present paper, we focus on health effects of hydroxytyrosol (HT; Figure 1B) and oleuropein
aglycone (OLE; Figure 1A) as neuroprotective agents against PD in the light of recent studies indicating
that OLE and HT can be beneficial against PD by stabilizing the monomeric state of «-synuclein, thus,
favouring the growth of aggregates devoid of toxicity [36,37]. Furthermore, previous studies have
shown that these molecules are strongly protective against neurodegeneration in different transgenic
models of A3 deposition [38—40]. Moreover, we have to consider that hydroxytyrosol is a by-product
of dopamine oxidative metabolism [41] and in the last years the gold standard therapy against PD has
relied on restoring the optimum level of dopamine [42].
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Figure 1. Chemical structure of (A) oleuropein aglycone and (B) hydroxytyrosol.

Tests with mammalian models are very powerful, but are expensive, long-lasting and cause
ethical concerns. Therefore, the widely used model organism Caenorhabditis elegans (C. elegans) was
applied for this study. Despite its simple structure, C. elegans features several tissues and organs in
alignment to higher animals, like muscles, a nervous system, an epidermis, a gastrointestinal tract,
and gonads [43]. Furthermore, about 50% of the human protein-coding genome has recognizable worm
orthologs [44]. Last but not least, neurological pathways are highly conserved between invertebrates
and mammals, and numerous neurodegenerative disease-related transgenic and mutant strains are
available in the nematodes [45]. In addition to several neuro-protective substance screenings [45],
numerous polyphenols were also successfully tested for their general health and lifespan benefits in
C. elegans [46—48], making this nematode an optimal model to study the neuroprotective effects of
olive polyphenols.

It was hypothesized that the polyphenol OLE and its main metabolite HT increase the mean
lifespan of C. elegans in the presence and in the absence of stress conditions. Furthermore, it is assumed
that they are able to counteract the age-related decline of general health parameters, which were
assessed by determining the swim behaviour as a measure of overall body fitness as well as the
intestinal autofluorescence, being one of the most popular ageing biomarkers [49]. Furthermore,
numerous cell culture studies were already successfully performed to verify the anti-PD effects of
olive ingredients, as summarized in Angeloni, Malaguti, Barbalace, and Hrelia [22], however, in vivo
studies are hardly present. Therefore, by using a chemically induced and two transgenic PD models
of C. elegans, the polyphenolic treatments were tested for their anti-PD effects in vivo. Although
C. elegans is not able to develop PD, the PD models feature characteristic attributes related to PD.
Besides the swim performance, neuronal degeneration as well as x-synuclein accumulation were taken
into account to assess the anti-PD potential.
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2. Results

2.1. Oleuropein Aglycone and Hydroxytyrosol Extended the Survival of Wild-type C. elegans after Heat Stress

To find the optimal concentration for this study, the treatments with polyphenols were initially
tested at different concentrations in a heat stress-resistance test. Due to the relatively fast and
simple execution, heat stress resistance is frequently measured to screen treatments for potential
health and lifespan benefits [50-52]. Since stress resistance abilities are strongly correlated to ageing,
ageing-associated diseases and lifespan [53-56], this test was also used as a pre-test in the current
study. The monitored survival after stress exposure revealed an improved stress resistance in
OLE-treated nematodes (Figure 2A). Two-hundred-and-fifty pug/mL and 500 pg/mL OLE provoked
statistically significant changes in all biological repeats performed. The mean lifespan after heat stress
increased by 15% and 22% in the OLE 250 pg/mL and OLE 500 ug/mL treated group, respectively.
However, the survival differences between OLE 250 pg/mL and OLE 500 pg/mL treated nematodes
were not significant. Furthermore, no significant survival benefits were observed with 30 and
100 pug/mL compared to control. Due to the highest percentage benefit, 500 ug/mL OLE was chosen for
subsequent experiments.
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Figure 2. Heat stress survival in presence of different OLE and HT concentrations. Survival is expressed
as a percentage of the initial population combined with three biological replications. At the third
day of adulthood (day 0), wild type nematodes were exposed to heat stress at 37 °C for 3 h prior
monitoring survival. (A) Survival curves during OLE treatment with n (control) = 70, n (30 ug/mL) = 74,
n (100 pug/mL) = 44, n (250 ug/mL) = 68, and n (500 ug/mL) = 64; (B) Survival curves during HT
treatment with n (control) = 90, n (30 pg/mL) = 50, n (100 ng/mL) = 52, n (250 pug/mL) = 67, and n
(500 pg/mL) = 79. Statistical significance was calculated by log-rank test including Bonferroni correction.
Differences compared to control were considered significant at p < 0.05 (*) and p < 0.001 (**). n: number
of tested nematodes.

Similar results were achieved by using HT (Figure 2B). The mean lifespan after heat stress was
increased by about 11% by treatment with 100 ug/mL HT, by 22% with 250 pg/mL HT and by 14%
with 500 pg/mL HT. There was no significant difference between the survival curves of these treatment
groups among each other. Again, 30 ug/mL was not sufficient to improve the survival. Based on these
results, 250 ug/mL HT was applied for further experiments. None of the tested concentrations and
compounds exerted a harmful effect on the survival of the nematodes after stress exposure.

2.2. Hydroxytyrosol Prolonged the Lifespan of Wild Type C. elegans

Several olive polyphenols and preparations have proven to be effective in extending the lifespan
in C. elegans [57,58]. However, the olive oil polyphenols investigated in this study have not been tested
so far in this sense.

Surprisingly, OLE treatment did not result in any significant lifespan enhancement (Figure 3A):
The mean lifespan of wild type nematodes was only hardly noticeably increased by 2.7%, which
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is probably the result of a minor, not significant, increase in the median lifespan from 22.55 days
to 23.31 days (Table 1). However, the treatment with HT led to an increase of mean lifespan by
14.1% (Figure 3B). This life prolongation was not only visible in terms of mean and median lifespan,
but was also reflected in terms of minimum and maximum lifespan (the time point, when 25% or 90%,
respectively, of the individuals are dead) as well as in the time point when final death occurred (Table 1).
No obvious side effects, such as extrusion of internal organs through the vulva or morphological
alterations in movement in the polyphenols-treated groups compared to the controls were seen during
lifelong observation.
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Figure 3. Effect of OLE and HT on lifespan in C. elegans. The survival curves of controls and
polyphenol-treated nematodes are shown. Survival is expressed as a percentage of the initial population
per day. (A) The curve represents two independent experiments (n control = 184, n OLE = 111);
(B) Representative survival curve of three independent experiments with control and HT-treated worms
(n control = 250, n HT = 286). Statistical significance was calculated by log-rank test; differences
compared to control were considered significant at p < 0.05 (*) and p < 0.001 (**). n: number of
tested nematodes.

Table 1. Lifespan characteristics during OLE and HT treatment.

Mean Lifespan Days until Deaths of Population Reached

Treatment n (days) SEM
25% 50% 75% 90% 100%
control (DMSO) 228 22.15 0.32 18.73 22.55 25.00 26.09 34.00
Oleuropein 159 22.75 0.37 18.89 23.31 25.17 26.10 35.00
control (water) 305 20.61 0.26 17.50 19.94 23.07 25.51 34.00
Hydroxytyrosol 335 23.51** 0.26 19.64*  23.75**  25.76**  28.36** 36.00

Differences compared to control were considered significant at p < 0.05 (*) and p < 0.001 (**). p-value determination
was realized with log-rank test for the mean lifespan and Mann-Whitney U test for specific time points.

2.3. Polyphenols Improved Age Pigment Accumulation and Locomotive Behaviour in Wild Type Nematodes

The intestinal autofluorescence, one of the most prominent ageing and health biomarker in
C. elegans [49], was surveyed to determine the overall health status. Observations with a fluorescence
microscope fitted with a red filter set allowed to detect the accumulation of the “age pigment” in
different age classes. As expected, the red fluorescent intensity increased with age (Figure 4), whereas
the increase was only weakly pronounced at the 7th day of adulthood. Both polyphenolic compounds
were able to reduce age-related gain in autofluorescence. The quantity of fluorescent pigments was
slightly, yet significantly, diminished at the 12th day, but not at the 3rd or 7th day, of adulthood
(Figure 4).
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Figure 4. Age pigment quantification after OLE and HT treatment in C. elegans. Nematodes were
observed by fluorescence microscopy in red spectrum at day 3, 7, and 12 of adulthood in two biological
repeats. The bar charts (left) show the mean red fluorescence intensity of OLE (1 A3 = 34; n A7 = 38;
n Al2 = 88) and DMSO (n A3 = 39; n A7 = 43; n A12 =84)-treated nematodes as well as HT (n A3 = 38;
n A7 = 45; n A12 = 94)-treated nematodes and their respective water control (n A3 = 38; n A7 =44;
n Al12 = 95). Data are represented as mean + SEM, and statistical differences compared to control were
considered significant at p < 0.05 (*). n: number of tested nematodes; A3, A7, A12: 3rd, 7th and 12th
day of adulthood. In addition, example pictures (right) representing bright field and red fluorescence
shots at the 12th day of adulthood in the control (DMSO and water) and polyphenol-treated (OLE and
HT) groups are shown (all scale bars = 200 pum).

Since ageing is marked by physical decline, sarcopenia is considered a valuable parameter of health
status in organisms of metazoans, including C. elegans [59,60]. Therefore, the ability of both polyphenols
to boost the health of nematodes was additionally assessed with a swim assay. We measured the
thrashing rate, the body wave number and the activity index to determine the physical performance
at different ages. The thrashing rate is the number of body thrashes per minute as an indicator for
the speed of movement whereas the activity index sums up the number of pixels that are covered by
the body during the time needed for two strokes as an indicator for the vigorousness of bending [61].
Furthermore, the body wave number, a feature that increases with age, determines the waviness of
the body at each time point. Indeed, the vigorousness and speed of movement of untreated worms
declined with age, as indicated by the differences in both endpoints between the 3rd and 7th or 12th
day of adulthood, respectively (Figure 5A,C). Moreover, the body wave number increased with age
(Figure 5B), in agreement with the results from Restif et al. [61], thus verifying the correct performance
of the test.
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Figure 5. Swim behaviour characteristics in wild type C. elegans treated with OLE and HT. Locomotory
performances were determined at day 3, 7, and 12 of adulthood in two independent repeats.
The determination of locomotion differences comprises three parameters: (A) the thrashing rate,
(B) the body wave number, and (C) the activity index. The number of analysed animals accounts
for: DMSO control = 67 (A3), 70 (A7) and 117 (A12); OLE = 63 (A3), 70 (A7) and 106 (A12); water
control = 76 (A3), 70 (A7) and 111 (A12); HT = 70 (A3), 70 (A7) and 104 (A12). Data are presented
as mean + SEM and differences compared to control were considered significant at p < 0.05 (*) and
p <0.001 (**). A3, A7, A12: day 3, 7, 12 of adulthood.

OLE treatment resulted in a remarkable increase of the number of thrashes per minute (Figure 5A)
and of the activity index (Figure 5C) displayed by worms at all three tested stages, whereas the
body wave number was decreased at the 7th and 12th day of adulthood (Figure 5B). The percentage
increase was about 23% (A3), 89% (A7) and 64% (A12) and about 49% (A3), 69% (A7) and 61% (A12)
for thrashing rate and activity index, respectively. The decrease of the body wave number reached
its maximum at the 7th day of adulthood with a reduction of 39%. Surprisingly, HT was not able
to enhance the thrashing rate of the nematodes at any adult-day (Figure 5A). However, at the 12th
day of adulthood, an increase of 43% was detected by analysing the covered pixel per body and
minute (Figure 5C). In addition, a decrease of 25% in the body wave number was found at A12 as well
(Figure 5B). No polyphenol led to a reduction of motor performance in treated worms.

2.4. C. elegans Parkinsonian Models Profit from Olive Oil Polyphenol Treatments

Exposure to the pesticide rotenone or the transgenic expression of human «-synuclein induces the
Parkinsonian-like syndrome in C. elegans, which manifests in impaired movement [62,63]. In order
to assess whether the polyphenols are able to reduce this symptom, the swimming analysis was
performed with nematodes suffering from Parkinson’s-like symptoms induced by exposure to rotenone
of wild type worms. Furthermore, transgenic Parkinson’s models expressing human o-synuclein in
muscle cells (strain OW13) and dopaminergic neurons (strain UA44), respectively, were treated with
polyphenols as well.
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Treatment with 10 uM rotenone led to dramatically decreased movement abilities. Given that
untreated nematodes exhibit more than 50 thrashes per minute at A3, the thrashing rate was reduced by
more than 80% to less than 10 thrashes per minute in rotenone-exposed C. elegans (Figure 6A). Similar
proportions could be monitored for the activity index of young control nematodes with or without
rotenone treatment (Figure 6C). Furthermore, the body wave number was more than doubled due to
exposure to rotenone compared to untreated nematodes (Figure 6B). Interestingly and in contrast to
rotenone-untreated nematodes, the locomotion abilities after exposure to rotenone did not decline after
the 3rd day of adulthood (Figure 6). OLE was able to partly inhibit the rotenone-induced movement
decline in both tested ages and all swim traits by more than doubling the measured values (Figure 6A,C)
or by reducing them by at least 42% (Figure 6B). Quite strong effects were also visible by using HT in
all tested ages and endpoints: HT increased the thrashing rate by at least 56% and the activity index by
a minimum of 116%. The body wave number was decreased by at least 23%.
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Figure 6. Effect of OLE and HT on rotenone-induced locomotion deficits. The administration of 10 uM
rotenone, starting at the fourth larval stage, led to Parkinsonian-like phenotype exhibiting movement
impairments at the 3rd and 7th day of adulthood. (A) The thrashing rate, (B) the body wave number,
and (C) the activity index are shown with and without simultaneous OLE or HT administration.
The number of tested nematodes was: DMSO control = 58 (A3) and 69 (A7); OLE = 60 (A3) and 63 (A7);
water control = 62 (A3) and 46 (A7); HT = 44 (A3) and 61 (A7). A3, A7: day 3 and 7 of adulthood. Data
are pooled from two biological repeats and presented as mean + SEM, and differences compared to
control were considered significant at p < 0.05 (*) and p < 0.001 (**). To enable direct comparisons, data
from nematodes without rotenone and polyphenol exposures (see Figure 5) are shown in addition.

To check the anti-Parkinson’s effect of olive oil polyphenols, the motor activity was also assessed
in the transgenic C. elegans OW13 and UA44 strains, both models of synucleinopathies. The presence
of a-synuclein in the body wall muscle cells (strain OW13) leads to movement deficits, as previously
described by Van Ham, et al. [64]. Indeed, the thrashing rate clearly deteriorated from about
50 thrashes/min in young untreated wild type adults to about 35 and 23 thrashes per minute,
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respectively, in young untreated OW13 worms (Figure 7A). This effect, albeit weaker, was also seen,
in part, in older nematodes as well as for the activity index (Figure 7C). The body wave number
was very stable between the 3rd and 7th day of adulthood (Figure 7B). Interestingly, control DMSO
treatment already led to a mild beneficial effect for all three swim parameters in the OW13 strain.
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Figure 7. OLE and HT effects on the swim performance in the OW13 strain. (A) The thrashing rate,
(B) the body wave number, and (C) the activity index were determined at day 3 and day 7 of adulthood
with and without OLE or HT treatment. Here, the nematode strain OW13, characterized by x-synuclein
in the body wall muscle cells, was used. The number of tested nematodes was: DMSO control = 65 (A3)
and 71 (A7); OLE = 61 (A3) and 60 (A7); water control = 51 (A3) and 71 (A7); HT = 61 (A3) and 66 (A7).
A3, A7: day 3 and 7 of adulthood. Data are collected in two independent trials and are presented as
mean + SEM. Differences compared to control were considered significant at p < 0.05 (*) and p < 0.001
(**). To enable direct comparisons, data from wild type nematodes without polyphenol exposures
(see Figure 5) are shown in addition.

Treatment with either polyphenol improved several swim performance features in this strain
over control treatments (Figure 7A-C). OLE administration provoked a 27% increase of thrashes per
minute at day 3 and a 40% increase at day 7 (Figure 7A), whereas the increase of the activity index
(27%) was detected only at day 7 (Figure 7C) and no significant change was seen in the body wave
number (Figure 7B). HT displayed its advantageous effects in both tested age groups and in all swim
parameters (Figure 7A-C), whereas HT remarkably increased the thrashing rate by 71% in A3.

Interestingly, the strain UA44, which is characterized by the presence of «-synuclein in
dopaminergic neurons, did only show a negligible decline in locomotion from day 3 to day 7
of adulthood (Figure 8). Furthermore, the difference in swim performance between young wild type
and young UA44 nematodes was hardly recognizable, a finding that agrees with data from a previous
study, showing that «-synuclein controlled by a dopaminergic promotor did not disturb the thrashing
speed [65]. Surprisingly, treatment with either polyphenol resulted only in a limited improvement in
swim behaviour of the UA44 strain. OLE treatment increased the activity index in young nematodes
(Figure 8C) but resulted only in minor and non-significant changes of the thrashing rate and body wave
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number for UA44 (Figure 8A,B). On the other hand, HT supplementation showed beneficial effects
only on the number of thrashes per minute in older worms (Figure 8A), but not on the magnitude of
movement or the waviness (Figure 8B,C).
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Figure 8. Effect of OLE and HT on the swim performance in the C. elegans UA44 strain. (A) The number
of thrashes per minute, (B) the number of waves running through the body, and (C) the area covered
by the body per minute were observed in presence and absence of OLE and HT at day 3 and 7 of
adulthood in two biological repeats. The UA44 strain used in this study is characterized by a-synuclein
in dopaminergic neurons. The bar charts represent the following number of individuals: DMSO control
(n A3 =63, n A7 =50), OLE (n A3 = 72; n A7 = 55), water control (n A3 =57, n A7 = 55) and HT
(n A3 =48, n A7 = 65). n: number of tested nematodes. A3, A7: day 3, 7 of adulthood. Data are
represented as mean + SEM and differences compared to control were considered significant at p < 0.05
(*). To enable direct comparisons, data from wild type nematodes without polyphenol exposures

(see Figure 5) are shown in addition.

To summarize, HT and OLE treatments resulted in enhanced swim performance in nematodes
suffering from rotenone exposure or x-synuclein expression in muscle cells (strain OW13). However,
the strain UA44, characterized by a-synuclein expression in dopaminergic neurons, only weakly
profited from the polyphenol treatments.

2.5. a-synuclein Induced Damages and a-synuclein Accumulation was Targeted by Olive Oil Polyphenols
In Vivo

The advantage of the C. elegans OW13 strain is the yellow fluorescent labelling of synthesized
a-synuclein driven by the muscle specific unc-54-promoter. Therefore, the potential polyphenolic
inhibition of the pathological o-synuclein accumulation in muscles can be observed via fluorescence
microscopy. Treatment of this model with either polyphenol resulted in a progressive reduction of
a-synuclein accumulation in the body wall muscle cells compared to the control groups: The reduction
of a-synuclein accumulation was about 5% at day 3 and 8% at day 7 and 12 of adulthood in OLE-treated
groups (Figure 9). Even more pronounced effects were monitored by using HT, with a reduction of
a-synuclein accumulation by 6% at day 3, 7% at day 7, and 14% at day 12 of adulthood. Overall,
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the fluorescence intensity declined with age, a finding in line with the ageing-dependent decline of
unc-54 expression observed by Adamla and Ignatova [66].

@ control (DMSO) @ OLE 500 pg/ml
O control (water) BHT 250 pg/ml
0.6

*
0.5
0.4 *
0.3

0.2

0.1

mean fluorescence intensity

A2

stage of adulthood

Figure 9. Changed a-synuclein accumulation in muscle cells of the OW13 strain after OLE and HT
treatment. Nematodes from the OW13 strain were subjected to polyphenolic treatments starting from
L4 and analysed by fluorescence microscopy using a yellow filter at day 3, 7, and 12 of adulthood.
The bars represent the mean fluorescent intensity + SEM from two biological repeats and the number
of tested nematodes were: DMSO control (n A3 =32, n A7 =48, n A12 = 38), OLE (n A3 =28, n A7 =43,
n Al12 = 30), water control (n A3 =47, n A7 =75,n A12 = 66) and HT (n A3 =35,n A7 =39, n A12 = 44).
A3, A7, A12: day 3, 7, 12 of adulthood. Differences compared to control were considered significant at
p <0.05 (*) and p < 0.001 (**). In addition, three example pictures from untreated OW13 nematodes
visualising the age-dependent fluorescent change are shown (all scale bars = 200 um).

In addition to the OW13 strain, the UA44 transgenic animals were also monitored under fluorescent
conditions. The a-synuclein accumulation in dopaminergic neurons causes neurodegeneration in the
UA44 transgenic strain [63]. Moreover, GFP linked to the dopamine transporter in dopaminergic nerve
cells allows to visualize the quantity and quality of the six anterior and two posterior dopaminergic
neurons after o-synuclein-induced damage [67].

Counting and description of each dopaminergic neuron was performed as proposed by
Harrington, et al. [68]. We counted six anterior dopaminergic neurons (four CEP neurons and two
ADE neurons) and two posterior DA neurons (PDE neurons) [69]. Every type of alteration, such as
the loss of uniformity of the neuronal body and the reduction of the fluorescence up to neuronal
shutdown, were noted in order to classify the neurons as degenerated (as shown in Figure 10B) or
intact (Figure 10C). The fraction of worms with damaged dopaminergic neurons was growing with
age (Figure 10A), however, HT was able to minimize neuronal damages especially in older nematodes
(Figure 10A). A smaller and non-significant neuroprotective effect on dopaminergic neurons was also
obtained with OLE treatment (Figure 10A).
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Figure 10. The impact of OLE and HT on dopaminergic neurodegeneration caused by x-synuclein in
the C. elegans UA44 strain. (A) Shown are the percentages of nematodes with degenerated dopaminergic
anterior neurons with and without polyphenolic treatment. The determination of the type and frequency
of aberrations of dopaminergic neuronal viability was performed at day 3, 7, and 12 of adulthood.
The number of tested nematodes in three biological repeats was: DMSO control = 43 (A3), 31 (A7) and
45 (A12); OLE = 38 (A3), 47 (A7) and 39 (A12); water control = 41 (A3), 44 (A7) and 71 (A12); HT = 39
(A3),44 (A7) and 54 (A12). A3, A7, A12: day 3,7, 12 of adulthood. Data were analysed using chi-square
test with *p < 0.05 and **p < 0.001. In addition, an example of x-synuclein-induced degeneration in
the anterior DA neurons of the C. elegans UA44 strain, expressing both Pdat-1::GFP + Pdat-1::x-syn is
shown (B,C). The DA neurons are sub-classified as four CEP neurons, which are superimposed in most
pictures, and two ADE neurons. (B) Degeneration of CEP and ADE; (C) intact DA neurons.

3. Discussion

3.1. HT and OLE Boost the Health, but not Necessarily the Lifespan, of Wild Type C. elegans

Lifespan analyses in C. elegans treated with plant polyphenols and other natural compounds
were often reported with positive outcome (reviewed in Collins, et al. [70] and Pallauf, et al. [71]).
The mechanisms behind this beneficial action are discussed in different directions, ranging from
antioxidant, pro-oxidant, hormetic, direct pathway targeting, or caloric restriction mimetic effects, to
recall only a few [72-76]. In the present study, HT was shown to improve the lifespan of C. elegans as
well as the accumulation of age-pigment and swim behaviour in old worms. Thus, health and lifespan
were targeted in parallel as expected. Interestingly, OLE also exerted very good performances regarding
the impact on locomotion, stress resistance and age-pigment accumulation, yet in the absence of a
life extending effect. However, since longer life does not automatically indicate healthier life [77,78],
the suggestion that vice versa improved health is not a guarantee for a longer life, is not unreasonable.
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Healthspan is hard to define and a lot of parameters need to be considered, but, simplifying,
it can be described as the period of life in which the individual is functionally independent and free
from serious diseases [79,80]. Uncoupling of the correlation between lifespan and healthspan was
discussed in detail for daf-2 C. elegans knockout mutants, in which the lifespan-extending inhibition of
insulin signalling did [60,81] or did not [78] increase healthspan in parallel. However, this discussion
is not restricted to worms, but also takes place for flies, mice and humans [77,82,83]. Thus, it remains
unclear how and to what extent healthspan and lifespan correlate. Furthermore, the different outcomes
in the labs as exemplified by daf-2 underline that healthspan-related features should be tested in a
standardized way; not only to maintain comparability between results from different labs, but also to
fully characterize the potential relationship between lifespan and healthspan in an objective manner.

Nevertheless, here the question arises, why OLE only affected healthspan but not lifespan?
The stability of OLE in aqueous and ethanol solutions was shown to be better than other
polyphenols [84,85] and during UV-induced degradation, the life-extending hydroxytyrosol is one
of the main end products of its metabolism. Thus, an elevated level of OLE degradation during
long-lasting lifespan analysis is not a sufficient explanation, also because such an effect should be
much stronger for other, less stable polyphenols like quercetin (reviewed in Wang, et al. [86]), which
it is not [87,88]. Another explanation is provided by the mode of action of the green tea ingredient
epigallocatechin 3-gallate (EGCG). Brown et al. [89] and Zhang et al. [90] reported that, in spite of
several health benefits in EGCG-treated worms, including prolonged survival under stress, no survival
advantages were monitored during standard culture conditions. The antioxidant capacity of EGCG
was emphasized as the main biochemical mechanisms responsible for the improvement of diverse
health attributes. Due to the known strong antioxidant characteristics of OLE [91], this could also be
true for OLE; accordingly, the missing lifespan prolongation by EGCG and OLE is not unexpected
considering that Pun et al. [92] observed that antioxidant actions do not lead to longevity in C. elegans.
Based on this consideration, the action of HT needs to be reconsidered. It must be concluded that the
lifespan extension by HT is probably independent of its antioxidant power.

Finally, it needs to be mentioned that all tests were performed in the presence of
5-fluoro-2-deoxyuridine (FUdR). Since FUdR was shown to have (mainly positive) influences on
the stress resistance and lifespan in C. elegans [93-95], it cannot be excluded that this could lead to
false-negative results. This could be an alternative explanation for the missing life-prolonging effects
in the OLE-treated group.

3.2. Anti-Parkinson’s Syndrome Effects: Evidence from Three Different PD Models of C. elegans

Cooper, et al. [96] described that decelerating ageing may provide a possible treatment for PD.
The beneficial effects of OLE and HT on the age-related intestinal autofluorescence and on the locomotion
in old worms are strong indicators that the ageing process itself is reduced by these polyphenols. Thus,
the anti-PD action of OLE and HT was not entirely surprising. Indeed, both polyphenols showed
strong and convincing anti-PD activity. However, which is the underlying mechanism?

DA neurons are suffering from oxidative stress in the rotenone PD model because this pesticide
generates reactive oxygen species [62]. Therefore, the neuroprotective role of the analysed polyphenols
in the C. elegans rotenone model, characterized by defects in swimming behaviour, may be related to
their antioxidant activity. Indeed, the treatment and prevention of PD with antioxidants was discussed
and tested repeatedly [14,97,98], but the results were sobering, suggesting that antioxidant treatments
might not be the key to combat PD [99].

The protective properties of plant polyphenols on DA neurons could also be associated not only
with the structure of HT, also a product of dopamine metabolism, but also to its ability to induce
phase II detoxifying enzymes. These include NADPH quinone oxidoreductase-1, heme oxygenase-1,
glutathione S-transferase, and the modifier subunit of glutamate cysteine ligase which catalyses the
first step in the synthesis of GSH [22]. Indeed, a Drosophila PD model was used to show that boosted
phase Il enzyme activity reduces x-synuclein-mediated neuronal loss [100].
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Interestingly, both polyphenols reduced, age-dependently, the build-up of human x-synuclein
in the body wall muscle cells of a transgenic C. elegans model (strain OW13) and improved swim
performance. However, it is not clear whether the polyphenols are able to eliminate accumulated
a-synuclein or prevent its accumulation and which mechanistic process is responsible for their action.
One further idea regarding their mode of action is delivered by Angeloni et al. [22] who showed that
polyphenols are able to modulate the proteostatic machinery, both at the proteasome complex and
at the autophagic flux. More specifically, one study evaluated the effect of OLE on the proteasome
complex of human embryonic fibroblasts, showing an improvement of the proteasome activity [101].
Since the impairment of the ubiquitin-proteasome complex is deeply involved in the pathogenesis of
neurodegenerative diseases [102], the induction of proteasome activity might be a possible reason for
the anti-PD effects of polyphenols. Other studies with OLE and HT reported a remarkable activation
of the autophagic flux in a murine model of A3 deposition, with a significant reduction of plaque
load following activation of microglia [38,39]. These data also support the anti-PD activity of these
polyphenols following reduction of a-synuclein aggregates in the affected brain areas.

To validate the neuroprotective action of polyphenols on dopaminergic neurons, experiments
were performed also in another C. elegans model of PD, the strain UA44, where o-synuclein induces
qualitative and quantitative damages of the six anterior and two posterior dopaminergic neurons. Our
data showed that HT was able to minimize neuronal damage especially in older nematodes.

As reported above, HT is also endogenous to the brain as a catabolite of neurotransmitter
breakdown. The neurotoxic action by dopamine and its intermediate metabolites is described as
an autotoxic mechanism that contributes to the selective loss of dopaminergic neurons in PD [3].
HT, also known as DOPET (3,4-dihydroxyphenylethanol), is produced from dopamine by dopamine
oxidative metabolism [103] in order to reduce the levels of the neurotoxic intermediate product
3,4-dihydroxyphenyl-acetaldehyde (DOPAL) in dopaminergic neurons [104]. Whether this metabolic
pathway is connected to the observed beneficial action of exogenous HT remains an open question.
A smaller and non-significant neuroprotective effect on dopaminergic neurons also resulted from OLE
treatment. In future studies, the question needs to be answered, whether the longevity effect and the
beneficial effects in the UA44 strain following HT treatment are based on the same mechanisms, which
are not present or weaker in OLE-treated worms.

Tyrosol differs from HT only by one hydroxyl group; it was also shown to be a potent health-
and lifespan-boosting substance in C. elegans [58]. However, in contrast to HT, tyrosol could not exert
any preventive effects in kidney cells subjected to oxidative stress [105]. The beneficial action of HT
compared to that of tyrosol could be explained by the higher scavenging and antioxidant activity of
HT due to the additional hydroxyl group [106]. Nevertheless, this increased antioxidant power seems
not to be the only mode of action as suggested by the convincing antioxidant-study in C. elegans from
Pun et al. [92], by additional studies, questioning the power of antioxidants, reviewed in [107] as well
as by the mitohormesis concept, which underlines the importance of ROS [108,109].

Another possible background mechanism for the observed effects could be hormesis, already
considered in the case of the effect of tyrosol in C. elegans [58]. Several studies indicate that
different stressors extend lifespan in C. elegans in a hormetic-like manner [110-112] and suggest
that hormetic effects could be exploited to prevent the onset of various diseases [13,113,114], including
neurodegenerative disorders, and to slow down the ageing process [115,116].

In addition, a recent study demonstrated that hormetic dietary phytochemicals might improve
health and extend lifespan through mild elevation of ROS, which activate a number of stress adaptive
genes in C. elegans via HSF-1 and SKN-1/Nrf2 signalling pathways [117]. Govindan and colleagues
also note that the hormetic stress by phytochemicals suppresses the late age onset of misfolding and
aggregation of proteins such as a-synuclein in PD. The close link between stress and ageing suggests
that interventions harnessing the hormetic mechanisms may extend lifespan or delay age-associated
functional decline. Taken together, these data indicate that low concentrations of natural polyphenols
such as OLE and HT generate a moderate functional stress that extends healthspan in wild type



Int. ]. Mol. Sci. 2020, 21, 2588 15 0f 23

and experimental models of PD. This is consistent with the idea that “neurohormesis” may have
anti-ageing effects thanks to the induction of adaptive pathways triggered to cope with a mild neuronal
stress, opening novel potential therapeutic strategies for clinical interventions against the onset and/or
progression of PD in humans.

4. Materials and Methods

4.1. C. elegans Strains and Culture Conditions

The wild type C. elegans strain N2 (Var. Bristol), the transgenic C. elegans strain OW13 (grk-1(ok1239),
pkls2386 [unc-54p::a-synuclein::YFP + unc-119(+)]), as well as the E. coli OP50 feeding strain were
obtained from the Caenorhabditis Genetics Centre, University of Minnesota (Minneapolis, MN, USA).
The C. elegans strain UA44 (baln11[Pdat-1::x-synuclein, Pdat-1::GFP]) was kindly provided by the
Caldwell laboratory, University of Alabama (Tuscaloosa, AL, USA) [118]. C. elegans wild type and
transgenic strains were grown on standard nematode growth medium (NGM) at 22 °C, seeded with
E. coli OP50 and maintained following standard protocols as described previously [119]. Prior to
all tests, synchronous L1 larvae were obtained via “egg prep” by strongly shaking at least 2000
young adults for about 4 min in 10 mL bleaching solution (0.5 mL NaOH (10 M), 2.5 mL sodium
hypochlorite-solution (12%), and 7 mL bidest water). After washing with M9 buffer at least three
times, the resulting egg pellet was slightly shaken overnight in 4 mL M9 buffer. The following day,
the hatched L1 larvae were distributed to NGM plates seeded with OP50. Forty-eight hours later, L4
larvae were transferred to treatment plates as described below. 5-fluoro-2-deoxyuridine (FUdR; Tokyo
Chemical Industry, Eschborn, Germany) was used to inhibit fertilization [120] and was dropped onto
each plate with a final concentration of 100 uM (according to agar volume).

4.2. Polyphenol and Rotenone Treatment

The treatment plates were prepared with the polyphenols oleuropein aglycone (Extrasynthese)
and hydroxytyrosol (Sigma-Aldrich, St. Louis, MO, USA). Glycated oleuropein was de-glycosylated
by treatment with almond (-glucosidase (EC 3.2.1.21, Fluka, Sigma Aldrich, St. Louis, MO, USA) as
previously described [121], with minor modifications. Briefly, 10 mM oleuropein in 0.1 M phosphate
buffer (pH 7.0) was incubated overnight with (3-glucosidase (8.9 I.U.) at RT. Then, the reaction mixture
was centrifuged, the precipitate re-suspended in 50% (v/v) dimethyl sulfoxide (DMSO) and the solution
kept frozen. Complete deglycosylation was assessed by assaying the released glucose. HT powder
was dissolved in bidest water at 60 mg/mL and the solution stored at —20 °C. OLE and HT were added
to the bacteria and agar at a final concentration of 30 ug/mL, 100 ug/mL, 250 ug/mL, or 500 pg/mL,
respectively. A final concentration of 0.05% DMSO (for OLE assays) or equal amounts of bidest water
(for HT assays) were applied in all treatment and control plates as well as feeding bacteria.

To trigger the Parkinsonian-related phenotype, wild type nematodes were treated with rotenone
(Sigma-Aldrich, St. Louis, MO, USA). A stock solution of 0.5 mg/mL rotenone was prepared in DMSO
and added with a final concentration of 10 uM to the control and polyphenol plates. After distribution
with a spatula and drying for 24 h in the dark, OP50, including 10 uM rotenone and the respective
polyphenol, was spread on the plates. L4 nematodes were transferred to the rotenone plates until they
were used for bioassays.

4.3. Lifespan and Heat Stress Assay

Synchronized wild-type nematodes were observed and scored for their survival throughout their
lifespan. The animals were counted daily from the first day of adulthood until all died. To assess the
viability of the nematodes, they were first gently touched with a platinum wire at the tail and the
head. If no movements were recognizable, the pharyngeal pumping was observed. The worms were
considered dead when none of these movements were recognizable. The nematodes at the edge of the
plate or in the depth of the agar were considered lost and excluded from the count.
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The heat stress test was performed according to the lifespan protocol with the difference that
nematodes at the third day of adulthood were stressed for 3 h at 37 °C and counting of dead and alive
worms started 1 day after stress exposure.

4.4. Fluorescence Microscopy Analysis

For the fluorescence observation, the nematodes were placed on a 2% agar pad on a microscope
slide and anesthetized with 4 pL. NaNj3 (1M). The images were taken with the aid of the Axioskop
fluorescence microscope (Carl Zeiss, Oberkochen, Germany) and filter set 13 from the Zeiss 4880 series
(Carl Zeiss, Oberkochen, Germany). Nematodes with a ruptured vulva phenotype were excluded from
analysis. The images were captured and analysed on the 3rd, 7th or 12th day of adulthood, respectively.

Wild type nematodes were analysed to determine and quantify ageing-related pigment
accumulation. The images were captured at 100x magnification and a red filterset (TRITC, 545/30 nm
ex, 610/70 nm em) was used. It was necessary to acquire additional images in a bright field, because of
the poor visibility of the body contour in the dark field. The images in the bright field were used to
delineate the perimeter of the worm to which the dark field image was overlayed by the CellProfiler
Software (Version 3.1.9; Broad Institute, Cambridge, MA, USA) [122,123]. The quantification of
age-related pigment accumulation was expressed by the mean intensity of the red fluorescence per
total worm body.

The OW13 transgenic strain features yellow fluorescent protein linked to a-synuclein in the
body wall muscle cells. Therefore, the nematodes were monitored using a yellow barrier filter with
100x magnification to quantify the light emission proportional to the amount of accumulation of the
pathological protein. The images were processed using the CellProfiler software, and the yellow
fluorescence intensity emitted per total worm body was calculated.

The UA44 transgenic strain features GFP linked to the dopamine transporter in the six dopaminergic
neurons of the head and two in the tail as well as harmful a-synuclein in dopaminergic neurons.
The green fluorescence intensity represents the vitality of the neurons, therefore, the green barrier filter
was used for the analysis. The number of detectable anterior neurons was counted at the microscope
with 200x magnification. In addition, individual images of the head were captured. The nematodes
were assayed for patterns of degeneration at indicated time points, as described previously from
Harrington, et al. [68].

4.5. Swim Behaviour Assay

The study of locomotion was realized with a swim assay according to Restif et al. [61] and
Ibafiez—Ventoso et al. [124]. Wells with a depth of 0.5 mm and & 10 mm were created with two
self-adhesive marking films for microscope slides and filled with M9 buffer. Five to 10 nematodes were
transferred per well and covered by a cover slip to facilitate visualization and recorded with a connected
camera. Nematodes with a ruptured vulva phenotype were excluded from analysis. The analysis was
conducted with wild type nematodes at the 3rd, 7th, and 12th day of adulthood. Furthermore, wild
type rotenone-treated worms and the strains OW13 and UA44 were analysed at the 3rd and 7th day of
adulthood. Each video was converted into single frames and processed with Photoshop (version 19.1.7;
Adobe Inc., San José, CA, USA) to meet the required settings. Thereafter, pictures were analysed with
the CeleST software (version 3.1; distributed by GitHub Pages, https://github.com/DCS-LCSR/CeleST,
accessed on 08 April 2020) as described by Restif et al. [61] and Ibafiez—Ventoso, et al. [124]. The thrashing
rate, the body wave number and the activity index were evaluated as representative parameters of
motor activity.

4.6. Statistical Analysis

All experiments were independently conducted at least two times. The Online Application for
Survival Analysis (OASIS 2; https://sbi.postech.ac.kr/oasis2/, accessed on 8 April 2020) [125] was used
for comparing survival differences between two conditions. Fluorescence intensities as well as swim
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behaviour parameters were calculated as mean + SEM, and statistical significance was calculated by a
two-tailed t-test using GraphPad (https://www.graphpad.com/quickcalcs/, accessed on 8 April 2020).
Chi-square test was used to compare the number of worms with intact and degenerated neurons in the
UA44 strain.

5. Conclusions

Due to their different actions in terms of lifespan during non-stressful conditions, disparate modes
of actions could be the underlying cause of the beneficial characteristics of the olive polyphenols OLE
and HT. Accordingly, possible additive or even synergistic effects by combining both polyphenols
should be studied in the future. Intense research in the last decade has provided increasing knowledge
of the biochemical and cell biology basis of the beneficial effects of plant, notably olive polyphenols.
Such growing information indicates that these polyphenols have the potential as promising tools to be
used to develop new therapeutic and preventive approaches against ageing and ageing-associated
neurodegenerative diseases. However, even though C. elegans and mammalian models are frequently
used to test possible human treatments, human clinical trials are still needed to verify this assumption.
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