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In Vivo Targets of Pasteurella Multocida Toxin
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Abstract: Many Pasteurella multocida strains are carried as commensals, while some cause disease in
animals and humans. Some type D strains cause atrophic rhinitis in pigs, where the causative agent is
known to be the Pasteurella multocida toxin (PMT). PMT activates three families of G-proteins—Gg/11,
Gi12/13, and Gj,—leading to cellular mitogenesis and other sequelae. The effects of PMT on whole
animals in vivo have been investigated previously, but only at the level of organ-specific pathogenesis.
We report here the first study to screen all the organs targeted by the toxin by using the QE antibody that
recognizes only PMT-modified G-proteins. Under our experimental conditions, short-term treatment
of PMT is shown to have multiple in vivo targets, demonstrating G-alpha protein modification,
stimulation of proliferation markers and expression of active 3-catenin in a tissue- and cell-specific
manner. This highlights the usefulness of PMT as an important tool for dissecting the specific roles of
different G-alpha proteins in vivo.
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1. Introduction

The bacterium Pasteurella multocida is often found as a commensal in the upper respiratory tract of
many animals and birds [1]. Almost 70-90% of cats, and 25-50% of dogs carry the bacterium in the
oropharyngeal region [2]. In humans, various studies have reported the association of P. multocida
with rare but severe disease, often linked to infection from companion animals [3-8]. The bacterium
is classified into the following serotypes based on the capsular antigen type A, B, D, E, and F.
Many type D, and some type A, strains of P. multocida contain the toxA gene encoding Pasteurella
multocida toxin (PMT) [9]. Based on the presence or absence of toxA, the bacterium is classified
to be toxigenic or non-toxigenic [9]. Toxigenic strains cause atrophic rhinitis in pigs, a condition
associated with bone loss as well as systemic proliferative effects [10]. All these effects were shown to
be caused by PMT, as they could be reproduced by using purified recombinant PMT [11]. In particular,
we and others have suggested that the effects of PMT on bone remodelling in vivo are likely due
to cell-autonomous effects on both bone-forming osteoblasts and bone-resorbing osteoclasts [12-14]
The toxin has been identified as a potent mitogen that activates three families of heterotrimeric
G-proteins—Gg11, G213, and Gj,—and thereby various signalling pathways downstream of these
proteins [15-27], including -catenin, where we have recently shown that PMT can regulate signalling
in a G-alpha subunit-dependent manner [15-27]. These signalling interactions lead to increased
mitogenesis [28-30] and other events at the cellular level, such as altered calcium signalling [31,32],
activation of Rho GTPase pathways [12,33-35] and suppression of cyclic AMP signalling [28].

As PMT is one of the most potent mitogens known for eukaryotic cells—in the process, activating
a myriad of procarcinogenic signalling pathways—we have previously suggested a potential role for
PMT as a potential carcinogen [36,37], although how PMT acts in vivo is not well understood. Systemic
effects of Pasteurella multocida were previously evaluated by us and others [38]. Either intraperitoneal
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injection with PMT or nasal infection with toxigenic Pasteurella multocida caused proliferation in the
epithelium of bladder and ureter tissues [11,12,39,40]. Subcutaneous injection with PMT in rats was
shown to induce weight loss and liver necrosis [41]. More recently, intraperitoneal injections with PMT
in mice showed that the presence of PMT-modified G proteins in heart tissue and PMT also stimulated
RhoA- and Racl-mediated signalling in cultured cardiac cells [42]. In this study, we have further
investigated the systemic effect of PMT by injecting the toxin into mice, and examining for the first
time the spectrum of organs targeted by PMT using the QE antibody that specifically recognizes the
PMT-modified G-proteins [26,43]. We also investigated the cellular effects of PMT in various tissues,
namely stimulation of cell proliferation and active (3-catenin, thus providing a more comprehensive
map of the in vivo targets of PMT.

2. Results

2.1. Effects of PMT Treatment In Vivo

To identify the targets of PMT in vivo, we treated mice for one week or one month with two
0.1 ug/kg intraperitoneal injections of PMT per week. After a one-week short-term treatment, we did
not observe any significant differences in the weights of PMT-treated animals compared to either
vehicle treatment or to an inactive mutant PMT (APMT) that has no biological activity in vitro or
in vivo [12,44] (Figure 1A(i),B(i)). However, there were indications after one week that animals treated
with PMT exhibited a reduced rate of weight gain, and a longer one-month treatment with PMT
with eight repeated intraperitoneal injections bi-weekly showed a significant reduction in the percent
weight gained compared to the mice injected with either an inactive mutant PMT or vehicle control
(Figure 1A(ii), B(ii)). The animals were otherwise healthy.
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Figure 1. Pasteurella multocida toxin (PMT) treatment in vivo affects weight gain. Effects of short-term
and long-term treatment of PMT in mice in vivo. Mice were treated with 3 ng recombinant PMT,
inactive mutant PMT (APMT; 3 ng), or PBS vehicle (Co) for either one week or one month as indicated.
Body weights were measured and depicted either as (A) actual weights from days 0 to 7 (A(i), 1 week)
and days 0 to 28 (A(ii), 1 month), or (B) percent weight gain within the 1 week (B(i)) and 1 month (B(ii))
periods. The data represent the mean + SD (1 = 4 per group) (* p < 0.05) (one-way Anova).
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2.2. PMT Modifies G-Proteins In Vivo

To investigate whether PMT treatment caused the predicted G-alpha subunit modification in an
in vivo context, we examined the presence of PMT-modified G-alpha proteins in individual organs
obtained from PMT-treated mice. Western blot analysis using a QE antibody that specifically recognizes
the glutamine (Q) to glutamic acid (E) modification induced by PMT [26] demonstrated that the
expected 39 kDa PMT-modified G-proteins were detected in most organs analyzed after one month
of PMT treatment, with organs such as the spleen, lungs, thymus, gonads, heart, bone and liver
showing PMT modification of G-proteins as early as one week after injection (Figure 2). PMT-modified
G-proteins were not observed following treatment with either vehicle control or inactive mutant
PMT (Figure 2). We also did not observe modified G-proteins following PMT treatment in salivary
glands, small intestine, brain and muscle tissue, at least within the one-month treatment period of the
experiment (data not shown). These results characterize for the first time the spectrum of tissues that
PMT can target directly in vivo.
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Figure 2. PMT modifies G-proteins in vivo. Western blot analysis of PMT-modified G-alpha protein
subunits in whole-tissue extracts of mice treated with PMT (3 ng), mutant PMT (APMT; 3 ng) or vehicle
control (Co) for either one week or one month as indicated. Extracts were immunoblotted with a
specific anti-QE antibody as described in the Methods. Gapdh was used as a loading control.
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2.3. PMT Treatment Induces Cell Proliferation Markers In Vivo

We next investigated whether PMT treatment caused any pathological and cellular changes
within the one-month treatment period. In general, upon post-mortem dissection, the appearance
at the macroscopic level of organs in PMT-treated mice did not show any overt phenotype, with the
exception of a fraction of mice (2/4) that exhibited lesions on the ovaries resembling hemorrhagic cysts
(Figure 3). This was the only gross pathology of note, at least within the one-month treatment period
of the experiment.

Co APMT PMT

Figure 3. Gross pathology of PMT-treated mice. Representative dissections of mice treated with PMT
(3 ng), mutant PMT (APMT; 3 ng) or vehicle control (Co) for one month showing a lesion resembling a
hemorrhagic cyst (arrow) in PMT-treated mice. Scale bar: 5 mm.

We focused primarily on examining the mitotic indices that might be affected by PMT treatment,
since we have previously shown that PMT can upregulate cell proliferation in vitro [18] and in vivo [39].
To this end, we investigated whether specific tissues that exhibited PMT modification of G-alpha
subunits showed any evidence of PMT-induced mitotic activity through immunohistochemical analysis
of the expression of the cell cycle markers Ki67 and phospho-Histone H3 (pHH3). In general, increased
expression of both the pan cell cycle marker Ki67, and the mitotic phase marker pHH3, was observed
in tissue sections of PMT-treated gonads, spleen and thymus, compared to control tissues (Figure 4).
In uterine/endometrial tissue, both luminal and glandular epithelial cells showed mitotic activity,
and PMT treatment showed an increase in Ki67 expression only in glandular epithelial cells, which
was paralleled by increased expression of pHH3 (Figure 4A-D). In spleen tissue, PMT appeared to
cause a marked increase in Ki67 staining in the red pulp with no apparent changes in the white pulp,
and again, there was a concomitant increase in pHH3 staining in the red pulp (Figure 4E-H). In the
thymus, the expression of Ki67-positive was greater within the cortex and pHH3 staining confirmed
the marked increase in mitotic cells, especially within the outer peripheral regions of the thymic cortex
(Figure 4I-L). The other organs that showed PMT-modified G-proteins did not show any obvious
differences in mitotic figures compared to the controls, within the one-month treatment period (data not
shown). These results demonstrate that PMT is biologically active when administered systemically
and stimulates organ-specific cell proliferation in vivo.
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Uterus/Endometrium

Figure 4. PMT stimulates proliferation markers in vivo. Immunohistochemical analysis of the cell
cycle marker, Ki67, and mitosis marker, pHH3, in uterine (A-D), spleen (E-H) and thymus (I-L) tissues
of animals treated with either PMT (3 ng) or vehicle control (Co) for one month. Micrographs represent
5 um paraffin sections stained with specific antibodies against Ki67 or phospho-Histone H3 (pHH3) as
described in the Methods. Uterus/endometrium: luminal epithelium (LE), glandular epithelium (GE);
spleen: red pulp (RP), white pulp (WP); thymus: cortex (C), medulla (M). Scale bars: 100 um.

2.4. PMT Treatment Stimulates Active B-Catenin In Vivo

We have previously demonstrated context-dependent regulation of active 3-catenin by G-alpha
subunits in vitro [27]. To evaluate the potential ability of PMT to regulate -catenin in vivo,
we performed immunohistochemistry for the expression of active (3-catenin on the PMT-targeted
organs with confirmed QE modification of target G-alpha proteins. In endometrial tissue, active
membrane-bound f3-catenin staining was observed in both luminal and glandular epithelial cells in
both control and PMT-treated animals (Figure 5A-F). Upon closer examination, there appeared to
be a higher proportion of uterine glands with altered morphology in PMT-treated tissue, containing
smaller glandular epithelial cells and a correspondingly larger lumen size compared to control
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glands (Figure 5C,D). In addition, luminal epithelial cells in PMT-treated tissue showed active
membrane-associated 3-catenin localization in both apical and basal regions in contrast to control
tissue which showed only apical expression (Figure 5E,F), although this expression pattern was not
continuous throughout the epithelial lining. High expression of active 3-catenin was also observed
in sections of spleen and thymus. A marked increase in active 3-catenin was observed in the red
pulp of PMT-treated spleens which represents the majority of the splenic parenchyma (Figure 5G-J).
Expression of active (3-catenin was increased in PMT-treated thymus, specifically in the medulla as
well as in cortical regions surrounding the connective tissue septae that demarcate the thymic lobules
(Figure 5K-N). Thus, we have observed increased levels of active 3-catenin in vivo in some organs
that respond to PMT by G-alpha subunit modification.
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Figure 5. PMT stimulates active 3-catenin in vivo. Immunohistochemical analysis of active 3-catenin
in uterine (A-F), spleen (G-J) and thymus (K-N) tissues of animals treated with either PMT (3 ng) or
vehicle control (Co) for one month. Micrographs represent 5 um paraffin sections stained with specific
antibodies recognizing active 3-catenin as described in the Methods. Uterus/endometrium: luminal
epithelium (LE), glandular epithelium (GE); spleen: red pulp (RP), white pulp (WP); thymus: cortex
(C), medulla (M). Arrows in F indicate increased basal epithelial membrane staining of 3-catenin in LE
cells. Arrows in (M,N) indicate the connective tissue septae that demarcate the thymic lobules. Scale
bars: (A-D)(G-N): 100 um; (E,F): 50 pm.
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3. Discussion

PMT treatment elicits a wide range of cellular effects in vitro, with the potential to have
extensive sequelae in vivo. Although previous in vitro studies have provided detailed evidence
about PMT-induced cell signalling, animal studies conducted either by injecting recombinant PMT or
infecting animals with toxigenic strains of Pasteurella multocida have provided only limited analysis of
PMT-induced organ damage, mainly based on gross pathological observation. Although bone tissue
is a well-established target organ of PMT in vivo through its causal link to atrophic rhinitis [45-47],
other studies have shown PMT-mediated proliferation of bladder epithelium in pigs, liver and kidney
damage in pigs and rats, and hypertrophy of heart tissue in mice [3,39,41,42,48,49]. These studies
suggest that there exist potential in vivo targets of PMT in addition to bone tissue. However, there
remains a lack of comprehensive assessment of the spectrum of organs that could be sensitive to
PMT action in vivo. At the molecular and biochemical levels, PMT function depends on the specific
deamidation of glutamine (Q) to glutamic acid (E) in G-alpha proteins [43], and the development of
an anti-QE antibody that is specific for deamidated G-alpha subunits provided a unique opportunity
for identifying tissues that were bona fide direct targets for PMT in vivo [26]. Here, we have begun to
identify these using the specific anti-QE antibody and have demonstrated that PMT has a wide range
of in vivo targets leading to early signs of cellular changes.

As we were primarily interested in this study in identifying in vivo molecular targets of PMT
rather than causing specific pathologies, we have chosen a relatively low dose of PMT, 5-fold lower
than that used in previous studies that have shown to cause rapid, severe weight loss and organ
toxicity/pathology [41]. We have performed our studies after a one-month treatment, after which mice
were healthy, although the observed reduction in weight gain in PMT-treated animals suggests that
exposure for longer periods might induce disease. Indeed, we have previously hypothesized that
chronic exposure to PMT in vivo could drive pathological changes [37], and this is supported by our
preliminary observations in vitro that long-term chronic treatment of cells with PMT over months
changes their endogenous G-alpha subunit content (Banu, Lax, Grigoriadis, in preparation).

We have shown that PMT modifies G-proteins in multiple organs in vivo by confirming the
specific Q > E modification biochemically. These tissue-specific PMT effects we observed suggest the
involvement of a potential receptor required for its entry in different cell types. Cellular uptake of PMT
occurs through its binding to sphingomyelin with a suggestion of associated protein receptors [50].
However, the precise receptors involved in PMT translocation still remain unclear. Hence, further
exploring PMT tissue targets and non-targets could potentially reveal the receptors involved in PMT
uptake. Nevertheless, in those tissues where we demonstrated clear deamidating effects of PMT,
we observed increases in mitogenic activity as marked by positive Ki67 and pHHS3 staining that are
characteristic of PMT action [18]. Expression of these mitotic markers appeared to be specific within
each tissue tested: glandular epithelial cells in the endometrium, the parenchyma in the red pulp of the
spleen and the cells in the thymic cortex all appeared to be affected preferentially by PMT. Moreover,
increased expression and localization of active 3-catenin correlated well with the increases in Ki67
and pHH3 in the same subpopulations, particularly in endometrial and splenic tissues. Whether the
observed effects of PMT on the proliferation markers and on active 3-catenin expression are mediated
by activation of specific G-alpha subunits in these tissues is not yet known. Moreover, whether the
gonadal effect is also seen in the male reproductive system is not yet known but would be interesting
as Gq expression is high in prostate and testis [51].

There were no obvious extreme pathological effects at the macroscopic level observed with
PMT treatment, which may be due to the limited incubation period in this experiment and/or the
intentionally low dose of PMT used. However, we did observe that a proportion of PMT-treated mice
developed lesions resembling hemorrhagic cysts in the ovaries although the causes of this pathology
are not clear. The increases in active 3-catenin levels, however, are very interesting and relevant to our
recent demonstration of a context-dependent role of PMT-modified G-alpha subunits in regulating
active 3-catenin signalling in the presence or absence of Wnt ligand [27]. 3-catenin has been reported



Int. ]. Mol. Sci. 2020, 21, 2739 8of 12

to be important for endometrial proliferation and differentiation, can regulate endometrial homeostasis
and may show differential epithelial cell localization in proliferative and secretory phases of uterine
function [52,53]. The altered membrane localization of 3-catenin in PMT-treated luminal epithelial
cells shows engagement with cadherins and altered apico-basal cell polarity, which is associated with
tumour progression [54]. Finally, the increase in expression of active (3-catenin in PMT-treated spleens
is restricted to the parenchyma that is comprised of connective tissue cells which are known targets of
PMT [18], and Wnt/p-catenin signaling is classically associated with fibrosis [55]. Thus, given that
B-catenin has multiple cellular functions involving Wnt signalling activation, maintaining adhesion
junctions, and acting as a transcription factor [56], it would be interesting in the future to further dissect
the cell types in which p-catenin is activated and explore the functional role of the PMT-activated
[-catenin in these tissues. Although our results require further functional validation of PMT action
in an organ- and cell-specific manner, our study further intensifies the notion that PMT-mediated
activation of G-alpha subunits is context dependent, and demonstrates that PMT is a valuable tool to
dissect the tissue-specific roles of individual G-alpha subunits under normal and disease conditions
in vivo using specific animal models.

4. Materials and Methods

4.1. Animal Studies

All the animal procedures were carried out according to the UK home office guidelines (Licence PPL
70/7866, approved 17/12/2013 by the Animal Welfare and Ethical Review Body (AWERB), King’s College
London). Female CD1 mice were chosen for the experiments. Based on previous mouse studies, a dose
of PMT (0.1 ug/kg of body weight) was chosen for injections. Mice (n = 4 per group) were treated
with either PMT, an inactive PMT mutant (APMT) containing a C-terminal cysteine to serine exchange
(C1165S) [44], or vehicle (PBS) by intraperitoneal injections 2x per week for a total of either one week or
one month. The weights of the mice were recorded at the beginning of the experiment and at culling.
Various organs (brain, bone, skin, thymus, spleen, lungs, heart, liver, small intestine, colon, bladder,
gonads, muscle, salivary glands, kidney) were harvested for biochemical analysis and histological
examination. Inactive mutant APMT did not exhibit any pathological, cellular or biochemical effects
in vivo [41].

4.2. Histology

The extracted organs were fixed in 4% paraformaldehyde in PBS, processed and paraffin embedded.
Sections (5 um thickness) were cut and mounted on SuperFrost slides (Thermo Fisher Scientific, Hemel
Hempstead, UK) for further evaluation.

4.3. Tissue Homogenisation

Mouse tissue was snap frozen in liquid nitrogen and stored at —80 °C. Lysis buffer (25 mM Bicine pH
7.5,150 mM NaCl, 2 mM Naz VO,, 1 mM NaF, 20 mM NasP,07, 0.02% NaN3, and proprietary detergent)
at a final concentration of 5 mg/mL containing protease inhibitors (#P2714-1BTL, Sigma-Aldrich,
Poole, UK) was added to the extracted organs. The tissue was homogenized using the lysing
matrix D beads (#116913100, MP Biomedicals, Loughborough, UK) in the FASTPREP-24 system
(MP Biomedicals), where the tissue along with lysis buffer was added in the tube containing specific
beads and homogenized for 1 min, with 2 min for bone and muscle. The homogenate was transferred
to a pre-chilled microfuge tube and incubated on ice on a rocking platform for 10 min. The tubes were
spun at 14,000 RCF for 15 min and the supernatant was aliquoted and stored at —80 °C.

4.4. Immunohistochemistry

The paraffin sections were dewaxed in xylene and rehydrated through a decreasing series of
ethanol concentrations to water. The slides were then subjected to heat-induced antigen retrieval, using
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the sodium citrate buffer (pH 6) in a Decloaking chamber NXGEN (Menarini Diagnostics, Wokingham,
UK), at 110 °C for 3 min. The slides were removed and washed in tap water. The sections were incubated
in blocking solution containing 5% BSA in phosphate-buffered saline (PBS) for 30 min and washed
with PBS. The sections were incubated with the primary antibody overnight in a humidified chamber
at 4 °C. The following day, the sections were washed with PBS containing 0.01% Tween-20 (PBST) and
incubated with 3% H,O, solution for 15 min and rinsed thoroughly in tap water. The sections were
incubated with secondary antibody for 2 h. The dilutions of both primary and the secondary antibodies
were made in the blocking solution. After incubation, the slides were washed with PBST and then
developed using the peroxidase substrate DAB kit (Vector labs, Peterborough, UK) as instructed by
the manufacturer. Briefly, the developing solution was prepared by adding a drop of chromogen to
1 mL substrate, and the solution was applied to the section and incubated for 2 min. The sections were
washed and counterstained with hematoxylin. They were then mounted using DPX and observed
under the light microscope.

4.5. Western Blot Analysis

Proteins were separated on 12% gradient bis-acrylamide gels using SDS-PAGE [57]. The proteins
were electro-transferred onto nitrocellulose membrane using a transfer cell (Biorad, Hertfordshire,
UK). Blots were incubated in 5% non-fat milk in Tris-buffered saline (TBS) for 30 min. Primary and
secondary antibody dilutions were made in 5% non-fat milk in TBS. All the primary antibodies were
used at a 1:1000 dilution with incubation overnight at 4 °C. The housekeeping protein (3-actin at a
1:5000 dilution was incubated for 2 h at RT. Primary antibody was removed and the blots were washed
three times for 10 min each with TBST (TBS with 0.1% Tween-20) and incubated with the respective
HRP-bound secondary antibodies (1:5000 dilution) for 2 h at RT. Secondary antibody was removed
and the blots were washed with TBST three times for 10 min each. The proteins were visualized using
the chemiluminescence detector and the Chemidoc MP imaging system from Biorad.
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