

Supplementary Materials for Hemokinin-1 Gene Expression is Upregulated in Trigeminal Ganglia in an Inflammatory Orofacial Pain Model: Potential Role in Peripheral Sensitization

1. Supplementary Results

1.1. Behavioural tests in Tac4^{-/-} gene-deficient mice

CFA administration caused significantly decreased facial mechanonociceptive threshold 1 and 3 days after injection in both wild-type (WT) and $Tac4^{-/-}$ mice. However, saline injection caused similar, although non-significant changes. No significant changes were observed between the thresholds of WT and $Tac4^{-/-}$ mice. No significant change in spontaneous behavior was seen as a consequence of CFA injection, although $Tac4^{-/-}$ mice spent less time in the centre zone of the open-field box, suggesting an anxiety-like behavior compared to their littermates (Supplementary Figure 1).

Supplementary Figure 1. (a) Changes in von Frey threshold before and 1, 3, 7 days after CFA (10 μ l s. c. complete Freund's adjuvant) inflammation. Mean of the orofacial thresholds in both sides were calculated. Data are means ± S.E.M. (n = 7–18). Asterisks denote statistically significant differences between control and saline/CFA-treated groups (*p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001) as analyzed by two-way ANOVA followed by Tukey's multiple comparison tests; (b) Changes in spontaneous behavior measured in the open field test. Data are means ± S.E.M. (n = 3–15; WT vs. *Tac4*^{-/-}; *p < 0.05, **p ≤ 0.01, two-way ANOVA followed by Tukey's multiple comparison tests).

1.2. RNAscope

Supplementary Figure 2. Representative confocal image of rat longitudinal TG section. RNAscope probes specific to *Kcnn3* (in green encoding SK3) to detect SGCs, and to *Rbfox3* (in white encoding NeuN) to visualize sensory neurons were used to colocalize with *Tac4* mRNA (in red). Scale bar: 50 μm, inset scale bar 10 μm.

1.3. RNAscope technical controls

Supplementary Figure 3. RNAscope control conditions performed on saline-injected rat and mouse longitudinal TG sections counterstained with DAPI. (a) Representative confocal image of 3-plex negative control probes specific to the bacterial *dabP* gene giving no specific signal on rat TG; (b) Representative confocal images of 3-plex positive control probes specific to mouse *Polr2a* (in green), *Ppib* (in red) and *Ubc* (in white) mRNA targets on rat TG; (c) Representative confocal image of 3-plex negative control probes specific to the bacterial *dabP* gene giving no specific signal on mouse TG; (d) Representative confocal images of 3-plex positive control probes specific to mouse *Polr2a* (in green), *Ppib* (in red) and *Ubc* (in white) mRNA targets on mouse TG. Scale bar: 50 µm. Note that sensitivity of mouse 3-plex positive control probes applied on rat tissue samples reflects on the highly conserved mouse and rat genome.

1.3. Nanostring

Supplementary Figure 4. Heat map representation of the differentially expressed genes with annotations between TG samples of CFA and saline-treated WT mice. Rows represent genes and columns represent TG samples (n = 3). Normalized gene counts data are shown as row-wise z-scores (scale is shown on legend). Rows and columns were hierarchically clustered using Pearson correlation distance measure and average method. Distances are shown as dendrograms.

Supplementary Figure 5. Heat map representation of the differentially expressed genes with annotations between TG samples of CFA- and saline-treated $Tac4^{-/-}$ mice. Rows represent genes and columns represent TG samples (n = 3). Normalized gene counts data are shown as row-wise z-scores (scale is shown on legend). Rows and columns were hierarchically clustered using Pearson correlation distance measure and average method. Distances are shown as dendrograms.

Supplementary Figure 6. Barplots of p-values for correlation of cell-type-specific gene expression as compared between CFA- and saline-treated WT mice. Barplots of p-values across cell types. p-values are -log¹⁰ transformed. Statistically significant cell types (p < 0.05) are shown.

Supplementary Figure 7. Barplots of p-values for correlation of cell-type-specific gene expression as compared between CFA- and saline-treated $Tac4^{-/-}$ mice. Barplots of p-values across cell types. p-values are $-\log_{10}$ transformed. Statistically significant cell types (p < 0.05) are shown.

2. Supplementary Materials and Methods

2.1. Open Field test

The open-field test was used to assay spontaneous activity and anxiety levels of mice. The mice were placed into the same area of a box (60 cm x 40 cm), then their behavior was recorded for 10 min. Recorded videos were evaluated using Ethovision software (Noldus Information Technology, Wageningen, Netherlands).

2.2. RNAscope

Supprementary fable 1. 1 robes, applied dilutions of indorophotes						
Target	Catalog number Fluorophores		Dilutions			
Tac4	449651-C2	TSA Plus Cyanine 3	1:750			
Kcnn3	427961	TSA Plus Fluorescein	1:750			
Rbfox3	313311-C3	TSA Plus Cyanine 5	1:750			
Mm-3-plex positive ctrl probes	320881	TS A Plus Eluoroscoin	1.750			
3-plex negative ctrl probes	320871	Cyanine 3, 5	1:730			

Supplementary Table 1. Probes, applied dilutions of fluorophores

2.3. *Quantitative real-time PCR (RT-qPCR)*

Gene	Creation	A	
symbol	Species	Accession	Forward primer sequence (F, 5 - 3)
		number	Reverse primer sequence (R, 5' - 3')
Aif1 (Iba1)	mouse	NM_001361501.1	F: CAA CAA GCA ATT CCT CGA TGA TCC
			R: CTC CAG CAT TCG CTT CAA GG
β2m	mouse	NM_009735.3	F: TTC TGG TGC TTG TCT CAC TGA
			R: CAG TAT GTT CGG CTT CCC ATT C
FosB	mouse	NM_001347586.1	F: CGA GAA GAG ACA CTT ACC CCA
		NM_008036.2	R: GTT TCC GCC TGA AGT CGA TCT
Gapdh	mouse	AY618199.1	F: GTG GAG TCA TAC TGG AAC ATG TAG
			R: AAT GGT GAA GGT CGG TGT G
Gfap	mouse	NM_010277.3	F: CGG AGA CGC ATC ACC TCT G
			R: TGG AGG AGT CAT TCG AGA CAA
Hprt1	mouse	NM_013556.2	F: CCC CAA AAT GGT TAA GGT TGC
			R: AAC AAA GTC TGG CCT GTA TCC
Ppia	mouse	NM_008907.2	F: GAG CTG TTT GCA GAC AAA GTT
			R: CCC TGG CAC ATG AAT CTT GG
Tac4	mouse	NM_053093.2 F: CCG TGA ACC TGA AGG GAA T	
			R: CCC ATC AGA CCA TAG AAC TGG
B2m	rat	NM_012512	F: CCC ACC CTC ATG GCT ACT TC
			R: CCA CTT CAC TTC ACT CTG GCA
Gapdh	rat	NM_017008	F: GTA ACC AGG CGT CCG ATA C
			R: TCC TCT GCT CCT CCC TGT TC
Hprt1	rat	NM_012583	F: GCT TTT CCA ACT TTC GCT GAT G
			R: GGT GAA AAG GAC CTC TCG AAG
Ppia	rat	NM_017101	F: CCA TTA TGG CGT GTG AAG TC
			R: GCA GAC AAA GTT CCA AAG ACA G
Tac4	rat	NM_172328.2	F: CTG TCC CCA GCA TCG AAC TT
			R: CCA GCT GAT ACC CCG TTC TC

Supplementary Table 2. Sequences of primers for real-time PCR

Supplementary Table 3. A summary of sample numbers in each experiment. Samples for RT-qPCR were collected from animals participating in the behavioral measurements

Rat							
Method	Treatment	Day 1	Day 3	Day 7			
von Frey	CFA	16	10	5			
	saline	6	6	6			
RT-qPCR	CFA	3	3	3			
	saline	3					
RNAscope	CFA		6				
	saline		4				

Mouse							
WT							
Method	Treatment	Day 1	Day 3	Day 7			
von Fray/Onan field	CFA	18/13	18/13	8/3			
von Frey/Open field	saline	16/13	16/13	7/4			
RT aPCR	CFA	5	10	3			
KI-qrCK	saline	5	9	4			
PNA scope	CFA		5				
KNAScope	saline		4				
Nanastring	CFA		3				
Nanosting	saline		3				
Tac4 -/-							
Method	Treatment	Day 1	Day 3	Day 7			
von Frou (Onon field	CFA	16/13	16/13	8/5			
von Frey /Open field	saline	18/14	18/15	8/5			
RT-qPCR	CFA	5	7	5			
	saline	5	10	5			
Nanostring	CFA		3				
	saline		3				