The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases
Abstract
:1. Introduction
2. Importance of Estrogens in Sex Difference
3. Estrogen Receptor (ERα) and Blood Endothelial Healing in Response to Vascular Injury
4. ERα and Arterial Remodeling and Response to Ischemia
5. ERα and Atherosclerosis
Selective Estrogen Receptor Modulators (SERMs) and Atheroprotection
6. ERα and Lymphatic Vasculature
7. ERα and Lymphedema
SERMs and Lymphatic Diseases
8. Discussion and Future Perspectives
Funding
Conflicts of Interest
References
- Liu, S.; Ding, T.; Liu, H.; Jian, L. GPER was associated with hypertension in post-menopausal women. Open Med. (Wars. ) 2018, 13, 338–343. [Google Scholar] [CrossRef] [PubMed]
- Meyer, M.R.; Barton, M. Estrogens and coronary artery disease: New clinical perspectives. Adv. Pharmacol. 2016, 77, 307–360. [Google Scholar] [PubMed]
- Zimmerman, M.A.; Budish, R.A.; Kashyap, S.; Lindsey, S.H. GPER-novel membrane oestrogen receptor. Clin. Sci. (Lond.) 2016, 130, 1005–1016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnal, J.F.; Fontaine, C.; Billon-Gales, A.; Favre, J.; Laurell, H.; Lenfant, F.; Gourdy, P. Estrogen receptors and endothelium. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 1506–1512. [Google Scholar] [CrossRef] [PubMed]
- Mendelsohn, M.E.; Karas, R.H. Estrogen and the blood vessel wall. Curr. Opin. Cardiol. 1994, 9, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Kim-Schulze, S.; McGowan, K.A.; Hubchak, S.C.; Cid, M.C.; Martin, M.B.; Kleinman, H.K.; Greene, G.L.; Schnaper, H.W. Expression of an estrogen receptor by human coronary artery and umbilical vein endothelial cells. Circulation 1996, 94, 1402–1407. [Google Scholar] [CrossRef]
- Russell, K.S.; Haynes, M.P.; Sinha, D.; Clerisme, E.; Bender, J.R. Human vascular endothelial cells contain membrane binding sites for estradiol, which mediate rapid intracellular signaling. Proc. Natl. Acad. Sci. USA 2000, 97, 5930–5935. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Haynes, M.P.; Bender, J.R. Plasma membrane localization and function of the estrogen receptor α variant (ER46) in human endothelial cells. Proc. Natl. Acad. Sci. USA 2003, 100, 4807–4812. [Google Scholar] [CrossRef] [Green Version]
- Dan, P.; Cheung, J.C.; Scriven, D.R.; Moore, E.D. Epitope-dependent localization of estrogen receptor-alpha, but not -beta, in en face arterial endothelium. Am. J. Physiol. Circ. Physiol. 2003, 284, H1295–H1306. [Google Scholar] [CrossRef]
- Arnal, J.F.; Lenfant, F.; Metivier, R.; Flouriot, G.; Henrion, D.; Adlanmerini, M.; Fontaine, C.; Gourdy, P.; Chambon, P.; Katzenellenbogen, B.; et al. Membrane and nuclear estrogen receptor alpha actions: From tissue specificity to medical implications. Physiol. Rev. 2017, 97, 1045–1087. [Google Scholar] [CrossRef]
- Hewitt, S.; Korach, K.S. Estrogen receptors: New directions in the new millennium. Endocr. Rev. 2018, 39, 664–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambliss, K.L.; Yuhanna, I.S.; Mineo, C.; Liu, P.; German, Z.; Sherman, T.S.; Mendelsohn, M.E.; Anderson, R.G.; Shaul, P.W. Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ. Res. 2000, 87, E44–E52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caulin-Glaser, T.; Garcia-Cardena, G.; Sarrel, P.; Sessa, W.C.; Bender, J.R. 17 beta-estradiol regulation of human endothelial cell basal nitric oxide release, independent of cytosolic Ca2+ mobilization. Circ. Res. 1997, 81, 885–892. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Yuhanna, I.S.; Galcheva-Gargova, Z.; Karas, R.H.; Mendelsohn, M.E.; Shaul, P.W. Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J. Clin. Investig. 1999, 103, 401–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morfoisse, F.; Tatin, F.; Chaput, B.; Therville, N.; Vaysse, C.; Metivier, R.; Malloizel-Delaunay, J.; Pujol, F.; Godet, A.C.; De Toni, F.; et al. Lymphatic vasculature requires estrogen receptor-alpha signaling to protect. from lymphedema. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 1346–1357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garmy-Susini, B.; Varner, J.A. Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymphat. Res. Biol. 2008, 6, 155–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alitalo, K.; Tammela, T.; Petrova, T.V. Lymphangiogenesis in development and human disease. Nature 2005, 438, 946–953. [Google Scholar] [CrossRef]
- Nazarali, S.A.; Narod, S.A. Tamoxifen for women at high risk of breast cancer. Breast Cancer (Dove Med. Press) 2014, 6, 29–36. [Google Scholar]
- Jordan, V.C. The SERM saga, something from nothing: American cancer society/SSO basic science lecture. Ann. Surg. Oncol. 2019, 26, 1981–1990. [Google Scholar] [CrossRef]
- Billon-Gales, A.; Fontaine, C.; Filipe, C.; Douin-Echinard, V.; Fouque, M.J.; Flouriot, G.; Gourdy, P.; Lenfant, F.; Laurell, H.; Krust, A.; et al. The transactivating function 1 of estrogen receptor alpha is dispensable for the vasculoprotective actions of 17beta-estradiol. Proc. Natl. Acad. Sci. USA 2009, 106, 2053–2058. [Google Scholar] [CrossRef] [Green Version]
- Billon-Gales, A.; Krust, A.; Fontaine, C.; Abot, A.; Flouriot, G.; Toutain, C.; Berges, H.; Gadeau, A.P.; Lenfant, F.; Gourdy, P.; et al. Activation function 2 (AF2) of estrogen receptor-alpha is required for the atheroprotective action of estradiol but not to accelerate endothelial healing. Proc. Natl. Acad. Sci. USA 2011, 108, 13311–13316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smirnova, N.F.; Fontaine, C.; Buscato, M.; Lupieri, A.; Vinel, A.; Valera, M.C.; Guillaume, M.; Malet, N.; Foidart, J.M.; Raymond-Letron, I.; et al. The activation function-1 of estrogen receptor alpha prevents arterial neointima development through a direct effect on smooth muscle cells. Circ. Res. 2015, 117, 770–778. [Google Scholar] [CrossRef] [PubMed]
- Madak-Erdogan, Z.; Kieser, K.J.; Kim, S.H.; Komm, B.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S. Nuclear and extranuclear pathway inputs in the regulation of global gene expression by estrogen receptors. Mol. Endocrinol. 2008, 22, 2116–2127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madak-Erdogan, Z.; Kim, S.H.; Gong, P.; Zhao, Y.C.; Zhang, H.; Chambliss, K.L.; Carlson, K.E.; Mayne, C.G.; Shaul, P.W.; Korach, K.S.; et al. Design of pathway preferential estrogens that provide beneficial metabolic and vascular effects without stimulating reproductive tissues. Sci. Signal. 2016, 9, ra53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abot, A.; Fontaine, C.; Buscato, M.; Solinhac, R.; Flouriot, G.; Fabre, A.; Drougard, A.; Rajan, S.; Laine, M.; Milon, A.; et al. The uterine and vascular actions of estetrol delineate a distinctive profile of estrogen receptor alpha modulation, uncoupling nuclear and membrane activation. EMBO Mol. Med. 2014, 6, 1328–1346. [Google Scholar] [CrossRef] [PubMed]
- Ventura-Clapier, R.; Dworatzek, E.; Seeland, U.; Kararigas, G.; Arnal, J.F.; Brunelleschi, S.; Carpenter, T.C.; Erdmann, J.; Franconi, F.; Giannetta, E.; et al. Sex. in basic research: Concepts in the cardiovascular field. Cardiovasc. Res. 2017, 113, 711–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scarabin, P.Y. Hormones and venous thromboembolism among postmenopausal women. Climacteric 2014, 17 (Suppl. 2), 34–37. [Google Scholar] [CrossRef]
- Lenfant, F.; Tremollieres, F.; Gourdy, P.; Arnal, J.F. Timing of the vascular actions of estrogens in experimental and human studies: Why protective early, and not when delayed? Maturitas 2011, 68, 165–173. [Google Scholar] [CrossRef]
- AlSiraj, Y.; Chen, X.; Thatcher, S.E.; Temel, R.E.; Cai, L.; Blalock, E.; Katz, W.; Ali, H.M.; Petriello, M.; Deng, P.; et al. XX sex chromosome complement promotes atherosclerosis in mice. Nat. Commun. 2019, 10, 2631. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.P.; Cassis, L.A.; Eghbali, M.; Reue, K.; Sandberg, K. Sex hormones and sex chromosomes cause sex differences in the development of cardiovascular diseases. Arterioscler. Vasc. Biol. 2017, 37, 746–756. [Google Scholar] [CrossRef] [Green Version]
- Hartman, R.J.G.; Huisman, S.E.; den Ruijter, H.M. Sex differences in cardiovascular epigenetics-a systematic review. Biol. Sex Differ. 2018, 9, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vitale, C.; Mendelsohn, M.E.; Rosano, G.M. Gender differences in the cardiovascular effect of sex hormones. Nat. Rev. Cardiol. 2009, 6, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Kelley, R.O. Cardiac health in women with metabolic syndrome: Clinical aspects and pathophysiology. Obesity (Silver Spring) 2009, 17, 1114–1123. [Google Scholar] [CrossRef] [PubMed]
- Mosca, L.; Barrett-Connor, E.; Wenger, N.K. Sex./gender differences in cardiovascular disease prevention: What a difference a decade makes. Circulation 2011, 124, 2145–2154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ceylan-Isik, A.F.; McBride, S.M.; Ren, J. Sex. difference in alcoholism: Who is at a greater risk for development of alcoholic complication? Life Sci. 2010, 87, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McBride, S.M.; Flynn, F.W.; Ren, J. Cardiovascular alteration and treatment of hypertension: Do men and women differ? Endocrine 2005, 28, 199–207. [Google Scholar] [CrossRef]
- Xue, B.; Pamidimukkala, J.; Lubahn, D.B.; Hay, M. Estrogen receptor-alpha mediates estrogen protection from angiotensin II-induced hypertension in conscious female mice. Am. J. Physiol. Heart Circ. Physiol. 2007, 292, H1770–H1776. [Google Scholar] [CrossRef] [Green Version]
- Martin, X.D.; Brennan, M.C.; Lichter, P.R. Serotonin, vasoconstrictor of human aqueous humor. Arch. Ophthalmol. 1989, 107, 488–489. [Google Scholar] [CrossRef]
- Seeland, U.; Demuth, I.; Regitz-Zagrosek, V.; Steinhagen-Thiessen, E.; Konig, M. Sex. differences in arterial wave reflection and the role of exogenous and endogenous sex hormones: Results of the Berlin Aging Study II. J. Hypertens. 2020. [Google Scholar] [CrossRef]
- Morales, D.E.; McGowan, K.A.; Grant, D.S.; Maheshwari, S.; Bhartiya, D.; Cid, M.C.; Kleinman, H.K.; Schnaper, H.W. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation 1995, 91, 755–763. [Google Scholar] [CrossRef]
- Razandi, M.; Pedram, A.; Levin, E.R. Estrogen signals to the preservation of endothelial cell form and function. J. Biol. Chem. 2000, 275, 38540–38546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasinski, K.; Spyridopoulos, I.; Asahara, T.; van der Zee, R.; Isner, J.M.; Losordo, D.W. Estradiol accelerates functional endothelial recovery after arterial injury. Circulation 1997, 95, 1768–1772. [Google Scholar] [CrossRef] [PubMed]
- Brouchet, L.; Krust, A.; Dupont, S.; Chambon, P.; Bayard, F.; Arnal, J.F. Estradiol accelerates reendothelialization in mouse carotid artery through estrogen receptor-alpha but not estrogen receptor-beta. Circulation 2001, 103, 423–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipe, C.; Lam Shang Leen, L.; Brouchet, L.; Billon, A.; Benouaich, V.; Fontaine, V.; Gourdy, P.; Lenfant, F.; Arnal, J.F.; Gadeau, A.P.; et al. Estradiol accelerates endothelial healing through the retrograde commitment of uninjured endothelium. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H2822–H2830. [Google Scholar] [CrossRef] [Green Version]
- Garmy-Susini, B.; Delmas, E.; Gourdy, P.; Zhou, M.; Bossard, C.; Bugler, B.; Bayard, F.; Krust, A.; Prats, A.C.; Doetschman, T.; et al. Role of fibroblast growth factor-2 isoforms in the effect of estradiol on endothelial cell migration and proliferation. Circ. Res. 2004, 94, 1301–1309. [Google Scholar] [CrossRef]
- Arnal, J.F.; Clamens, S.; Pechet, C.; Negre-Salvayre, A.; Allera, C.; Girolami, J.P.; Salvayre, R.; Bayard, F. Ethinylestradiol does not enhance the expression of nitric oxide synthase in bovine endothelial cells but increases the release of bioactive nitric oxide by inhibiting superoxide anion production. Proc. Natl. Acad. Sci. USA 1996, 93, 4108–4113. [Google Scholar] [CrossRef] [Green Version]
- Wagner, A.H.; Schroeter, M.R.; Hecker, M. 17beta-estradiol inhibition of NADPH oxidase expression in human endothelial cells. FASEB J. 2001, 15, 2121–2130. [Google Scholar] [CrossRef]
- Lantin-Hermoso, R.L.; Rosenfeld, C.R.; Yuhanna, I.S.; German, Z.; Chen, Z.; Shaul, P.W. Estrogen acutely stimulates nitric oxide synthase activity in fetal pulmonary artery endothelium. Am. J. Physiol. 1997, 273 Pt 1, L119–L126. [Google Scholar] [CrossRef]
- Simoncini, T.; Hafezi-Moghadam, A.; Brazil, D.P.; Ley, K.; Chin, W.W.; Liao, J.K. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 2000, 407, 538–541. [Google Scholar] [CrossRef]
- Wyckoff, M.H.; Chambliss, K.L.; Mineo, C.; Yuhanna, I.S.; Mendelsohn, M.E.; Mumby, S.M.; Shaul, P.W. Plasma membrane estrogen receptors are coupled to endothelial nitric-oxide synthase through Galpha(i). J. Biol. Chem. 2001, 276, 27071–27076. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Wu, Q.; Chambliss, K.L.; Yuhanna, I.S.; Mumby, S.M.; Mineo, C.; Tall, G.G.; Shaul, P.W. Direct interactions with G alpha i and G betagamma mediate nongenomic signaling by estrogen receptor alpha. Mol. Endocrinol. 2007, 21, 1370–1380. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Q.; Chambliss, K.; Lee, W.R.; Yuhanna, I.S.; Mineo, C.; Shaul, P.W. Point mutations in the ERalpha Galphai binding domain segregate nonnuclear from nuclear receptor function. Mol. Endocrinol. 2013, 27, 2–11. [Google Scholar] [CrossRef] [Green Version]
- Lu, Q.; Pallas, D.C.; Surks, H.K.; Baur, W.E.; Mendelsohn, M.E.; Karas, R.H. Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor alpha. Proc. Natl. Acad. Sci. USA 2004, 101, 17126–17131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Yan, Q.; Liu, X.; Li, P.; Li, X.; Chen, Y.; Simoncini, T.; Liu, J.; Zhu, D.; Fu, X.; et al. 17beta-Estradiol nongenomically induces vascular endothelial H2S release by promoting phosphorylation of cystathionine gamma-lyase. J. Biol. Chem. 2019, 294, 15577–15592. [Google Scholar] [CrossRef] [PubMed]
- Darblade, B.; Pendaries, C.; Krust, A.; Dupont, S.; Fouque, M.J.; Rami, J.; Chambon, P.; Bayard, F.; Arnal, J.F. Estradiol alters nitric oxide production in the mouse aorta through the alpha-, but not beta-, estrogen receptor. Circ. Res. 2002, 90, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Dupont, S.; Krust, A.; Gansmuller, A.; Dierich, A.; Chambon, P.; Mark, M. Effect of single and compound knockouts of estrogen receptors alpha (ERalpha) and beta (ERbeta) on mouse reproductive phenotypes. Development 2000, 127, 4277–4291. [Google Scholar]
- Lubahn, D.B.; Moyer, J.S.; Golding, T.S.; Couse, J.F.; Korach, K.S.; Smithies, O. Alteration of reproductive function but not prenatal sexual development after insertional disruption of the mouse estrogen receptor gene. Proc. Natl. Acad. Sci. USA 1993, 90, 11162–11166. [Google Scholar] [CrossRef] [Green Version]
- Karas, R.H. Animal models of the cardiovascular effects of exogenous hormones. Am. J. Cardiol. 2002, 90, 22F–25F. [Google Scholar] [CrossRef]
- Pendaries, C.; Darblade, B.; Rochaix, P.; Krust, A.; Chambon, P.; Korach, K.S.; Bayard, F.; Arnal, J.F. The AF-1 activation-function of ERalpha may be dispensable to mediate the effect of estradiol on endothelial NO production in mice. Proc. Natl. Acad. Sci. USA 2002, 99, 2205–2210. [Google Scholar] [CrossRef] [Green Version]
- Billon, A.; Lehoux, S.; Lam Shang Leen, L.; Laurell, H.; Filipe, C.; Benouaich, V.; Brouchet, L.; Dessy, C.; Gourdy, P.; Gadeau, A.P.; et al. The estrogen effects on endothelial repair and mitogen-activated protein kinase activation are abolished in endothelial nitric-oxide (NO) synthase knockout mice, but not by NO synthase inhibition by N-nitro-L-arginine methyl ester. Am. J. Pathol. 2008, 172, 830–838. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, C.; Abot, A.; Billon-Gales, A.; Flouriot, G.; Berges, H.; Grunenwald, E.; Vinel, A.; Valera, M.C.; Gourdy, P.; Arnal, J.F.; et al. Tamoxifen elicits atheroprotection through estrogen receptor alpha AF-1 but does not accelerate reendothelialization. Am. J. Pathol. 2013, 183, 304–312. [Google Scholar] [CrossRef] [PubMed]
- Toutain, C.E.; Filipe, C.; Billon, A.; Fontaine, C.; Brouchet, L.; Guery, J.C.; Gourdy, P.; Arnal, J.F.; Lenfant, F. Estrogen receptor alpha expression in both endothelium and hematopoietic cells is required for the accelerative effect of estradiol on reendothelialization. Arterioscler. Thromb. Vasc. Biol. 2009, 29, 1543–1550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambliss, K.L.; Wu, Q.; Oltmann, S.; Konaniah, E.S.; Umetani, M.; Korach, K.S.; Thomas, G.D.; Mineo, C.; Yuhanna, I.S.; Kim, S.H.; et al. Non-nuclear estrogen receptor alpha signaling promotes cardiovascular protection but not uterine or breast cancer growth in mice. J. Clin. Investig. 2010, 120, 2319–2330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adlanmerini, M.; Solinhac, R.; Abot, A.; Fabre, A.; Raymond-Letron, I.; Guihot, A.L.; Boudou, F.; Sautier, L.; Vessieres, E.; Kim, S.H.; et al. Mutation of the palmitoylation site of estrogen receptor alpha in vivo reveals tissue-specific roles for membrane versus nuclear actions. Proc. Natl. Acad. Sci. USA 2014, 111, E283–E290. [Google Scholar] [CrossRef] [Green Version]
- Karas, R.H.; Patterson, B.L.; Mendelsohn, M.E. Human vascular smooth muscle cells contain functional estrogen receptor. Circulation 1994, 89, 1943–1950. [Google Scholar] [CrossRef] [Green Version]
- Pare, G.; Krust, A.; Karas, R.H.; Dupont, S.; Aronovitz, M.; Chambon, P.; Mendelsohn, M.E. Estrogen receptor-alpha mediates the protective effects of estrogen against vascular injury. Circ. Res. 2002, 90, 1087–1092. [Google Scholar] [CrossRef] [Green Version]
- Bernelot Moens, S.J.; Schnitzler, G.R.; Nickerson, M.; Guo, H.; Ueda, K.; Lu, Q.; Aronovitz, M.J.; Nickerson, H.; Baur, W.E.; Hansen, U.; et al. Rapid estrogen receptor signaling is essential for the protective effects of estrogen against vascular injury. Circulation 2012, 126, 1993–2004. [Google Scholar] [CrossRef] [Green Version]
- Tarhouni, K.; Guihot, A.L.; Freidja, M.L.; Toutain, B.; Henrion, B.; Baufreton, C.; Pinaud, F.; Procaccio, V.; Grimaud, L.; Ayer, A.; et al. Key role of estrogens and endothelial estrogen receptor alpha in blood flow-mediated remodeling of resistance arteries. Arterioscler. Thromb. Vasc. Biol. 2013, 33, 605–611. [Google Scholar] [CrossRef] [Green Version]
- Guivarc’h, E.; Favre, J.; Guihot, A.L.; Vessieres, E.; Grimaud, L.; Proux, C.; Rivron, J.; Barbelivien, A.; Fassot, C.; Briet, M.; et al. Nuclear activation function 2 estrogen receptor alpha attenuates arterial and renal alterations due to aging and hypertension in female mice. J. Am. Heart Assoc. 2020, 9, e013895. [Google Scholar]
- Arao, Y.; Hamilton, K.J.; Ray, M.K.; Scott, G.; Mishina, Y.; Korach, K.S. Estrogen receptor alpha AF-2 mutation results in antagonist reversal and reveals tissue selective function of estrogen receptor modulators. Proc. Natl. Acad. Sci. USA 2011, 108, 14986–14991. [Google Scholar] [CrossRef] [Green Version]
- Pedram, A.; Razandi, M.; Lewis, M.; Hammes, S.; Levin, E.R. Membrane-localized estrogen receptor alpha is required for normal organ development and function. Dev. Cell 2014, 29, 482–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guivarc’h, E.; Buscato, M.; Guihot, A.L.; Favre, J.; Vessieres, E.; Grimaud, L.; Wakim, J.; Melhem, N.J.; Zahreddine, R.; Adlanmerini, M.; et al. Predominant role of nuclear versus membrane estrogen receptor alpha in arterial protection: Implications for estrogen receptor alpha modulation in cardiovascular prevention/safety. J. Am. Heart Assoc. 2018, 7, e008950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Billon-Gales, A.; Fontaine, C.; Douin-Echinard, V.; Delpy, L.; Berges, H.; Calippe, B.; Lenfant, F.; Laurell, H.; Guery, J.C.; Gourdy, P.; et al. Endothelial estrogen receptor-alpha plays a crucial role in the atheroprotective action of 17beta-estradiol in low-density lipoprotein receptor-deficient mice. Circulation 2009, 120, 2567–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manrique, C.; Lastra, G.; Ramirez-Perez, F.I.; Haertling, D.; DeMarco, V.G.; Aroor, A.R.; Jia, G.; Chen, D.; Barron, B.J.; Garro, M.; et al. Endothelial estrogen receptor-alpha does not. protect. against vascular stiffness induced by western diet in female mice. Endocrinology 2016, 157, 1590–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manrique-Acevedo, C.; Ramirez-Perez, F.I.; Padilla, J.; Vieira-Potter, V.J.; Aroor, A.R.; Barron, B.J.; Chen, D.; Haertling, D.; Declue, C.; Sowers, J.R.; et al. Absence of endothelial eralpha results in arterial remodeling and decreased stiffness in western diet.-fed male mice. Endocrinology 2017, 158, 1875–1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambliss, K.L.; Barrera, J.; Umetani, M.; Umetani, J.; Kim, S.H.; Madak-Erdogan, Z.; Huang, L.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; Mineo, C.; et al. Nonnuclear estrogen receptor activation improves hepatic steatosis in female mice. Endocrinology 2016, 157, 3731–3741. [Google Scholar] [CrossRef]
- Selvaraj, U.M.; Zuurbier, K.R.; Whoolery, C.W.; Plautz, E.J.; Chambliss, K.L.; Kong, X.; Zhang, S.; Kim, S.H.; Katzenellenbogen, B.S.; Katzenellenbogen, J.A.; et al. Selective nonnuclear estrogen receptor activation decreases stroke severity and promotes functional recovery in female mice. Endocrinology 2018, 159, 3848–3859. [Google Scholar] [CrossRef]
- Morfoisse, F.; Kuchnio, A.; Frainay, C.; Gomez-Brouchet, A.; Delisle, M.B.; Marzi, S.; Helfer, A.C.; Hantelys, F.; Pujol, F.; Guillermet-Guibert, J.; et al. Hypoxia induces VEGF-C expression in metastatic tumor cells via a HIF-1alpha-independent translation-mediated mechanism. Cell Rep. 2014, 6, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, J.L.; Nachreiner, R.D.; Bhuller, A.S.; Condict, K.W.; Connors, B.A.; Herring, B.P.; Dalsing, M.C.; Unthank, J.L. Shear level influences resistance artery remodeling: Wall dimensions, cell density, and eNOS expression. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H1380–H1389. [Google Scholar] [CrossRef]
- Pourageaud, F.; Crabos, M.; Freslon, J.L. The elastic modulus of conductance coronary arteries from spontaneously hypertensive rats is increased. J. Hypertens. 1997, 15, 1113–1121. [Google Scholar] [CrossRef]
- Silvestre, J.S.; Smadja, D.M.; Levy, B.I. Postischemic revascularization: From cellular and molecular mechanisms to clinical applications. Physiol. Rev. 2013, 93, 1743–1802. [Google Scholar] [CrossRef] [PubMed]
- Caillon, A.; Grenier, C.; Grimaud, L.; Vessieres, E.; Guihot, A.L.; Blanchard, S.; Lelievre, E.; Chabbert, M.; Foucher, E.D.; Jeannin, P.; et al. The angiotensin II type 2 receptor activates flow-mediated outward remodelling through T cells-dependent interleukin-17 production. Cardiovasc. Res. 2016, 112, 515–525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belin de Chantemele, E.J.; Vessieres, E.; Dumont, O.; Guihot, A.L.; Toutain, B.; Loufrani, L.; Henrion, D. Reactive oxygen species are necessary for high flow (shear stress)-induced diameter enlargement of rat resistance arteries. Microcirculation 2009, 16, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Dumont, O.; Loufrani, L.; Henrion, D. Key role of the NO-pathway and matrix metalloprotease-9 in high blood flow-induced remodeling of rat resistance arteries. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 317–324. [Google Scholar] [CrossRef] [Green Version]
- Freidja, M.L.; Tarhouni, K.; Toutain, B.; Fassot, C.; Loufrani, L.; Henrion, D. The AGE-breaker ALT-711 restores high blood flow-dependent remodeling in mesenteric resistance arteries in a rat model of type 2 diabetes. Diabetes 2012, 61, 1562–1572. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, J.L.; Sanders, B.M.; Burkhart, H.M.; Fath, S.W.; Kerr, K.A.; Watson, W.C.; Herring, B.P.; Dalsing, M.C.; Unthank, J.L. Impaired collateral artery development in spontaneously hypertensive rats. Microcirculation 2002, 9, 343–351. [Google Scholar] [CrossRef]
- Dumont, O.; Pinaud, F.; Guihot, A.L.; Baufreton, C.; Loufrani, L.; Henrion, D. Alteration in flow (shear stress)-induced remodelling in rat resistance arteries with aging: Improvement by a treatment with hydralazine. Cardiovasc. Res. 2008, 77, 600–608. [Google Scholar] [CrossRef] [Green Version]
- Tuttle, J.L.; et al. Impaired collateral development in mature rats. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H146–H155. [Google Scholar] [CrossRef] [Green Version]
- Tarhouni, K.; Freidja, M.L.; Guihot, A.L.; Vessieres, E.; Grimaud, L.; Toutain, B.; Lenfant, F.; Arnal, J.F.; Loufrani, L.; Henrion, D.; et al. Role of estrogens and age in flow-mediated outward remodeling of rat mesenteric resistance arteries. Am. J. Physiol. Heart Circ. Physiol. 2014, 307, H504–H514. [Google Scholar] [CrossRef] [Green Version]
- Tarhouni, K.; Guihot, A.L.; Vessieres, E.; Toutain, B.; Procaccio, V.; Grimaud, L.; Loufrani, L.; Lenfant, F.; Arnal, J.F.; Henrion, D.; et al. Determinants of flow-mediated outward remodeling in female rodents: Respective roles of age, estrogens, and timing. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 1281–1289. [Google Scholar] [CrossRef] [Green Version]
- Mandala, M.; Osol, G. Physiological remodelling of the maternal uterine circulation during pregnancy. Basic Clin. Pharmacol. Toxicol. 2012, 110, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Babischkin, J.S.; Bonagura, T.W.; Udoff, L.C.; Vergara, C.O.; Johnson, H.W.; Atlas, R.O.; Pepe, G.J.; Albrecht, E.D. Estrogen stimulates the human endometrium to express a factor(s) that promotes vascular smooth muscle cell migration as an early step in microvessel remodeling. Endocrine 2009, 35, 81–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deschamps, A.M.; Murphy, E.; Sun, J. Estrogen receptor activation and cardioprotection in ischemia reperfusion injury. Trends Cardiovasc. Med. 2010, 20, 73–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Booth, E.A.; Lucchesi, B.R. Estrogen-mediated protection in myocardial ischemia-reperfusion injury. Cardiovasc. Toxicol. 2008, 8, 101–113. [Google Scholar] [CrossRef]
- Toutain, C.E.; Brouchet, L.; Raymond-Letron, I.; Vicendo, P.; Berges, H.; Favre, J.; Fouque, M.J.; Krust, A.; Schmitt, A.M.; Chambon, P.; et al. Prevention of skin flap necrosis by estradiol involves reperfusion of a protected vascular network. Circ. Res. 2009, 104, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Spyridopoulos, I.; Sullivan, A.B.; Kearney, M.; Isner, J.M.; Losordo, D.W. Estrogen-receptor-mediated inhibition of human endothelial cell apoptosis. Estradiol as a survival factor. Circulation 1997, 95, 1505–1514. [Google Scholar] [CrossRef]
- Simpkins, J.W.; Wen, Y.; Perez, E.; Yang, S.; Wang, X. Role of nonfeminizing estrogens in brain protection from cerebral ischemia: An animal model of Alzheimer’s disease neuropathology. Ann. N. Y. Acad. Sci. 2005, 1052, 233–242. [Google Scholar] [CrossRef]
- Favre, J.; Gao, J.; Henry, J.P.; Remy-Jouet, I.; Fourquaux, I.; Billon-Gales, A.; Thuillez, C.; Arnal, J.F.; Lenfant, F.; Richard, V.; et al. Endothelial estrogen receptor {alpha} plays an essential role in the coronary and myocardial protective effects of estradiol in ischemia/reperfusion. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 2562–2567. [Google Scholar] [CrossRef] [Green Version]
- Menazza, S.; Sun, J.; Appachi, S.; Chambliss, K.L.; Kim, S.H.; Aponte, A.; Khan, S.; Katzenellenbogen, J.A.; Katzenellenbogen, B.S.; Shaul, P.W.; et al. Non-nuclear estrogen receptor alpha activation in endothelium reduces cardiac ischemia-reperfusion injury in mice. J. Mol. Cell. Cardiol. 2017, 107, 41–51. [Google Scholar] [CrossRef]
- Gourdy, P.; Schambourg, A.; Filipe, C.; Douin-Echinard, V.; Garmy-Susini, B.; Calippe, B.; Terce, F.; Bayard, F.; Arnal, J.F. Transforming growth factor activity is a key determinant for the effect of estradiol on fatty streak deposit in hypercholesterolemic mice. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2214–2221. [Google Scholar] [CrossRef]
- Adams, M.R.; Kaplan, J.R.; Manuck, S.B.; Koritnik, D.R.; Parks, J.S.; Wolfe, M.S.; Clarkson, T.B. Inhibition of coronary artery atherosclerosis by 17-beta estradiol in ovariectomized monkeys. Lack of an effect of added progesterone. Arteriosclerosis 1990, 10, 1051–1057. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnal, J.F.; Gourdy, P.; Elhage, R.; Garmy-Susini, B.; Delmas, E.; Brouchet, L.; Castano, C.; Barreira, Y.; Couloumiers, J.C.; Prats, H.; et al. Estrogens and atherosclerosis. Eur. J. Endocrinol. 2004, 150, 113–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhage, R.; Bayard, F.; Richard, V.; Holvoet, P.; Duverger, N.; Fievet, C.; Arnal, J.F. Prevention of fatty streak formation of 17beta-estradiol is not mediated by the production of nitric oxide in apolipoprotein E-deficient mice. Circulation 1997, 96, 3048–3052. [Google Scholar] [CrossRef] [PubMed]
- Hodgin, J.B.; Knowles, J.W.; Kim, H.S.; Smithies, O.; Maeda, N. Interactions between endothelial nitric oxide synthase and sex hormones in vascular protection in mice. J. Clin. Investig. 2002, 109, 541–548. [Google Scholar] [CrossRef]
- Tanaka, M.; Osanai, T.; Murakami, R.; Sasaki, S.; Tomita, H.; Maeda, N.; Satoh, K.; Magota, K.; Okumura, K. Effect of vasoconstrictor coupling factor 6 on gene expression profile in human vascular endothelial cells: Enhanced release of asymmetric dimethylarginine. J. Hypertens. 2006, 24, 489–497. [Google Scholar] [CrossRef]
- Song, S.; Wu, S.; Wang, Y.; Wang, Z.; Ye, C.; Song, R.; Song, D.; Ruan, Y. 17beta-estradiol inhibits human umbilical vascular endothelial cell senescence by regulating autophagy via p53. Exp. Gerontol. 2018, 114, 57–66. [Google Scholar] [CrossRef]
- Sudoh, N.; Toba, K.; Akishita, M.; Ako, J.; Hashimoto, M.; Iijima, K.; Kim, S.; Liang, Y.Q.; Ohike, Y.; Watanabe, T.; et al. Estrogen prevents oxidative stress-induced endothelial cell apoptosis in rats. Circulation 2001, 103, 724–729. [Google Scholar] [CrossRef] [Green Version]
- Thor, D.; Zhang, R.; Anderson, L.; Bose, D.D.; Dube, G.P.; Rahimian, R. Effects of 17 beta-estradiol on lipopolysacharride-induced intracellular adhesion molecule-1 mRNA expression and Ca(2)+ homeostasis alteration in human endothelial cells. Vasc. Pharmacol. 2010, 53, 230–238. [Google Scholar] [CrossRef] [Green Version]
- Seli, E.; Pehlivan, T.; Selam, B.; Garcia-Velasco, J.A.; Arici, A. Estradiol down-regulates MCP-1 expression in human coronary artery endothelial cells. Fertil. Steril. 2002, 77, 542–547. [Google Scholar] [CrossRef]
- Razmara, A.; Sunday, L.; Stirone, C.; Wang, X.B.; Krause, D.N.; Duckles, S.P.; Procaccio, V. Mitochondrial effects of estrogen are mediated by estrogen receptor alpha in brain endothelial cells. J. Pharmacol. Exp. Ther. 2008, 325, 782–790. [Google Scholar] [CrossRef] [Green Version]
- Vidal-Gomez, X.; Perez-Cremades, D.; Mompeon, A.; Dantas, A.P.; Novella, S.; Hermenegildo, C. MicroRNA as crucial regulators of gene expression in estradiol-treated human endothelial cells. Cell. Physiol. Biochem. 2018, 45, 1878–1892. [Google Scholar] [CrossRef] [PubMed]
- Perez-Cremades, D.; Mompeon, A.; Vidal-Gomez, X.; Hermenegildo, C.; Novella, S. miRNA as a new regulatory mechanism of estrogen vascular action. Int. J. Mol. Sci. 2018, 19, 473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elhage, R.; Clamens, S.; Reardon-Alulis, C.; Getz, G.S.; Fievet, C.; Maret, A.; Arnal, J.F.; Bayard, F. Loss of atheroprotective effect of estradiol in immunodeficient mice. Endocrinology 2000, 141, 462–465. [Google Scholar] [CrossRef] [PubMed]
- Ribas, V.; Drew, B.G.; Le, J.A.; Soleymani, T.; Daraei, P.; Sitz, D.; Mohammad, L.; Henstridge, D.C.; Febbraio, M.A.; Hewitt, S.C.; et al. Myeloid-specific estrogen receptor alpha deficiency impairs metabolic homeostasis and accelerates atherosclerotic lesion development. Proc. Natl. Acad. Sci. USA 2011, 108, 16457–16462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stamatelopoulos, K.S.; Lekakis, J.P.; Poulakaki, N.A.; Papamichael, C.M.; Venetsanou, K.; Aznaouridis, K.; Protogerou, A.D.; Papaioannou, T.G.; Kumar, S.; Stamatelopoulos, S.F. Tamoxifen improves endothelial function and reduces carotid intima-media thickness in postmenopausal women. Am. Heart J. 2004, 147, 1093–1099. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.K.; Wagner, J.D.; Li, Z.; Golden, D.L.; Adams, M.R. Tamoxifen inhibits arterial accumulation of LDL degradation products and progression of coronary artery atherosclerosis in monkeys. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 403–408. [Google Scholar] [CrossRef]
- Reckless, J.; Metcalfe, J.C.; Grainger, D.J. Tamoxifen decreases cholesterol sevenfold and abolishes lipid lesion development in apolipoprotein E knockout mice. Circulation 1997, 95, 1542–1548. [Google Scholar] [CrossRef]
- Wigle, J.T.; Oliver, G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999, 98, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Banerji, S.; Ni, J.; Wang, S.X.; Clasper, S.; Su, J.; Tammi, R.; Jones, M.; Jackson, D.G. LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J. Cell Biol. 1999, 144, 789–801. [Google Scholar] [CrossRef]
- Unno, N.; Tanaka, H.; Suzuki, M.; Yamamoto, N.; Mano, Y.; Sano, M.; Saito, T.; Konno, H. Influence of age and gender on human lymphatic pumping pressure in the leg. Lymphology 2011, 44, 113–120. [Google Scholar]
- Yang, J.C.; Yen, Y.H.; Wu, S.C.; Lin, W.C.; Chiang, M.H.; Hsieh, C.H. Supermicrosurgical lymphaticovenous anastomosis as an alternative treatment option for patients with lymphorrhea. Plast. Reconstr. Surg. 2019, 144, 1214–1224. [Google Scholar] [CrossRef] [PubMed]
- Trincot, C.E.; Xu, W.; Zhang, H.; Kulikauskas, M.R.; Caranasos, T.G.; Jensen, B.C.; Sabine, A.; Petrova, T.V.; Caron, K.M. Adrenomedullin induces cardiac lymphangiogenesis after myocardial infarction and regulates cardiac edema via connexin 43. Circ. Res. 2019, 124, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, N.R.; Rangarajan, K.V.; Mao, L.; Rockman, H.A.; Caron, K.M. A murine model of increased coronary sinus pressure induces myocardial edema with cardiac lymphatic dilation and fibrosis. Am. J. Physiol. Heart Circ. Physiol. 2020, 318, H895–H907. [Google Scholar] [CrossRef] [PubMed]
- Alexander, J.S.; Zivadinov, R.; Maghzi, A.H.; Ganta, V.C.; Harris, M.K.; Minagar, A. Multiple sclerosis and cerebral endothelial dysfunction: Mechanisms. Pathophysiology 2011, 18, 3–12. [Google Scholar] [CrossRef]
- Nakamura, R.; Sugano, M.; Sone, Y.; Sakabe, K.; Itoh, T.; Kiyono, M. Establishment and characterization of a human lymphatic endothelial cell line. Biol. Pharm. Bull. 2014, 37, 683–687. [Google Scholar] [CrossRef] [Green Version]
- Ford, S.P. Control. of uterine and ovarian blood flow throughout the estrous cycle and pregnancy of ewes, sows and cows. J. Anim. Sci. 1982, 55 (Suppl. 2), 32–42. [Google Scholar]
- Rogers, P.A.; Donoghue, J.F.; Walter, L.M.; Girling, J.E. Endometrial angiogenesis, vascular maturation, and lymphangiogenesis. Reprod. Sci. 2009, 16, 147–151. [Google Scholar] [CrossRef]
- Li, M.; Zhou, T.H.; Gao, Y.; Zhang, N.; Li, J.C. Ultrastructure and estrogen regulation of the lymphatic stomata of ovarian bursa in mice. Anat. Rec. (Hoboken) 2007, 290, 1195–1202. [Google Scholar] [CrossRef]
- Greene, R.; Fowler, R. Physical therapy management of primary lymphedema in the lower extremities: A case report. Physiother. Theory Pract. 2010, 26, 62–68. [Google Scholar] [CrossRef]
- Andersson, H.C.; Parry, D.M.; Mulvihill, J.J. Lymphangiosarcoma in late-onset hereditary lymphedema: Case report and nosological implications. Am. J. Med. Genet. 1995, 56, 72–75. [Google Scholar] [CrossRef]
- Tavian, D.; Missaglia, S.; Maltese, P.E.; Michelini, S.; Fiorentino, A.; Ricci, M.; Serrani, R.; Walter, M.A.; Bertelli, M. FOXC2 disease-mutations identified in lymphedema-distichiasis patients cause both loss and gain of protein function. Oncotarget 2016, 7, 54228–54239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smeltzer, D.M.; Stickler, G.B.; Schirger, A. Primary lymphedema in children and adolescents: A follow-up study and review. Pediatrics 1985, 76, 206–218. [Google Scholar] [PubMed]
- McCarthy, K.; Bondy, C.A. Turner syndrome in childhood and adolescence. Expert Rev. Endocrinol. Metab. 2008, 3, 771–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shankar, R.K.; Backeljauw, P.F. Current best practice in the management of Turner syndrome. Ther. Adv. Endocrinol. Metab. 2018, 9, 33–40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortimer, P.S.; Rockson, S.G. New developments in clinical aspects of lymphatic disease. J. Clin. Investig. 2014, 124, 915–921. [Google Scholar] [CrossRef] [PubMed]
- Sheth, R.A.; Greenberg, S.D.; Jenkins, D.E.; Beall, A.C. Lymphangiomyomatosis with chylous effusions. South Med. J. 1984, 77, 1032–1035. [Google Scholar] [CrossRef]
- Ferrans, V.J.; Yu, Z.X.; Nelson, W.K.; Valencia, J.C.; Tatsuguchi, A.; Avila, N.A.; Riemenschn, W.; Matsui, K.; Travis, W.D.; Moss, J.; et al. Lymphangioleiomyomatosis (LAM): A review of clinical and morphological features. J. Nippon Med. Sch. 2000, 67, 311–329. [Google Scholar] [CrossRef] [Green Version]
- Specht, M.C.; Miller, C.L.; Skolny, M.N.; Jammallo, L.S.; O'Toole, J.; Horick, N.; Isakoff, S.J.; Smith, B.L.; Taghian, A.G. Residual lymph node disease after neoadjuvant chemotherapy predicts an increased risk of lymphedema in node-positive breast cancer patients. Ann. Surg. Oncol. 2013, 20, 2835–2841. [Google Scholar] [CrossRef]
- Warren, L.E.; Miller, C.L.; Horick, N.; Skolny, M.N.; Jammallo, L.S.; Sadek, B.T.; Shenouda, M.N.; O'Toole, J.A.; MacDonald, S.M.; Specht, M.C.; et al. The impact of radiation therapy on the risk of lymphedema after treatment for breast cancer: A prospective cohort study. Int. J. Radiat. Oncol. Biol. Phys. 2014, 88, 565–571. [Google Scholar] [CrossRef] [Green Version]
- Swaroop, M.N.; Ferguson, C.M.; Horick, N.K.; Skolny, M.N.; Miller, C.L.; Jammallo, L.S.; Brunelle, C.L.; O'Toole, J.A.; Isakoff, S.J.; Specht, M.C.; et al. Impact of adjuvant taxane-based chemotherapy on development of breast cancer-related lymphedema: Results from a large prospective cohort. Breast Cancer Res. Treat. 2015, 151, 393–403. [Google Scholar] [CrossRef] [Green Version]
- Leysen, L.; Beckwee, D.; Nijs, J.; Pas, R.; Bilterys, T.; Vermeir, S.; Adriaenssens, N. Risk factors of pain in breast cancer survivors: A systematic review and meta-analysis. Support Care Cancer 2017, 25, 3607–3643. [Google Scholar] [CrossRef] [PubMed]
- Clarke, S.C.; Schofield, P.M.; Grace, A.A.; Metcalfe, J.C.; Kirschenlohr, H.L. Tamoxifen effects on endothelial function and cardiovascular risk factors in men with advanced atherosclerosis. Circulation 2001, 103, 1497–1502. [Google Scholar] [CrossRef] [Green Version]
- Das, N.; Baumgartner, R.N.; Riley, E.C.; Pinkston, C.M.; Yang, D.; Baumgartner, K.B. Treatment-related risk factors for arm lymphedema among long-term breast cancer survivors. J. Cancer Surviv. 2015, 9, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Shrubb, D.; Mason, W. The management of deep vein thrombosis in lymphoedema: A review. Br. J. Community Nurs. 2006, 11, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Lim, H.Y.; Thiam, C.H.; Yeo, K.P.; Bisoendial, R.; Hii, C.S.; McGrath, K.C.; Tan, K.W.; Heather, A.; Alexander, J.S.; Angeli, V.; et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab. 2013, 17, 671–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Alessio, S.; Correale, C.; Tacconi, C.; Gandelli, A.; Pietrogrande, G.; Vetrano, S.; Genua, M.; Arena, V.; Spinelli, A.; Peyrin-Biroulet, L.; et al. VEGF-C-dependent stimulation of lymphatic function ameliorates experimental inflammatory bowel disease. J. Clin. Investig. 2014, 124, 3863–3878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henri, O.; Pouehe, C.; Houssari, M.; Galas, L.; Nicol, L.; Edwards-Levy, F.; Henry, J.P.; Dumesnil, A.; Boukhalfa, I.; Banquet, S.; et al. Selective stimulation of cardiac lymphangiogenesis reduces myocardial edema and fibrosis leading to improved cardiac function following myocardial infarction. Circulation 2016, 133, 1484–1497. [Google Scholar] [CrossRef] [Green Version]
- Tatin, F.; Renaud-Gabardos, E.; Godet, A.C.; Hantelys, F.; Pujol, F.; Morfoisse, F.; Calise, D.; Viars, F.; Valet, P.; Masri, B.; et al. Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction. JCI Insight 2017, 2, 2. [Google Scholar] [CrossRef]
- Garmy-Susini, B.; Pizzinat, N.; Villeneuve, N.; Bril, A.; Brakenhielm, E.; Parini, A. [Cardiac lymphatic system]. Med. Sci. (Paris) 2017, 33, 765–770. [Google Scholar] [CrossRef] [Green Version]
Mouse Models | Names | Description | Effect on Vascular Protection | Reference |
---|---|---|---|---|
ERβ- null | ERβ-KO | Global deletion of ERβ by deleting Exon2 | Preserved E2-induced acceleration of re-endothelialization, Preservation of arterial flow-mediated remodeling | [43,56,68] |
ERα- null | ERα-KO | Global deletion of ERα by deleting Exon2 | Loss of endothelial NO production, Loss of E2-induced acceleration of re-endothelialization, Absence of E2-induced atheroprotection, Absence of arterial flow-mediated remodeling, Absence of angiotensin II-induced hypertension, Absence of E2-induced prevention of lymphedema | [15,43,56,59,68,69] |
ERα-Neo KO | ERα-KO | Insertion Neo Cassette in exon 1 | Preserved endothelial NO production | [59] |
ERα- AF1 mutant | ERα-AF10 | Deletion of -1-148)aa AF1 domain | Preserved endothelial NO production, Preserved E2-induced acceleration of re-endothelialization following perivascular electric injury, Preserved E2-induced atheroprotection, Abrogation of the neointimal hyperplasia protection induced by E2 | [20,22] |
ERα- AF2 mutant (loss of nuclear signaling) | ERα-AF20 | Deletion of AF2 domain | Loss of endothelial NO production, Loss of E2-induced acceleration of re-endothelialization following perivascular electric injury, Absence of E2-induced atheroprotection, Absence of angiotensin II-induced hypertension | [21,69] |
ERα- AF2 mutant | AF2ERKI | Mutation of L L543A, L544A in helix 12 | Not determined | [70] |
Loss of membrane signaling | C451A-ERα, NOER | Mutation of palmitoylation site (C451A) | Loss of endothelial NO production, Loss of E2-induced acceleration of re-endothelialization following perivascular electric injury, Preserved E2-induced atheroprotection, angiotensin II-induced hypertension and flow-mediated arteriolar remodeling | [64,69,71,72] |
Inactivation of extra-nuclear signaling | DPM mice | Overexpression of a peptide preventing striatin interaction | Loss of E2-induced protection against medial hyperplasia following wire carotid injury | [67] |
Inactivation of ERα on hematopoietic and lymphatic/ endothelial cells | Tie2-CRE- ERαL2L2 | Expression of Cre recombinase under Tie2-promoter | Loss of E2-induced acceleration of re-endothelialization, Absence of E2-induced atheroprotection, Absence of arterial flow-mediated remodeling on a model of ligation of 2 mesenteric arteries, Preserved protective E2 effect against neointimal hyperplasia after wire femoral injury, Absence of E2-induced prevention of lymphedema, Lymphatic leakage and hyperdilated lymphatic capillaries | [15,22,62,68,73] |
Inactivation of ERα on endothelial cells | VE-Cad-CRE- ERαL2L2 | Expression of Cre recombinase under VE-Cad promoter | Decrease of vascular thickness in WD-fed females and males fed evaluated by pulse wave velocity Doppler ultrasound, Preserved mesenteric remodeling in WD-fed females, Lymphatic leakage and dilated lymphatic capillaries | [74,75] |
Selective activation of Membrane ERα | EDC | (estrogen-dendrimer conjugate) | Activation of endothelial NO production, Acceleration of re-endothelialization following perivascular electric injury, Protection on medial hyperplasia after wire carotid injury, No protection against neointimal hyperplasia after wire femoral injury, No atheroprotection | [22,63,72,76] |
Selective activation of Membrane ERα | PaPE | Pathway Preferential Estrogens | Acceleration of re-endothelialization following perivascular electric injury, Activation of eNOS activation, Protection against stroke on a mice model of middle cerebral artery occlusion, No atheroprotection | [24,72,77] |
Selective activation of Nuclear ERα | E4 | Estetrol (Fetal estrogen) | No acceleration of re-endothelialization, Preserved atheroprotection, angiotensin II-induced hypertension and flow-mediated arteriolar remodeling on a model of ligation of 2 mesenteric arteries, Protection against neointimal hyperplasia after wire femoral injury | [22,25,72,78] |
Selective modulation of ERα (agonist AF-1) | TAM | Tamoxifen | No acceleration of re-endothelialization after electric carotid injury, Protection against atheroprotection Protection against neointimal hyperplasia after wire femoral injury, Absence of protection against lymphedema | [22,61,79] |
Mouse Models | Names | Description | Effect on Vascular Protection | Reference |
---|---|---|---|---|
Inactivation of ERα on blood and lymphatic endothelial cells (Inactivation also in hematopoietic cells) | Tie2-CRE-ERαL2L2 | Expression of Cre recombinase under Tie2- promoter | Increased lymphedema Lymphatic leakage, lower VEGFR3 expression on LEC, hyperdilated lymphatic capillaries | [15,22,62,68,73] |
Selective modulation of ERα (agonist AF-1) | TAM | Tamoxifen | Absence of protection against lymphedema, no effect on lymphatic capillary density, decrease of VEGFD, Lyve-1 and VEGFR3 expression on LEC, decrease of LEC sprouting and migration. | [15,22,62,68,73] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fontaine, C.; Morfoisse, F.; Tatin, F.; Zamora, A.; Zahreddine, R.; Henrion, D.; Arnal, J.-F.; Lenfant, F.; Garmy-Susini, B. The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. Int. J. Mol. Sci. 2020, 21, 3244. https://doi.org/10.3390/ijms21093244
Fontaine C, Morfoisse F, Tatin F, Zamora A, Zahreddine R, Henrion D, Arnal J-F, Lenfant F, Garmy-Susini B. The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. International Journal of Molecular Sciences. 2020; 21(9):3244. https://doi.org/10.3390/ijms21093244
Chicago/Turabian StyleFontaine, Coralie, Florent Morfoisse, Florence Tatin, Audrey Zamora, Rana Zahreddine, Daniel Henrion, Jean-François Arnal, Françoise Lenfant, and Barbara Garmy-Susini. 2020. "The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases" International Journal of Molecular Sciences 21, no. 9: 3244. https://doi.org/10.3390/ijms21093244
APA StyleFontaine, C., Morfoisse, F., Tatin, F., Zamora, A., Zahreddine, R., Henrion, D., Arnal, J. -F., Lenfant, F., & Garmy-Susini, B. (2020). The Impact of Estrogen Receptor in Arterial and Lymphatic Vascular Diseases. International Journal of Molecular Sciences, 21(9), 3244. https://doi.org/10.3390/ijms21093244