NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review
Abstract
:1. Introduction
2. Techniques in Nuclear Magnetic Resonance
3. Glassy Electrolytes
4. Glass Ceramic Electrolytes
5. Argyrodite Electrolytes
6. Garnet Electrolytes
7. NASICON Electrolytes
8. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Seki, S.; Hayamizu, K.; Tsuzuki, S.; Takahashi, K.; Ishino, Y.; Kato, M.; Nozaki, E.; Watanabe, H.; Umebayashi, Y. Density, Viscosity, Ionic Conductivity, and Self-Diffusion Coefficient of Organic Liquid Electrolytes: Part I. Propylene Carbonate + Li, Na, Mg and Ca Cation Salts. J. Electrochem. Soc. 2018, 165, A542–A546. [Google Scholar] [CrossRef]
- Cao, C.; Li, Z.-B.; Wang, X.-L.; Zhao, X.; Han, W.-Q. Recent Advances in Inorganic Solid Electrolytes for Lithium Batteries. Front. Energy Res. 2014, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Malcolm, H.L. Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Solomon, I. Relaxation Processes in a System of Two Spins. Phys. Rev. 1955, 99, 559–565. [Google Scholar] [CrossRef]
- Noack, F. Nuclear Magnetic Relaxation Spectroscopy. NMR; Springer: Berlin, Germany, 1971; pp. 83–144. [Google Scholar]
- Kimmich, R.; Anoardo, E. Field-cycling NMR relaxometry. Prog. Nucl. Magn. Reson. Spectrosc. 2004, 44, 257–320. [Google Scholar] [CrossRef]
- Stejskal, E.O.; Tanner, J.E. Spin Diffusion Measurements: Spin Echoes in the Presence of a Time-Dependent Field Gradient. J. Chem. Phys. 1965, 42, 288. [Google Scholar] [CrossRef] [Green Version]
- Lowe, I.J. Free Induction Decays of Rotating Solids. Phys. Rev. Lett. 1959, 2, 285–287. [Google Scholar] [CrossRef]
- Leary, G.J.; Newman, R.H. Cross Polarization/Magic Angle Spinning Nuclear Magnetic Resonance (CP/MAS NMR) Spectroscopy; Springer Science and Business Media LLC: Berlin/Heildelberg, Germany, 1992; pp. 146–161. [Google Scholar]
- Zheng, F.; Kotobuki, M.; Song, S.; Lai, M.O.; Lu, L. Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources 2018, 389, 198–213. [Google Scholar] [CrossRef]
- Kaup, K.; Bazak, J.D.; Vajargah, S.H.; Wu, X.; Kulisch, J.; Goward, G.R.; Nazar, L.F. A Lithium Oxythioborosilicate Solid Electrolyte Glass with Superionic Conductivity. Adv. Energy Mater. 2020, 10. [Google Scholar] [CrossRef]
- Curtis, B.; Francis, C.; Kmiec, S.; Martin, S. Investigation of the short range order structures in sodium thioborosilicate mixed glass former glasses. J. Non-Crystalline Solids 2019, 521, 119456. [Google Scholar] [CrossRef]
- Martin, S.W.; Christensen, R.; Olson, G.; Kieffer, J.; Wang, W. New Interpretation of Na+-Ion Conduction in and the Structures and Properties of Sodium Borosilicate Mixed Glass Former Glasses. J. Phys. Chem. C 2019, 123, 5853–5870. [Google Scholar] [CrossRef]
- Gabriel, J.; Petrov, O.; Kim, Y.; Martin, S.W.; Vogel, M. Lithium ion dynamics in Li2S+GeS2+GeO2 glasses studied using 7Li NMR field-cycling relaxometry and line-shape analysis. Solid State Nucl. Magn. Reson. 2015, 70, 53–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marple, M.; Aitken, B.G.; Kim, S.; Sen, S. Fast Li-Ion Dynamics in Stoichiometric Li2S–Ga2Se3–GeSe2 Glasses. Chem. Mater. 2017, 29, 8704–8710. [Google Scholar] [CrossRef]
- Marple, M.; Aitken, B.; Sen, S. Synthesis and structural characterization of stoichiometric Li-Ga-Ge Sulfo-selenide glasses. J. Non-Crystalline Solids 2017, 457, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Faske, S.; Eckert, H.; Vogel, M. 6Li and 7Li NMR line-shape and stimulated-echo studies of lithium ionic hopping in LiPO3 glass. Phys. Rev. B 2008, 77, 104301. [Google Scholar] [CrossRef]
- Bischoff, C.; Schuller, K.; Dunlap, N.; Martin, S. IR, Raman, and NMR Studies of the Short-Range Structures of 0.5Na2S + 0.5[xGeS2 + (1−x)PS5/2] Mixed Glass-Former Glasses. J. Phys. Chem. B 2014, 118, 1943–1953. [Google Scholar] [CrossRef] [Green Version]
- Christensen, R.; Olson, G.; Martin, S. Ionic Conductivity of Mixed Glass Former 0.35Na2O + 0.65[xB2O3 + (1 − x)P2O5] Glasses. J. Phys. Chem. B 2013, 117, 16577–16586. [Google Scholar] [CrossRef] [Green Version]
- Christensen, R.; Olson, G.; Martin, S. Structural Studies of Mixed Glass Former 0.35Na2O + 0.65[xB2O3 + (1 − x)P2O5] Glasses by Raman and 11B and 31P Magic Angle Spinning Nuclear Magnetic Resonance Spectroscopies. J. Phys. Chem. B 2013, 117, 2169–2179. [Google Scholar] [CrossRef] [Green Version]
- Storek, M.; Adjei-Acheamfour, M.; Christensen, R.; Martin, S.W.; Böhmer, R. Positive and Negative Mixed Glass Former Effects in Sodium Borosilicate and Borophosphate Glasses Studied by 23Na NMR. J. Phys. Chem. B 2016, 120, 4482–4495. [Google Scholar] [CrossRef]
- Van Der Maarel, J.R.C. Relaxation of spin 32 in a nonzero average electric field gradient. Chem. Phys. Lett. 1989, 155, 288–296. [Google Scholar] [CrossRef]
- Abragam, A. Principles of Nuclear Magnetism; Oxford Science Publications: Oxford, England, UK, 1961; p. 456. [Google Scholar]
- Yun, Y.; Bray, P. Nuclear magnetic resonance studies of the glasses in the system Na2O–B2O3–SiO2. J. Non-Crystalline Solids 1978, 27, 363–380. [Google Scholar] [CrossRef]
- Dell, W.; Bray, P.; Xiao, S. 11B NMR studies and structural modeling of Na2O–B2O3–SiO2 glasses of high soda content. J. Non-Crystalline Solids 1983, 58, 1–16. [Google Scholar] [CrossRef]
- Martin, S.; Bischoff, C.; Schuller, K. Composition Dependence of the Na+ Ion Conductivity in 0.5Na2S + 0.5[xGeS2 + (1 − x)PS5/2] Mixed Glass Former Glasses: A Structural Interpretation of a Negative Mixed Glass Former Effect. J. Phys. Chem. B 2015, 119, 15738–15751. [Google Scholar] [CrossRef] [PubMed]
- Tatsumisago, M.; Hayashi, A. Chalcogenide glasses as electrolytes for batteries. In Chalcogenide Glasses; Elsiver BV: Amsterdam, The Netherlands, 2014; pp. 632–654. [Google Scholar]
- Lian, P.-J.; Zhao, B.-S.; Zhang, L.-Q.; Xu, N.; Wu, M.-T.; Gao, X.-P. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J. Mater. Chem. A 2019, 7, 20540–20557. [Google Scholar] [CrossRef]
- Wei, J.; Kim, H.; Lee, N.-C.; Hu, R.; Wu, F.; Zhao, H.; Alamgir, F.M.; Yushin, G. Influence of annealing on ionic transfer and storage stability of Li2S–P2S5 solid electrolyte. J. Power Sources 2015, 294, 494–500. [Google Scholar] [CrossRef]
- Gobet, M.; Greenbaum, S.; Sahu, G.; Liang, C. Structural Evolution and Li Dynamics in Nanophase Li3PS4 by Solid-State and Pulsed-Field Gradient NMR. Chem. Mater. 2014, 26, 3558–3564. [Google Scholar] [CrossRef]
- Hayamizu, K.; Aihara, Y.; Watanabe, T.; Yamada, T.; Ito, S.; Machida, N. NMR studies on lithium ion migration in sulfide-based conductors, amorphous and crystalline Li3PS4. Solid State Ionics 2016, 285, 51–58. [Google Scholar] [CrossRef]
- Liu, Z.; Fu, W.; Payzant, E.A.; Yu, X.; Wu, Z.; Dudney, N.J.; Kiggans, J.; Hong, K.; Rondinone, A.J.; Liang, C.; et al. Anomalous High Ionic Conductivity of Nanoporous β-Li3PS4. J. Am. Chem. Soc. 2013, 135, 975–978. [Google Scholar] [CrossRef]
- Homma, K.; Yonemura, M.; Kobayashi, T.; Nagao, M.; Hirayama, M.; Kanno, R. Crystal structure and phase transitions of the lithium ionic conductor Li3PS4. Solid State Ionics 2011, 182, 53–58. [Google Scholar] [CrossRef]
- Eckert, H.; Zhang, Z.; Kennedy, J.H. Structural transformation of non-oxide chalcogenide glasses. The short-range order of lithium sulfide (Li2S)-phosphorus pentasulfide (P2S5) glasses studied by quantitative phosphorus-31, lithium-6, and lithium-7 high-resolution solid-state NMR. Chem. Mater. 1990, 2, 273–279. [Google Scholar] [CrossRef]
- Tatsumisago, M.; Yamashita, H.; Hayashi, A.; Morimoto, H.; Minami, T. Preparation and structure of amorphous solid electrolytes based on lithium sulfide. J. Non-Crystalline Solids 2000, 274, 30–38. [Google Scholar] [CrossRef]
- Murakami, M.; Shimoda, K.; Shiotani, S.; Mitsui, A.; Ohara, K.; Onodera, Y.; Arai, H.; Uchimoto, Y.; Ogumi, Z. Dynamical Origin of Ionic Conductivity for Li7P3S11 Metastable Crystal As Studied by 6/7Li and 31P Solid-State NMR. J. Phys. Chem. C 2015, 119, 24248–24254. [Google Scholar] [CrossRef]
- Mori, K.; Ichida, T.; Iwase, K.; Otomo, T.; Kohara, S.; Arai, H.; Uchimoto, Y.; Ogumi, Z.; Onodera, Y.; Fukunaga, T. Visualization of conduction pathways in lithium superionic conductors: Li2S-P2S5 glasses and Li7P3S11 glass–ceramic. Chem. Phys. Lett. 2013, 584, 113–118. [Google Scholar] [CrossRef]
- Wohlmuth, D.; Epp, V.; Wilkening, H.M.R. Fast Li Ion Dynamics in the Solid Electrolyte Li7P3S11 as Probed by 6,7Li NMR Spin-Lattice Relaxation. ChemPhysChem 2015, 16, 2582–2593. [Google Scholar] [CrossRef] [PubMed]
- Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D.A.; Sann, J.; Zeier, W.G.; Janek, J. Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode. Chem. Mater. 2016, 28, 2400–2407. [Google Scholar] [CrossRef]
- Harm, S.; Hatz, A.-K.; Moudrakovski, I.; Eger, R.; Kuhn, A.; Hoch, C.; Lotsch, B.V. Lesson Learned from NMR: Characterization and Ionic Conductivity of LGPS-like Li7SiPS8. Chem. Mater. 2019, 31, 1280–1288. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Ganapathy, S.; De Klerk, N.J.J.; Roslon, I.; Van Eck, E.R.H.; Kentgens, A.P.M.; Wagemaker, M. Unravelling Li-Ion Transport from Picoseconds to Seconds: Bulk versus Interfaces in an Argyrodite Li6PS5Cl–Li2S All-Solid-State Li-Ion Battery. J. Am. Chem. Soc. 2016, 138, 11192–11201. [Google Scholar] [CrossRef]
- Chen, H.M.; Maohua, C.; Adams, S. Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys. Chem. Chem. Phys. 2015, 17, 16494–16506. [Google Scholar] [CrossRef] [Green Version]
- Epp, V.; Gün, Ö.; Deiseroth, H.-J.; Wilkening, H.M.R. Highly Mobile Ions: Low-Temperature NMR Directly Probes Extremely Fast Li+Hopping in Argyrodite-Type Li6PS5Br. J. Phys. Chem. Lett. 2013, 4, 2118–2123. [Google Scholar] [CrossRef]
- De Klerk, N.J.J.; Rosłoń, I.; Wagemaker, M. Diffusion Mechanism of Li Argyrodite Solid Electrolytes for Li-Ion Batteries and Prediction of Optimized Halogen Doping: The Effect of Li Vacancies, Halogens, and Halogen Disorder. Chem. Mater. 2016, 28, 7955–7963. [Google Scholar] [CrossRef] [Green Version]
- Hanghofer, I.; Brinek, M.; Eisbacher, S.L.; Bitschnau, B.; Volck, M.; Hennige, V.; Hanzu, I.; Rettenwander, D.; Wilkening, H.M.R. Substitutional disorder: Structure and ion dynamics of the argyrodites Li6PS5Cl, Li6PS5Br and Li6PS5I. Phys. Chem. Chem. Phys. 2019, 21, 8489–8507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deiseroth, H.J.; Kong, S.-T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M. Li6PS5X: A Class of Crystalline Li-Rich Solids With an Unusually High Li+ Mobility. Angew. Chem. Int. Ed. 2008, 47, 755–758. [Google Scholar] [CrossRef] [PubMed]
- Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, W.; Greenbaum, S.; Liang, C. An Iodide-Based Li7P2S8I Superionic Conductor. J. Am. Chem. Soc. 2015, 137, 1384–1387. [Google Scholar] [CrossRef]
- Murugan, R.; Thangadurai, V.; Weppner, W. Fast Lithium Ion Conduction in Garnet-Type Li7La3Zr2O12. Angew. Chem. Int. Ed. 2007, 46, 7778–7781. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Geng, Z.; Han, C.; Fu, Y.; Li, S.; He, Y.-B.; Kang, F.; Li, B. Challenges and perspectives of garnet solid electrolytes for all solid-state lithium batteries. J. Power Sources 2018, 389, 120–134. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Thompson, T.; Sakamoto, J.; Huq, A.; Wolfenstine, J.; Allen, J.; Bernstein, N.; Stewart, D.; Johannes, M.D. Structure and Stoichiometry in Supervalent Doped Li7La3Zr2O12. Chem. Mater. 2015, 27, 3658–3665. [Google Scholar] [CrossRef]
- Wang, D.; Zhong, G.; Dolotko, O.; Li, Y.; McDonald, M.J.; Mi, J.; Fu, R.; Yang, Y. The synergistic effects of Al and Te on the structure and Li + -mobility of garnet-type solid electrolytes. J. Mater. Chem. A 2014, 2, 20271–20279. [Google Scholar] [CrossRef]
- Shao, C.; Yu, Z.; Liu, H.; Zheng, Z.; Sun, N.; Diao, C. Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochim. Acta 2017, 225, 345–349. [Google Scholar] [CrossRef]
- Stanje, B.; Rettenwander, D.; Breuer, S.; Uitz, M.; Berendts, S.; Lerch, M.; Uecker, R.; Redhammer, G.; Hanzu, I.; Wilkening, H.M.R. Solid Electrolytes: Extremely Fast Charge Carriers in Garnet-Type Li6La3ZrTaO12 Single Crystals. Ann. der Phys. 2017, 529, 1700140. [Google Scholar] [CrossRef] [Green Version]
- Rettenwander, D.; Wagner, R.; Langer, J.; Maier, M.E.; Wilkening, H.M.R.; Amthauer, G. Crystal chemistry of “Li7La3Zr2O12” garnet doped with Al, Ga, and Fe: A short review on local structures as revealed by NMR and Mößbauer spectroscopy studies. Eur. J. Miner. 2016, 28, 619–629. [Google Scholar] [CrossRef] [Green Version]
- Wagner, R.; Redhammer, G.; Rettenwander, D.; Senyshyn, A.; Schmidt, W.; Wilkening, H.M.R.; Amthauer, G. Crystal Structure of Garnet-Related Li-Ion Conductor Li7−3xGaxLa3Zr2O12: Fast Li-Ion Conduction Caused by a Different Cubic Modification? Chem. Mater. 2016, 28, 1861–1871. [Google Scholar] [CrossRef] [PubMed]
- Zhan, X.; Lai, S.; Gobet, M.; Greenbaum, S.; Shirpour, M. Defect chemistry and electrical properties of garnet-type Li7La3Zr2O12. Phys. Chem. Chem. Phys. 2018, 20, 1447–1459. [Google Scholar] [CrossRef] [PubMed]
- Larraz, G.; Sobrados, M.I.; Sanjuán, M.L.; Orera, A.; Sanz, J.; Diez-Gómez, V. NMR study of Li distribution in Li7−xHxLa3Zr2O12 garnets. J. Mater. Chem. A 2015, 3, 5683–5691. [Google Scholar] [CrossRef] [Green Version]
- Galven, C.; Dittmer, J.; Suard, E.; Le Berre, F.; Crosnier-Lopez, M.-P. Instability of Lithium Garnets against Moisture. Structural Characterization and Dynamics of Li7-xHxLa3Sn2O12 and Li5-xHxLa3Nb2O12. Chem. Mater. 2012, 24, 3335–3345. [Google Scholar] [CrossRef]
- Larraz, G.; Orera, A.; Sanjuan, M.L. Cubic phases of garnet-type Li7La3Zr2O12: The role of hydration. J. Mater. Chem. A 2013, 1, 11419. [Google Scholar] [CrossRef] [Green Version]
- Cussen, E. Structure and ionic conductivity in lithium garnets. J. Mater. Chem. 2010, 20, 5167. [Google Scholar] [CrossRef] [Green Version]
- Buschmann, H.; Dölle, J.; Berendts, S.; Kuhn, A.; Bottke, P.; Wilkening, H.M.R.; Heitjans, P.; Senyshyn, A.; Ehrenberg, H.; Lotnyk, A.; et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys. 2011, 13, 19378–19392. [Google Scholar] [CrossRef] [Green Version]
- Bottke, P.; Rettenwander, D.; Schmidt, W.; Amthauer, G.; Wilkening, H.M.R. Ion Dynamics in Solid Electrolytes: NMR Reveals the Elementary Steps of Li+ Hopping in the Garnet Li6.5La3Zr1.75Mo0.25O12. Chem. Mater. 2015, 27, 6571–6582. [Google Scholar] [CrossRef]
- Jeener, J.; Broekaert, P. Nuclear Magnetic Resonance in Solids: Thermodynamic Effects of a Pair of rf Pulses. Phys. Rev. 1967, 157, 232–240. [Google Scholar] [CrossRef]
- Kuhn, A.; Epp, V.; Schmidt, G.; Narayanan, S.; Thangadurai, V.; Wilkening, M. Spin-alignment echo NMR: Probing Li+hopping motion in the solid electrolyte Li7La3Zr2O12 with garnet-type tetragonal structure. J. Phys. Condens. Matter 2011, 24, 35901. [Google Scholar] [CrossRef]
- Böhmer, R.; Jeffrey, K.; Vogel, M. Solid-state Li NMR with applications to the translational dynamics in ion conductors. Prog. Nucl. Magn. Reson. Spectrosc. 2007, 50, 87–174. [Google Scholar] [CrossRef]
- Xu, M.; Park, M.S.; Lee, J.M.; Kim, T.Y.; Park, Y.S.; Ma, E. Mechanisms of Li+transport in garnet-type cubic Li3+xLa3M2O12(M = Te, Nb, Zr). Phys. Rev. B 2012, 85, 052301. [Google Scholar] [CrossRef]
- Miara, L.J.; Ong, S.P.; Mo, Y.; Richards, W.D.; Park, Y.; Lee, J.-M.; Lee, H.S.; Ceder, G. Effect of Rb and Ta Doping on the Ionic Conductivity and Stability of the Garnet Li7+2x−y(La3−xRbx)(Zr2−yTay)O12 (0 ≤ x ≤ 0.375, 0 ≤ y ≤ 1) Superionic Conductor: A First Principles Investigation. Chem. Mater. 2013, 25, 3048–3055. [Google Scholar] [CrossRef]
- Matsuda, Y.; Itami, Y.; Hayamizu, K.; Ishigaki, T.; Matsui, M.; Takeda, Y.; Yamamoto, O.; Imanishi, N. Phase relation, structure and ionic conductivity of Li7−x−3yAlyLa3Zr2−xTaxO12. RSC Adv. 2016, 6, 78210–78218. [Google Scholar] [CrossRef]
- Kuhn, A.; Narayanan, S.; Spencer, L.; Goward, G.; Thangadurai, V.; Wilkening, H.M.R. Li self-diffusion in garnet-type Li7La3Zr2O12 as probed directly by diffusion-induced 7Li spin-lattice relaxation NMR spectroscopy. Phys. Rev. B 2011, 83. [Google Scholar] [CrossRef]
- Hayamizu, K.; Terada, Y.; Kataoka, K.; Akimoto, J. Toward understanding the anomalous Li diffusion in inorganic solid electrolytes by studying a single-crystal garnet of LLZO-Ta by pulsed-gradient spin-echo nuclear magnetic resonance spectroscopy. J. Chem. Phys. 2019, 150, 194502. [Google Scholar] [CrossRef]
- Hayamizu, K.; Seki, S.; Haishi, T. Non-uniform lithium-ion migration on micrometre scale for garnet- and NASICON-type solid electrolytes studied by 7Li PGSE-NMR diffusion spectroscopy. Phys. Chem. Chem. Phys. 2018, 20, 17615–17623. [Google Scholar] [CrossRef]
- Hayamizu, K.; Seki, S.; Haishi, T. Lithium ion micrometer diffusion in a garnet-type cubic Li7La3Zr2O12(LLZO) studied using 7Li NMR spectroscopy. J. Chem. Phys. 2017, 146, 24701. [Google Scholar] [CrossRef]
- Dorai, A.; Kuwata, N.; Takekawa, R.; Kawamura, J.; Kataoka, K.; Akimoto, J. Diffusion coefficient of lithium ions in garnet-type Li6.5La3Zr1.5Ta0.5O12 single crystal probed by 7Li pulsed field gradient-NMR spectroscopy. Solid State Ionics 2018, 327, 18–26. [Google Scholar] [CrossRef]
- Murch, G. The haven ratio in fast ionic conductors. Solid State Ionics 1982, 7, 177–198. [Google Scholar] [CrossRef]
- He, X.; Zhu, Y.; Mo, Y. Origin of fast ion diffusion in super-ionic conductors. Nat. Commun. 2017, 8, 15893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, X.; Wen, Z.; Wu, X.; Yang, X.; Gu, Z. Lithium Ion-Conducting Glass Ceramics of Li1.5Al0.5Ge1.5(PO4)3−xLi2O(x = 0.0–0.20) with Good Electrical and Electrochemical Properties. J. Am. Ceram. Soc. 2007, 90, 2802–2806. [Google Scholar] [CrossRef]
- Key, B.; Schroeder, D.J.; Ingram, B.J.; Vaughey, J.T. Solution-Based Synthesis and Characterization of Lithium-Ion Conducting Phosphate Ceramics for Lithium Metal Batteries. Chem. Mater. 2012, 24, 287–293. [Google Scholar] [CrossRef]
- Morimoto, H.; Awano, H.; Terashima, J.; Shindo, Y.; Nakanishi, S.; Ito, N.; Ishikawa, K.; Tobishima, S.-I. Preparation of lithium ion conducting solid electrolyte of NASICON-type Li1+xAlxTi2−x(PO4)3 (x = 0.3) obtained by using the mechanochemical method and its application as surface modification materials of LiCoO2 cathode for lithium cell. J. Power Sources 2013, 240, 636–643. [Google Scholar] [CrossRef]
- Vyalikh, A.; Schikora, M.; Seipel, K.P.; Weigler, M.; Zschornak, M.; Meutzner, F.; Münchgesang, W.; Nestler, T.; Vizgalov, V.; Itkis, D.M.; et al. NMR studies of Li mobility in NASICON-type glass-ceramic ionic conductors with optimized microstructure. J. Mater. Chem. A 2019, 7, 13968–13977. [Google Scholar] [CrossRef]
- Vizgalov, V.A.; Nestler, T.; Vyalikh, A.; Bobrikov, I.A.; Ivankov, O.I.; Petrenko, V.; Avdeev, M.V.; Yashina, L.V.; Itkis, D.M. The role of glass crystallization processes in preparation of high Li-conductive NASICON-type ceramics. CrystEngComm 2019, 21, 3106–3115. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales, D.J.; Greenbaum, S. NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review. Int. J. Mol. Sci. 2020, 21, 3402. https://doi.org/10.3390/ijms21093402
Morales DJ, Greenbaum S. NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review. International Journal of Molecular Sciences. 2020; 21(9):3402. https://doi.org/10.3390/ijms21093402
Chicago/Turabian StyleMorales, Daniel J, and Steven Greenbaum. 2020. "NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review" International Journal of Molecular Sciences 21, no. 9: 3402. https://doi.org/10.3390/ijms21093402
APA StyleMorales, D. J., & Greenbaum, S. (2020). NMR Investigations of Crystalline and Glassy Solid Electrolytes for Lithium Batteries: A Brief Review. International Journal of Molecular Sciences, 21(9), 3402. https://doi.org/10.3390/ijms21093402