Coiled-Coil N21 of Hpa1 in Xanthomonas oryzae pv. oryzae Promotes Plant Growth, Disease Resistance and Drought Tolerance in Non-Hosts via Eliciting HR and Regulation of Multiple Defense Response Genes
Abstract
:1. Introduction
2. Results
2.1. Generation of Transgenic-N21 Tobacco and Trans-N21 Protein Activity Assay
2.2. N21-Expressing Tobacco Showed Enhanced Resistance to TMV and Pcc
2.3. Treatment with a N21 Peptide Solution Increased Host Resistance to M. fructicola and B. cinerea
2.4. N21 Peptide Promoted the Growth of Plants
2.5. N21 Peptide Improved the Drought Tolerance of Tobacco
2.6. Coiled-Coil N21 Upregulated the Expression of Multiple Defence Response Genes in Tobacco
2.7. N21 Peptide Has Better Bioavailability than Hpa1Xoo
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Pathogenic Strains, Pesticides and Growth Conditions
4.2. Acquisition of N21-Transgenic Tobacco
4.3. Protein Activity Assay in Trans-N21 Tobacco Plants
4.4. Determination of Resistance of Trans-N21 Tobacco to TMV and Pcc
4.5. Determination of Resistance of N21 Peptide to M. Fructicola and B. cinerea
4.6. Determination of Growth-Promoting Effect of N21 Peptide
4.7. Determination of Drought Tolerance Induced by N21 Peptide
4.8. Bioactivity Assay of Hpa1 and the N21 Peptide
4.9. Quantitative Real-Time PCR Assays
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
HR | hypersensitive response |
TMV | tobacco mosaic virus |
Pcc | Pectobacterium carotovora subsp. carotovora |
SA | salicylic acid |
E. coli | Escherichia coli |
JA | jasmonic acid |
ET | ethylene |
ROS | reactive oxygen species |
TAL | transcription activator-like |
KIH | knobs-into-holes |
CC | coiled-coil |
EV | tobacco strains expressing pBI121 vector |
CaMV | Cauliflower mosaic virus |
Km | kanamycin |
N21-PS | N21 peptide solution |
PEG6000 | polyethylene glycol 6000 |
Cm | chloramphenicol |
MS | Murashige & Skoog |
Cb | Carbenicillin |
RH | relative humidity |
qRT-PCR | quantitative real-time PCR |
References
- Choi, M.S.; Kim, W.; Lee, C.; Oh, C.S. Harpins, multifunctional proteins secreted by gram-negative plant-pathogenic bacteria. Mol. Plant Microbe Interact. MPMI 2013, 26, 1115–1122. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Lu, X.; Shao, M.; Long, J.; Wang, J. Genetic diversity of harpins from Xanthomonas oryzae and their activity to induce hypersensitive response and disease resistance in tobacco. Sci. China. Ser. C Life Sci. 2004, 47, 461–469. [Google Scholar] [CrossRef] [PubMed]
- Sgro, G.G.; Ficarra, F.A.; Dunger, G.; Scarpeci, T.E.; Valle, E.M.; Cortadi, A.; Orellano, E.G.; Gottig, N.; Ottado, J. Contribution of a harpin protein from Xanthomonas axonopodis pv. citri to pathogen virulence. Mol. Plant Pathol. 2012, 13, 1047–1059. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.; MaGbanua, M.M.; White, F.F. Identification of two novel hrp-associated genes in the hrp gene cluster of Xanthomonas oryzae pv. oryzae. J. Bacteriol. 2000, 182, 1844–1853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crabill, E.; Karpisek, A.; Alfano, J.R. The Pseudomonas syringae HrpJ protein controls the secretion of type III translocator proteins and has a virulence role inside plant cells. Mol. Microbiol. 2012, 85, 225–238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, Z.M.; Laby, R.J.; Zumoff, C.H.; Bauer, D.W.; He, S.Y.; Collmer, A.; Beer, S.V. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 1992, 257, 85–88. [Google Scholar] [CrossRef]
- Peng, J.L.; Bao, Z.L.; Ren, H.Y.; Wang, J.S.; Dong, H.S. Expression of harpin (xoo) in transgenic tobacco induces pathogen defense in the absence of hypersensitive cell death. Phytopathology 2004, 94, 1048–1055. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.P.; Peng, J.; Bao, Z.; Meng, X.; Bonasera, J.M.; Chen, G.; Beer, S.V.; Dong, H. Downstream divergence of the ethylene signaling pathway for harpin-stimulated Arabidopsis growth and insect defense. Plant Physiol. 2004, 136, 3628–3638. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhang, L.; Ji, H.; Mo, X.; Li, P.; Wang, J.; Dong, H. Hpa1 is a type III translocator in Xanthomonas oryzae pv. oryzae. BMC Microbiol. 2018, 18, 105. [Google Scholar] [CrossRef]
- Krause, M.; Durner, J. Harpin inactivates mitochondria in Arabidopsis suspension cells. Molecular plant-microbe interactions. MPMI 2004, 17, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Alfano, J.R.; Collmer, A. The type III (Hrp) secretion pathway of plant pathogenic bacteria: Trafficking harpins, Avr proteins, and death. J. Bacteriol. 1997, 179, 5655–5662. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ji, Z.; Song, C.; Lu, X.; Wang, J. Two coiled-coil regions of Xanthomonas oryzae pv. oryzae harpin differ in oligomerization and hypersensitive response induction. Amino Acids 2011, 40, 381–392. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Song, C.F.; Miao, W.G.; Ji, Z.L.; Wang, X.; Zhang, Y.; Zhang, J.H.; Hu, J.S.; Borth, W.; Wang, J.S. Mutations in the N-terminal coding region of the harpin protein Hpa1 from Xanthomonas oryzae cause loss of hypersensitive reaction induction in tobacco. Appl. Microbiol. Biotechnol. 2008, 81, 359–369. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Han, L.; Zhao, Y.; You, Z.; Dong, H.; Zhang, C. Hpa1 harpin needs nitroxyl terminus to promote vegetative growth and leaf photosynthesis in Arabidopsis. J. Biosci. 2014, 39, 127–137. [Google Scholar] [CrossRef]
- Ji, H.; Dong, H. Key steps in type III secretion system (T3SS) towards translocon assembly with potential sensor at plant plasma membrane. Mol. Plant Pathol. 2015, 16, 762–773. [Google Scholar] [CrossRef]
- Li, L.; Wang, H.; Gago, J.; Cui, H.; Qian, Z.; Kodama, N.; Ji, H.; Tian, S.; Shen, D.; Chen, Y.; et al. Harpin Hpa1 interacts with aquaporin PIP1;4 to promote the substrate transport and photosynthesis in Arabidopsis. Sci. Rep. 2015, 5, 17207. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Kim, J.G.; Jeon, E.; Yoo, C.H.; Moon, J.S.; Rhee, S.; Hwang, I. Amyloidogenesis of type III-dependent harpins from plant pathogenic bacteria. J. Biol. Chem. 2007, 282, 13601–13609. [Google Scholar] [CrossRef] [Green Version]
- Alfano, J.R.; Bauer, D.W.; Milos, T.M.; Collmer, A. Analysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol. Microbiol. 1996, 19, 715–728. [Google Scholar] [CrossRef]
- Lee, J.; Klessig, D.F.; Nürnberger, T. A harpin binding site in tobacco plasma membranes mediates activation of the pathogenesis-related gene HIN1 independent of extracellular calcium but dependent on mitogen-activated protein kinase activity. Plant Cell 2001, 13, 1079–1093. [Google Scholar] [CrossRef] [Green Version]
- Lupas, A.N.; Gruber, M. The structure of alpha-helical coiled coils. Adv. Protein Chem. 2005, 70, 37–78. [Google Scholar]
- Lupas, A. Prediction and analysis of coiled-coil structures. Methods Enzymol. 1996, 266, 513–525. [Google Scholar] [PubMed]
- Woolfson, D.N. Coiled-Coil Design: Updated and upgraded. Sub Cell. Biochem. 2017, 82, 35–61. [Google Scholar]
- Woolfson, D.N.; Alber, T. Predicting oligomerization states of coiled coils. Protein Sci. Publ. Protein Soc. 1995, 4, 1596–1607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woolfson, D.N.; Bartlett, G.J.; Bruning, M.; Thomson, A.R. New currency for old rope: From coiled-coil assemblies to α-helical barrels. Curr. Opin. Struct. Biol. 2012, 22, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Harbury, P.B.; Zhang, T.; Kim, P.S.; Alber, T. A switch between two-, three-, and four-stranded coiled coils in GCN4 leucine zipper mutants. Science 1993, 262, 1401–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burkhard, P.; Stetefeld, J.; Strelkov, S.V. Coiled coils: A highly versatile protein folding motif. Trends Cell Biol. 2001, 11, 82–88. [Google Scholar] [CrossRef]
- Dutta, K.; Alexandrov, A.; Huang, H.; Pascal, S.M. pH-induced folding of an apoptotic coiled coil. Protein Sci. A Publ. Protein Soc. 2001, 10, 2531–2540. [Google Scholar] [CrossRef]
- Burkhard, P.; Meier, M.; Lustig, A. Design of a minimal protein oligomerization domain by a structural approach. Protein Sci. A Publ. Protein Soc. 2000, 9, 2294–2301. [Google Scholar] [CrossRef] [Green Version]
- Meier, M.; Lustig, A.; Aebi, U.; Burkhard, P. Removing an interhelical salt bridge abolishes coiled-coil formation in a de novo designed peptide. J. Struct. Biol. 2002, 137, 65–72. [Google Scholar] [CrossRef]
- Newman, J.R.; Wolf, E.; Kim, P.S. A computationally directed screen identifying interacting coiled coils from Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 2000, 97, 13203–13208. [Google Scholar] [CrossRef] [Green Version]
- Delahay, R.M.; Frankel, G. Coiled-coil proteins associated with type III secretion systems: A versatile domain revisited. Mol. Microbiol. 2002, 45, 905–916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Li, M.; Zhang, J.; Zhang, Y.; Zhang, G.; Wang, J. Identification of a key functional region in harpins from Xanthomonas that suppresses protein aggregation and mediates harpin expression in E. coli. Mol. Biol. Rep. 2007, 34, 189–198. [Google Scholar] [CrossRef]
- Nadendla, S.R.; Rani, T.S.; Vaikuntapu, P.R.; Maddu, R.R.; Podile, A.R. HarpinPss encapsulation in chitosan nanoparticles for improved bioavailability and disease resistance in tomato. Carbohydr. Polym. 2018, 199, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Ger, M.J.; Chen, C.H.; Hwang, S.Y.; Huang, H.E.; Podile, A.R.; Dayakar, B.V.; Feng, T.Y. Constitutive expression of hrap gene in transgenic tobacco plant enhances resistance against virulent bacterial pathogens by induction of a hypersensitive response. MPMI 2002, 15, 764–773. [Google Scholar] [CrossRef]
- Chuang, H.W.; Harnrak, A.; Chen, Y.C.; Hsu, C.M. A harpin-induced ethylene-responsive factor regulates plant growth and responses to biotic and abiotic stresses. Biochem. Biophys. Res. Commun. 2010, 402, 414–420. [Google Scholar] [CrossRef]
- Zhang, L.; Xiao, S.; Li, W.; Feng, W.; Li, J.; Wu, Z.; Gao, X.; Liu, F.; Shao, M. Overexpression of a Harpin-encoding gene hrf1 in rice enhances drought tolerance. J. Exp. Bot. 2011, 62, 4229–4238. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Wang, Y.; Zhou, X.; Wang, C.; Wang, C.; Fu, J.; Wei, T. Overexpression of a harpin-encoding gene popW from Ralstonia solanacearum primed antioxidant defenses with enhanced drought tolerance in tobacco plants. Plant Cell Rep. 2016, 35, 1333–1344. [Google Scholar] [CrossRef]
- Ma, Q.; Xia, Z.; Cai, Z.; Li, L.; Cheng, Y.; Liu, J.; Nian, H. GmWRKY16 enhances drought and salt tolerance through an ABA-mediated pathway in Arabidopsis thaliana. Front. Plant Sci. 2018, 9, 1979. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Pan, W.; Zheng, X.; Cheng, X.; Liu, M.; Ma, H.; Ge, X. OsERF101, an ERF family transcription factor, regulates drought stress response in reproductive tissues. Plant Mol. Biol. 2018, 98, 51–65. [Google Scholar] [CrossRef]
- Miao, W.; Wang, X.; Li, M.; Song, C.; Wang, Y.; Hu, D.; Wang, J. Genetic transformation of cotton with a harpin-encoding gene hpaXoo confers an enhanced defense response against different pathogens through a priming mechanism. BMC Plant Biol. 2010, 10, 67. [Google Scholar] [CrossRef] [Green Version]
- Shao, M.; Wang, J.; Dean, R.A.; Lin, Y.; Gao, X.; Hu, S. Expression of a harpin-encoding gene in rice confers durable nonspecific resistance to Magnaporthe grisea. Plant Biotechnol. J. 2008, 6, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; van Wersch, R.; Zhang, Y. Convergent and divergent signaling in PAMP-triggered immunity and effector-triggered immunity. Mol. Plant Microbe Interact. MPMI 2018, 31, 403–409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zipfel, C. Early molecular events in PAMP-triggered immunity. Curr. Opin. Plant Biol. 2009, 12, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Bethke, G.; Pecher, P.; Eschen-Lippold, L.; Tsuda, K.; Katagiri, F.; Glazebrook, J.; Scheel, D.; Lee, J. Activation of the Arabidopsis thaliana mitogen-activated protein kinase MPK11 by the flagellin-derived elicitor peptide, flg22. Mol. Plant Microbe Interact. MPMI 2012, 25, 471–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seybold, H.; Trempel, F.; Ranf, S.; Scheel, D.; Romeis, T.; Lee, J. Ca2+ signalling in plant immune response: From pattern recognition receptors to Ca2+ decoding mechanisms. N. Phytol. 2014, 204, 782–790. [Google Scholar] [CrossRef]
- Robert-Seilaniantz, A.; Grant, M.; Jones, J.D. Hormone crosstalk in plant disease and defense: More than just jasmonate-salicylate antagonism. Annu. Rev. Phytopathol. 2011, 49, 317–343. [Google Scholar] [CrossRef]
- Pieterse, C.M.; Leon-Reyes, A.; Van der Ent, S.; Van Wees, S.C. Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 2009, 5, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Pieterse, C.M.; Van der Does, D.; Zamioudis, C.; Leon-Reyes, A.; Van Wees, S.C. Hormonal modulation of plant immunity. Annu. Rev. Cell Dev. Biol. 2012, 28, 489–521. [Google Scholar] [CrossRef] [Green Version]
- Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 2005, 43, 205–227. [Google Scholar] [CrossRef]
- Niu, L.; Yang, J.; Zhang, J.; He, H.; Xing, G.; Zhao, Q.; Guo, D.; Sui, L.; Zhong, X.; Yang, X. Introduction of the harpinXooc-encoding gene hrf2 in soybean enhances resistance against the oomycete pathogen Phytophthora sojae. Transg. Res. 2019, 28, 257–266. [Google Scholar] [CrossRef]
- Meng, F.-H.; Song, C.-F.; Ji, Z.-L.; Wang, J.-S. Effect of transgenic tobacco expressing HarpinXoo and its N-terminal sequence on TMV resistance. J. Nanjing Agric. Univ. 2007, 30, 47–52. [Google Scholar]
- Sharma, V.; Goel, P.; Kumar, S.; Singh, A.K. An apple transcription factor, MdDREB76, confers salt and drought tolerance in transgenic tobacco by activating the expression of stress-responsive genes. Plant Cell Rep. 2019, 38, 221–241. [Google Scholar] [CrossRef] [PubMed]
Tobacco Strains | Number of Lesions a | Number of Lesions b |
---|---|---|
EV | 112 ± 11.0 | 462 ± 34 |
trans-N21 | 33 ± 5.0 * | 115 ± 25 * |
trans-Hpa1 | 31 ± 8.0 * | 88 ± 23 * |
Plants | Treatment | Disease Time a (d) | Diameter of Lesions b (cm) | Inhibition Rate c (%) |
---|---|---|---|---|
strawberry | N21-PS | 4 | 2.4 ± 0.4 * | 31.4 ± 4.1 |
carbendazim | >4 | 1.6 ± 0.2 * | 54.3 ± 1.7 | |
water | 2 | 3.5 ± 0.3 | ||
tomato | N21-PS | 3 | 3.9 ± 0.5 * | 48.6 ± 1.6 |
carbendazim | 2 | 4.5 ± 0.3 * | 40.0 ± 2.1 | |
water | 2 | 7.5 ± 0.8 |
Treatment | Plant Height (cm) | Fresh Weight (g) | Root Length (cm) |
---|---|---|---|
N21-PS | 49.0 ± 0.2 * | 20.1 ± 0.3 * | 11.7 ± 0.3 * |
water | 43.3 ± 0.3 | 16.3 ± 0.5 | 10.9 ± 0.1 |
Treatment | Tomato | Pepper | Cucumber | Melon | Wheat | |
---|---|---|---|---|---|---|
Root length a (cm) | N21-PS | 5.73 ± 0.25 * | 7.90 ± 0.44 * | 4.80 ± 0.26 * | 4.10 ± 0.26 * | 8.60 ± 0.62 * |
water | 5.13 ± 0.21 | 6.33 ± 0.45 | 3.17 ± 0.23 | 3.67 ± 0.15 | 8.20 ± 0.30 | |
Plant height b (cm) | N21-PS | 9.10 ± 0.20 * | 13.37 ± 0.45 * | 16.00 ± 0.44 * | 9.17 ± 0.47 * | 35.30 ± 0.40 * |
water | 8.10 ± 0.30 | 10.33 ± 0.25 | 13.23 ± 0.35 | 8.57 ± 0.21 | 31.40 ± 0.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, Z.-L.; Yu, M.-H.; Ding, Y.-Y.; Li, J.; Zhu, F.; He, J.-X.; Yang, L.-N. Coiled-Coil N21 of Hpa1 in Xanthomonas oryzae pv. oryzae Promotes Plant Growth, Disease Resistance and Drought Tolerance in Non-Hosts via Eliciting HR and Regulation of Multiple Defense Response Genes. Int. J. Mol. Sci. 2021, 22, 203. https://doi.org/10.3390/ijms22010203
Ji Z-L, Yu M-H, Ding Y-Y, Li J, Zhu F, He J-X, Yang L-N. Coiled-Coil N21 of Hpa1 in Xanthomonas oryzae pv. oryzae Promotes Plant Growth, Disease Resistance and Drought Tolerance in Non-Hosts via Eliciting HR and Regulation of Multiple Defense Response Genes. International Journal of Molecular Sciences. 2021; 22(1):203. https://doi.org/10.3390/ijms22010203
Chicago/Turabian StyleJi, Zhao-Lin, Mei-Hui Yu, Ya-Yan Ding, Jian Li, Feng Zhu, Jun-Xian He, and Li-Na Yang. 2021. "Coiled-Coil N21 of Hpa1 in Xanthomonas oryzae pv. oryzae Promotes Plant Growth, Disease Resistance and Drought Tolerance in Non-Hosts via Eliciting HR and Regulation of Multiple Defense Response Genes" International Journal of Molecular Sciences 22, no. 1: 203. https://doi.org/10.3390/ijms22010203
APA StyleJi, Z. -L., Yu, M. -H., Ding, Y. -Y., Li, J., Zhu, F., He, J. -X., & Yang, L. -N. (2021). Coiled-Coil N21 of Hpa1 in Xanthomonas oryzae pv. oryzae Promotes Plant Growth, Disease Resistance and Drought Tolerance in Non-Hosts via Eliciting HR and Regulation of Multiple Defense Response Genes. International Journal of Molecular Sciences, 22(1), 203. https://doi.org/10.3390/ijms22010203