Looking for the LOAEL or NOAEL Concentration of Nickel-Oxide Nanoparticles in a Long-Term Inhalation Exposure of Rats
Abstract
:1. Introduction
2. Results and Discussion
2.1. Pulmonotoxicity
2.2. Systemic Toxicity
3. Materials and Methods
- weighing of the body;
- estimation of the central nervous system’s ability to induce temporal summation of sub-threshold impulses—a variant of withdrawal reflex and its facilitation by repeated electrical stimulations in an intact conscious rat;
- recording of the number of head-dips into the holes of a hole-board (which is a simple but informative index of the exploratory activity frequently used for studying behavioral effects of toxicants and drugs), as well as of the number of squares crossed during the same time interval—as a measure of motion activity;
- collection of daily urine for analysis of its output (diuresis), specific gravity (density), protein, total coproporphyrin, δ-aminolevulinic acid (δ-ALA), urea, uric acid, creatinine, and Ni content; and
- sampling of capillary blood from a notch on the tail for examining the hemogram and hemoglobin content and for cytochemical determination of succinate dehydrogenase (SDH) activity in lymphocytes (by the reduction of nitrotetrazolium violet to formazan, the number of granules of which in a cell was counted under immersion microscopy).
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Katsnelson, B.A.; Privalova, L.I.; Sutunkova, M.P.; Minigalieva, I.A.; Gurvich, V.B.; Shur, V.Y.; Shishkina, E.V.; Makeyev, O.H.; Valamina, I.E.; Varaksin, A.N.; et al. Experimental research into metallic and metal oxide nanoparticle toxicity in vivo. In Bioactivity of Engineered Nanoparticles; Springer: Singapore, 2017; pp. 259–319. [Google Scholar]
- Sutunkova, M.P.; Privalova, L.I.; Minigaliyeva, I.A.; Gurvich, V.B.; Panov, V.G.; Katsnelson, B.A. The most important inferences from the Ekaterinburg nanotoxicology team’s animal experiments assessing adverse health effects of metallic and metal oxide nanoparticles. Toxicol. Rep. 2018, 5, 363–376. [Google Scholar] [CrossRef]
- Ada, K.; Turk, M.; Oguztuzun, S.; Kilic, M.; Demirel, M.; Tandogan, N.; Ersayar, E.; Latif, O. Cytotoxicity and apoptotic effects of nickel oxide nanoparticles in cultured HeLa cells. Folia Histochem. Cytobiol. 2010, 48, 524–529. [Google Scholar] [CrossRef] [Green Version]
- Capasso, L.; Camatini, M.; Gualtieri, M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol. Lett. 2014, 226, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Minigalieva, I.A.; Bushueva, T.V.; Froehlich, E. Are in vivo and in vitro assessments of comparative and combined toxicity of the same metallic nanoparticles compatible, or contradictory, or both? A juxtaposition of data obtained in respective experiments with NiO and Mn3O4 nanoparticles. Food Chem. Toxicol. 2017, 109, 393–404. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, A.; Elif, G.; Gul, O. Nickel oxide nanoparticles are highly toxic to SH-SY5Y neuronal cells. Neurochem. Int. 2017, 108, 7–14. [Google Scholar]
- Cao, Z.; Fang, Y.; Lu, Y.; Qian, F.; Ma, Q.; He, M.; Pi, H.; Yu, Z.; Zhou, Z. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats. Int. J. Nanomed. 2016, 11, 3331–3346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, N.; Shao, K.; Li, G.; Suna, Y. Acute and chronic toxicity of nickel oxide nanoparticles to Daphnia magna: The influence of algal enrichment. Nanoimpact 2016, 3, 104–109. [Google Scholar] [CrossRef]
- De Carli, R.F.; Chaves, D.S.; Cardozo, T.R.; De Souza, A.; Seeber, A.; Honatel, K.F.; Lehmann, M.; Dihl, R.R. Evaluation of the genotoxic properties of nickel oxide nanoparticles in vitro and in vivo. Mutat. Res. Genet. Toxicol. Environ. Mutagen. 2018, 836, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, Y.; Hirohashi, M.; Ogami, A.; Oyabu, T.; Myojo, T.; Hashiba, M. Pulmonary toxicity following an intratracheal instillation of nickel oxide nanoparticle agglomerates. J. Occup. Health 2011, 53, 293–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Yukinori, K.; Zhu, X.; Sato, K.; Mo, Y.; Kluz, T.; Donaldson, K. Comparative toxicity of standard nickel and ultrafine nickel after intratracheal instillation. J. Occup. Health 2003, 45, 23–30. [Google Scholar] [CrossRef] [Green Version]
- Katsnelson, B.A.; Minigalieva, I.A.; Privalova, L.I.; Sutunkova, M.P.; Gurvich, V.B.; Shur, V.Y.; Shishkina, E.V.; Varaksin, A.N.; Panov, V.G. Lower airways response in rats to a single or combined intratracheal instillation of manganese and nickel nanoparticles and its attenuation with a bio-protective pre-treatment. Toxicol. Rev. 2014, 6, 8–14. [Google Scholar]
- Lee, S.; Hwang, S.-H.; You, J.J.; Kim, S.-H.; Lee, D.-K.; Lee, H.-S.; Chung, S.-T.; Jeong Lee, S.; Hwang, S.-H.; You, J.J.; et al. Nickel oxide nanoparticles can recruit eosinophils in the lungs of rats by the direct release of intracellular eotaxin. Part. Fibre Toxicol. 2016, 13, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, X.H.; Zhu, A.; Liu, F.F.; Zou, L.Y.; Su, L.; Liu, S.K.; Zhou, H.H.; Sun, Y.Y.; Han, A.J.; Sun, Y.F.; et al. Nickel oxide nanoparticles induced pulmonary fibrosis via TGF-1 activation in rats. Hum. Exp. Toxicol. 2017, 36, 802–812. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Chang, X.; Sun, Y.; Zou, L.; Su, L.; Sun, Y.; Li, S.; Liu, S.; Sun, Y.; Zhou, H.; et al. Role of Oxidative Stress and Inflammatory Response in Subchronic Pulmonary Toxicity Induced by Nano Nickel Oxide in Rats. J. Nanosci. Nanotechnol. 2017, 17, 1753–1761. [Google Scholar] [CrossRef]
- Senoh, H.; Kano, H.; Suzuki, M.; Ohnishi, M.; Kondo, H.; Takanobu, K.; Umeda, Y.; Aiso, S.; Fukushima, S. Comparison of single or multiple intratracheal administration for pulmonary toxic responses of nickel oxide nanoparticles in rats. J. Occup. Health 2017, 59, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Dumala, N.; Mangalampalli, B.; Chinde, S.; Kumari, S.; Mahoob, M.; Rahman, M.; Grover, P. Genotoxicity study of nickel oxide nanoparticles in female Wistar rats after acute oral exposure. Mutagenesis 2017, 32, 417–427. [Google Scholar] [CrossRef]
- Ogami, A.; Morimoto, Y.; Murakami, M.; Myojo, T.; Oyabu, T.; Tanaka, I. Biological effects of nano-nickel in rat lungs after administration by inhalation and by intratracheal instillation. J. Phys. Conf. Ser. 2009, 151, 012032. [Google Scholar] [CrossRef] [Green Version]
- Oyabu, T.; Myojo, T.; Lee, B.-W.; Okada, T.; Izumi, H.; Yoshiura, Y.; Tomonaga, T.; Li, Y.-S.; Kawai, K.; Shimada, M.; et al. Biopersistence of NiO and TiO2 Nanoparticles Following Intratracheal Instillation and Inhalation. Int. J. Mol. Sci. 2017, 18, 2757. [Google Scholar] [CrossRef]
- Oyabu, T.; Ogami, A.; Morimoto, Y.; Shimada, M.; Lenggoro, W.; Okuyama, K.; Tanaka, I. Biopersistence of inhaled nickel oxide nanoparticles in rat lung. Inhal. Toxicol. 2007, 19, 55–58. [Google Scholar] [CrossRef]
- Zaitseva, N.V.; Zemlyanova, M.A.; Zvezdin, V.N.; Dovbysh, A.A.; Ulanova, T.S.; Smirnov, S.A.; Stepankov, M.S. Comparative assessment of the effects of short-term inhalation exposure to Nickel oxide nanoparticles and microdispersed Nickel oxide. Nanotechnologies 2016, 11, 671–677. [Google Scholar] [CrossRef]
- Sutunkova, M.P.; Solovyeva, S.N.; Minigalieva, I.A.; Gurvich, V.B.; Valamina, I.E.; Makeyev, O.H.; Shur, V.Y.; Shishkina, E.V.; Zubarev, I.V.; Saatkhudinova, R.R.; et al. Toxic Effects of Low-Level Long-Term Inhalation Exposures of Rats to Nickel Oxide Nanoparticles. Int. J. Mol. Sci. 2019, 20, 1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katsnelson, B.A.; Privalova, L.I.; Kuzmin, S.V.; Degtyareva, T.D.; Sutunkova, M.P.; Yeremenko, O.S. Some peculiarities of pulmonary clearance mechanisms in rats after intratracheal instillation of magnetite (Fe3O4) suspensions with different particle sizes in the nanometer and micrometer ranges: Are we defenseless against nanoparticles? Int. J. Occup. Environ. Health 2010, 16, 508–524. [Google Scholar] [CrossRef] [PubMed]
- Katsnelson, B.A.; Privalova, L.I.; Alexeyeva, O.G.; Polzik, E.V. Pneumoconioses: Pathogenesis and Biological Prophylaxis; UrO RAN: Ekaterinburg, Russia, 1995; p. 325. [Google Scholar]
- Chen, C.-Y.; Wang, Y.-F.; Huang, W.-R.; Huang, Y.-T. Nickel induces oxidative stress and genotoxicity in human lymphocytes. Toxicol. Appl. Pharmacol. 2003, 189, 153–159. [Google Scholar] [CrossRef]
- Åkerlund, E.; Cappellini, F.; Di Bucchianico, S.; Islam, S.; Skoglund, S.; Derr, R.; Wallinder, I.O.; Hendriks, G.; Karlsson, H.L. Genotoxic and mutagenic properties of Ni and NiO nanoparticles investigated by comet assay, γ-H2AX staining, Hprt mutation assay and ToxTracker reporter cell lines. Environ. Mol. Mutagen. 2018, 59, 211–222. [Google Scholar] [CrossRef] [Green Version]
- Jia, J.; Chen, J. Chronic nickel-induced DNA damage and cell death: The protection role of ascorbic acid. Environ Toxicol. 2008, 23, 401–406. [Google Scholar] [CrossRef]
- Benson, J.M.; March, T.H.; Hahn, F.F.; Seagrave, J.C.; Divine, K.K.; Belinsky, S.A. Short-Term Inhalation Study with Nickel Compounds, Final Report to NiPERA, Inc.; Lovelace Respiratory Research Institute: Albuquerque, NM, USA, 2002. [Google Scholar]
- Kawanishi, S.; Oikawa, S.; Inoue, S.; Nishino, K. Distinct mechanisms of oxidative DNA damage induced by carcinogenic nickel subsulfide and nickel oxides. Environ. Health Perspect. 2002, 110, 789–791. [Google Scholar] [CrossRef] [Green Version]
- Saplakoglu, U.; Iscan, M.; Iscan, M. DNA single-strand breakage in rat lung, liver and kidney after single and combined treatments of nickel and cadmium. Mutat. Res. 1997, 394, 133–140. [Google Scholar] [CrossRef]
- Tietz, N.W. Clinical Guide to Laboratory Tests, 3rd ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1995; pp. 268–273. [Google Scholar]
Number of Cells (× 106) | ||||
---|---|---|---|---|
Exposure Exposed to: | Total | Neutrophil Leukocytes (NL) | Alveolar Macrophages (AM) | NL/AM |
2 weeks | ||||
NiO-NP | 3.03 ± 0.28 * | 0.67 ± 0.14 * | 2.36 ± 0.26 * | 0.33 ± 0.08 |
Sham | 1.75 ± 0.11 | 0.22 ± 0.07 | 1.54 ± 0.11 | 0.16 ± 0.06 |
4 weeks | ||||
NiO-NP | 3.37 ± 0.41 * | 0.92 ± 0.28 * | 2.44 ± 0.28 * | 0.41 ± 0.13 |
Sham | 1.67 ± 0.28 | 0.28 ± 0.08 | 1.38 ± 0.25 | 0.28 ± 0.13 |
3 months | ||||
NiO-NP | 5.04 ± 0.63 | 0.66 ± 0.17 * | 4.36 ± 0.52 | 0.15 ± 0.03 * |
Sham | 4.38 ± 0.56 | 0.19 ± 0.04 | 4.18 ± 0.53 | 0.05 ± 0.01 |
6 months | ||||
NiO-NP | 4.86 ± 0.98 | 0.85 ± 0.19 * | 4.01 ± 0.85 | 0.23 ± 0.06 * |
Sham | 3.39 ± 0.66 | 0.22 ± 0.05 | 3.18 ± 0.62 | 0.07 ± 0.01 |
Index | Exposure Period | |||||||
---|---|---|---|---|---|---|---|---|
2 Weeks | 4 Weeks | 3 Months | 6 Months | |||||
Sham-Exposed | Exposed to NiO-NP | Sham-Exposed | Exposed to NiO-NP | Sham-Exposed | Exposed to NiO-NP | Sham-Exposed | Exposed to NiO-NP | |
Alkaline phosphatase, U/L | 43.32 ± 7.18 | 54.89 ± 3.24 | 57.05 ± 4.04 | 45.07 ± 8.58 | 18.81 ± 6.54 | 13.19 ± 2.92 | 17.11 ± 3.79 | 17.67 ± 2.13 |
Aspartate-aminotransferase, U/L | 6.48 ± 1.16 | 7.25 ± 1.29 | 5.03 ± 0.68 | 4.40 ± 1.22 | 4.29 ± 0.88 | 5.84 ± 1.46 | 5.77 ± 0.74 | 4.96 ± 0.52 |
Alanine-aminotransferase, U/L | 0.67 ± 0.18 | 1.75 ± 0.95 | 2.09 ± 0.54 | 2.31 ± 0.36 | 0.66 ± 0.29 | 0.31 ± 0.14 | 0.27 ± 0.14 | 0.27 ± 0.26 |
Amilase, U/L | 6.32 ± 1.34 | 6.25 ± 1.81 | 3.34 ± 0.24 | 2.87 ± 0.46 | 1.89 ± 0.27 | 1.90 ± 0.35 | 2.47 ± 0.44 | 2.10 ± 0.21 |
γ-glutamyl-transpeptidase, U/L | 1.87 ± 0.40 | 2.24 ± 0.55 | 1.33 ± 0.31 | 1.23 ± 0.25 | 1.47 ± 0.53 | 1.23 ± 0.39 | 1.91 ± 0.50 | 2.23 ± 0.22 |
Glucose, mmol/L | 0.01 ± 0.01 | 0.03 ± 0.02 | 0.00 ± 0.00 | 0.01 ± 0.01 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 |
Lactate dehydrogenase, U/L | 35.11 ± 6.10 | 67.75 ± 17.59 | 35.50 ± 4.27 | 31.57 ± 6.22 | 25.86 ± 8.37 | 19.57 ± 8.05 | 27.86 ± 5.78 | 33.86 ± 5.47 |
Duration of Exposure | |||||||
---|---|---|---|---|---|---|---|
2 Weeks | 4 Weeks | 3 Months | 6 Months | ||||
Groups of Rats | |||||||
Sham-Exposed (Control)) | Exposed to NiO-NP | Sham-Exposed (Control) | Exposed to NiO-NP | Sham-Exposed (Control) | Exposed to NiO-NP | Sham-Exposed (Control) | Exposed to NiO-NP |
Indices | |||||||
Brain mass, g | |||||||
1.91 ± 0.04 | 1.94 ± 0.03 | 1.96 ± 0.06 | 1.86 ± 0.06 | 2.03 ± 0.03 | 1.95 ± 0.03 | 2.07 ± 0.05 | 1.89 ± 0.06 * |
Kidney mass, g | |||||||
1.43 ± 0.03 | 1.37 ± 0.07 | 1.56 ± 0.03 | 1.47 ± 0.05 | 1.91 ± 0.09 | 1.76 ± 0.06 | 2.15 ± 0.06 | 1.95 ± 0.06 * |
Reticulocytes, ‰ | |||||||
5.10 ± 0.64 | 7.10 ± 0.46 * | 7.67 ± 1.41 | 11.67 ± 1.67 | No data | No data | 6.17 ± 0.31 | 16.14 ± 1.40 * |
Endogeneous creatinine clearance, mL/24 h | |||||||
0.72 ± 0.06 | 0.68 ± 0.06 | 0.49 ± 0.07 | 0.42 ± 0.04 | 0.58 ± 0.11 | 0.72 ± 0.06 | 0.87 ± 0.06 | 0.55 ± 0.11 * |
Blood cell genomic DNA fragmentation coefficient | |||||||
0.4235 ± 0.0032 | 0.4477 ± 0.0041 * | 0.4223 ± 0.0019 | 0.4489 ± 0.0003 * | 0.4225 ± 0.0013 | 0.4535 ± 0.029 * | 0.4223 ± 0.0015 | 0.4623 ± 0.013 * |
Leukocyte specific lysis reaction, % | |||||||
6.12 ± 1.27 | 8.32 ± 1.88 | 4.10 ± 1.06 | 12.96 ± 1.37 * | No data | No data | No data | No data |
Ni-specific IgE | |||||||
1.05 ± 0.09 | 1.22 ± 0.13 | 0.94 ± 0.16 | 1.18 ± 0.14 | No data | No data | No data | No data |
Eosinophils in spleen tissue imprints, % | |||||||
4.57 ± 0.65 | 8.29 ± 1.57 * | 5.00 ± 0.37 | 7.50 ± 1.18 | 3.22 ± 0.84 | 5.10 ± 1.28 | 3.19 ± 0.81 | 5.33 ± 1.48 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Katsnelson, B.A.; Chernyshov, I.N.; Solovyeva, S.N.; Minigalieva, I.A.; Gurvich, V.B.; Valamina, I.E.; Makeyev, O.H.; Sahautdinova, R.R.; Privalova, L.I.; Tsaregorodtseva, A.E.; et al. Looking for the LOAEL or NOAEL Concentration of Nickel-Oxide Nanoparticles in a Long-Term Inhalation Exposure of Rats. Int. J. Mol. Sci. 2021, 22, 416. https://doi.org/10.3390/ijms22010416
Katsnelson BA, Chernyshov IN, Solovyeva SN, Minigalieva IA, Gurvich VB, Valamina IE, Makeyev OH, Sahautdinova RR, Privalova LI, Tsaregorodtseva AE, et al. Looking for the LOAEL or NOAEL Concentration of Nickel-Oxide Nanoparticles in a Long-Term Inhalation Exposure of Rats. International Journal of Molecular Sciences. 2021; 22(1):416. https://doi.org/10.3390/ijms22010416
Chicago/Turabian StyleKatsnelson, Boris A., Ivan N. Chernyshov, Svetlana N. Solovyeva, Ilzira A. Minigalieva, Vladimir B. Gurvich, Irene E. Valamina, Oleg H. Makeyev, Renata R. Sahautdinova, Larisa I. Privalova, Anastasia E. Tsaregorodtseva, and et al. 2021. "Looking for the LOAEL or NOAEL Concentration of Nickel-Oxide Nanoparticles in a Long-Term Inhalation Exposure of Rats" International Journal of Molecular Sciences 22, no. 1: 416. https://doi.org/10.3390/ijms22010416
APA StyleKatsnelson, B. A., Chernyshov, I. N., Solovyeva, S. N., Minigalieva, I. A., Gurvich, V. B., Valamina, I. E., Makeyev, O. H., Sahautdinova, R. R., Privalova, L. I., Tsaregorodtseva, A. E., Korotkov, A. V., Shuman, E. A., Panov, V. G., & Sutunkova, M. P. (2021). Looking for the LOAEL or NOAEL Concentration of Nickel-Oxide Nanoparticles in a Long-Term Inhalation Exposure of Rats. International Journal of Molecular Sciences, 22(1), 416. https://doi.org/10.3390/ijms22010416