Role of microRNAs in Pressure Ulcer Immune Response, Pathogenesis, and Treatment
Abstract
:1. Introduction
2. Pathogenesis of Impaired Healing in Pressure Ulcers
2.1. Ischemia-Reperfusion Injury and Dysregulated Immune Response
2.2. Impaired Lymphatic Drainage
2.3. Cellular Deformation and Apoptosis
2.4. Chronic Inflammation and the Dysregulated Immune Response in Pressure Ulcers
3. Current Therapies in Pressure Ulcer Management
4. Targeting microRNAs to Enhance Pressure Ulcer Healing
4.1. Dysregulated miRNAs in Pressure Ulcer Inflammatory Response
4.2. MiRNA Response to Hypoxia in Pressure Ulcers
4.3. MiRNA Regulation of Oxidative Stress in Pressure Ulcers
4.4. ECM Remodeling by miRNA-491-5p in Pressure Ulcers
4.5. Targeting miRNAs to Enhance Pressure Ulcer Healing
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CMS | Centers for Medicaid and Medicare Services |
ECM | Extracellular Matrix |
COX | Cyclooxygenase |
IL | Interleukin |
Erk | Extracellular signal-regulated kinase |
MAPK | Mitogen-activated protein kinase |
TNFα | Tissue necrosis factor alpha |
ROS | Reactive oxygen species |
PI3K/AKT | Phosphatidylinositol 3-hydroxy kinase/protein kinase B |
MCP-1 | Monocyte chemoattractant protein-1 |
LT | Leukotriene |
LPC | Lysophosphatidylcholine |
MMP | Matrix metalloprotease |
miRNA | microRNA |
miR | microRNA |
iNos | Inducible Nitric Oxide Synthase |
LPS | Lipopolysaccharide |
NFκB | Nuclear Factor Kappa B |
PTEN | Phosphatase and tensin homolog |
HUVEC | Human umbilical vein endothelial cells |
Bcl-2 | B-cell lymphoma 2 |
JNK/SAPK | Jun N-terminal kinase/stress-activated protein kinase |
Keap-1 | Kelch-like ECH-associated protein 1 |
Nrf2 | Nuclear factor erythroid 2-related factors |
TIMP-1 | Tissue inhibitor metalloproteinase-1 |
References
- Aydin, C.; Donaldson, N.; Stotts, N.A.; Fridman, M.; Brown, D.S. Modeling hospital-acquired pressure ulcer prevalence on medical-surgical units: Nurse workload, expertise, and clinical processes of care. Health Serv. Res. 2015, 50, 351–373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Lin, F.; Thalib, L.; Chaboyer, W. Global prevalence and incidence of pressure injuries in hospitalised adult patients: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2020, 105, 103546. [Google Scholar] [CrossRef] [PubMed]
- Tubaishat, A.; Papanikolaou, P.; Anthony, D.; Habiballah, L. Pressure Ulcers Prevalence in the Acute Care Setting: A Systematic Review, 2000–2015. Clin. Nurs. Res. 2018, 27, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Labeau, S.; Afonso, E.; Benbenishty, J.; Blackwood, B.; Boulanger, C.; Brett, S.; Calvino-Gunther, S.; Chaboyer, W.; Coyer, F.; Deschepper, M.; et al. Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: The DecubICUs study. Int. Care Med. 2020. [Google Scholar] [CrossRef]
- Mervis, J.S.; Phillips, T.J. Pressure ulcers: Pathophysiology, epidemiology, risk factors, and presentation. J. Am. Acad. Dermatol. 2019, 81, 881–890. [Google Scholar] [CrossRef]
- Shiferaw, W.S.; Akalu, T.Y.; Mulugeta, H.; Aynalem, Y.A. The global burden of pressure ulcers among patients with spinal cord injury: A systematic review and meta-analysis. BMC Musculoskelet Disord. 2020, 21, 334. [Google Scholar] [CrossRef]
- Hajhosseini, B.; Longaker, M.T.; Gurtner, G.C. Pressure Injury. Ann. Surg. 2020, 271, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Russo, C.A.; Steiner, C.; Spector, W. Hospitalizations Related to Pressure Ulcers Among Adults 18 Years and Older, 2006: Statistical Brief #64. In Healthcare Cost and Utilization Project (HCUP) Statistical Briefs; Agency for Healthcare Research and Quality: Rockville, Maryland, 2006. [Google Scholar]
- Spector, W.D.; Limcangco, R.; Owens, P.L.; Steiner, C.A. Marginal Hospital Cost of Surgery-related Hospital-acquired Pressure Ulcers. Med. Care 2016, 54, 845–851. [Google Scholar] [CrossRef]
- Tschannen, D.; Anderson, C. The pressure injury predictive model: A framework for hospital-acquired pressure injuries. J. Clin. Nurs. 2020, 29, 1398–1421. [Google Scholar] [CrossRef]
- Sprigle, S.; McNair, D.; Sonenblum, S. Pressure Ulcer Risk Factors in Persons with Mobility-Related Disabilities. Adv. Skin Wound Care 2020, 33, 146–154. [Google Scholar] [CrossRef]
- Edsberg, L.E.; Black, J.M.; Goldberg, M.; McNichol, L.; Moore, L.; Sieggreen, M. Revised National Pressure Ulcer Advisory Panel Pressure Injury Staging System: Revised Pressure Injury Staging System. J. Wound Ostomy Cont. Nurs. 2016, 43, 585–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shea, J.D. Pressure sores: Classification and management. Clin. Orthop. Relat. Res. 1975, 112, 89–100. [Google Scholar] [CrossRef]
- Yarkony, G.M.; Kirk, P.M.; Carlson, C.; Roth, E.J.; Lovell, L.; Heinemann, A.; King, R.; Lee, M.Y.; Betts, H.B. Classification of pressure ulcers. Arch. Dermatol. 1990, 126, 1218–1219. [Google Scholar] [CrossRef] [PubMed]
- Xakellis, G.C., Jr.; Frantz, R.A. Pressure ulcer healing: What is it? What influences it? How is it measured? Adv. Wound Care 1997, 10, 20–26. [Google Scholar] [PubMed]
- Salcido, R.; Popescu, A.; Ahn, C. Animal models in pressure ulcer research. J. Spinal Cord. Med. 2007, 30, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Van Damme, N.; Van Hecke, A.; Remue, E.; Van den Bussche, K.; Moore, Z.; Gefen, A.; Verhaeghe, S.; Beeckman, D. Physiological processes of inflammation and edema initiated by sustained mechanical loading in subcutaneous tissues: A scoping review. Wound Repair Regen. 2020, 28, 242–265. [Google Scholar] [CrossRef]
- Krzyszczyk, P.; Schloss, R.; Palmer, A.; Berthiaume, F. The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes. Front Physiol. 2018, 9, 419. [Google Scholar] [CrossRef]
- Wei, R.; Chen, H.L.; Zha, M.L.; Zhou, Z.Y. Diabetes and pressure ulcer risk in hip fracture patients: A meta-analysis. J. Wound Care 2017, 26, 519–527. [Google Scholar] [CrossRef]
- Mustoe, T.A.; O’Shaughnessy, K.; Kloeters, O. Chronic wound pathogenesis and current treatment strategies: A unifying hypothesis. Plast. Reconstr. Surg. 2006, 117 (Suppl. 7), 35S–41S. [Google Scholar] [CrossRef] [Green Version]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and inflammation. N. Engl. J. Med. 2011, 364, 656–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Rybakina, E.G.; Korneva, E.A.; Noda, M. Effects of Derinat on ischemia-reperfusion-induced pressure ulcer mouse model. J. Pharmacol. Sci. 2018, 138, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Taylor, C.T.; Colgan, S.P. Regulation of immunity and inflammation by hypoxia in immunological niches. Nat. Rev. Immunol. 2017, 17, 774–785. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; van der Schaft, D.W.J.; Baaijens, F.P.; Oomens, C.W.J. Cell death induced by mechanical compression on engineered muscle results from a gradual physiological mechanism. J. Biomech. 2016, 49, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Kurose, T.; Hashimoto, M.; Ozawa, J.; Kawamata, S. Analysis of Gene Expression in Experimental Pressure Ulcers in the Rat with Special Reference to Inflammatory Cytokines. PLoS ONE 2015, 10, e0132622. [Google Scholar] [CrossRef]
- Tabibiazar, R.; Cheung, L.; Han, J.; Swanson, J.; Beilhack, A.; An, A.; Dadras, S.S.; Rockson, N.; Joshi, S.; Wagner, R.; et al. Inflammatory manifestations of experimental lymphatic insufficiency. PLoS Med. 2006, 3, e254. [Google Scholar] [CrossRef] [Green Version]
- Liechty, C.; Hu, J.; Zhang, L.; Liechty, K.W.; Xu, J. Role of microRNA-21 and Its Underlying Mechanisms in Inflammatory Responses in Diabetic Wounds. Int. J. Mol. Sci. 2020, 21, 3328. [Google Scholar] [CrossRef]
- Niu, J.; Han, L.; Gong, F. Therapeutic Effect of External Application of Ligustrazine Combined with Holistic Nursing on Pressure Sores. Med. Sci. Monit. 2016, 22, 2871–2877. [Google Scholar] [CrossRef] [Green Version]
- Sin, T.K.; Yung, B.Y.; Yip, S.P.; Chan, L.W.; Wong, C.S.; Tam, E.W.; Siu, P.M. SIRT1-dependent myoprotective effects of resveratrol on muscle injury induced by compression. Front. Physiol. 2015, 6, 293. [Google Scholar] [CrossRef] [Green Version]
- Eltzschig, H.K.; Collard, C.D. Vascular ischaemia and reperfusion injury. Br. Med. Bull. 2004, 70, 71–86. [Google Scholar] [CrossRef]
- Seal, J.B.; Gewertz, B.L. Vascular dysfunction in ischemia-reperfusion injury. Ann. Vasc. Surg. 2005, 19, 572–584. [Google Scholar] [CrossRef]
- Ali, N.; Zirak, B.; Rodriguez, R.S.; Pauli, M.L.; Truong, H.A.; Lai, K.; Ahn, R.; Corbin, K.; Lowe, M.M.; Scharschmidt, T.C.; et al. Regulatory T Cells in Skin Facilitate Epithelial Stem Cell Differentiation. Cell 2017, 169, 1119–1129.e11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, G.E.; Seale, J. Lymphatic clearance during compressive loading. Lymphology 1981, 14, 161–166. [Google Scholar] [PubMed]
- Miller, G.E.; Seale, J.L. The recovery of terminal lymph flow following occlusion. J. Biomech. Eng. 1987, 109, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Gray, R.J.; Voegeli, D.; Bader, D.L. Features of lymphatic dysfunction in compressed skin tissues—Implications in pressure ulcer aetiology. J. Tissue Viability 2016, 25, 26–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, X.; Nicolls, M.R.; Tian, W.; Rockson, S.G. Lymphatic Dysfunction, Leukotrienes, and Lymphedema. Annu. Rev. Physiol. 2018, 80, 49–70. [Google Scholar] [CrossRef]
- Yoshida, S.; Koshima, I.; Hamada, Y.; Sasaki, A.; Fujioka, Y.; Nagamatsu, S.; Yokota, K.; Harima, M.; Yamashita, S. Lymphovenous Anastomosis Aids Wound Healing in Lymphedema: Relationship Between Lymphedema and Delayed Wound Healing from a View of Immune Mechanisms. Adv. Wound Care 2019, 8, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Shoham, N.; Gefen, A. Deformations, mechanical strains and stresses across the different hierarchical scales in weight-bearing soft tissues. J. Tissue Viability 2012, 21, 39–46. [Google Scholar] [CrossRef]
- Gefen, A.; van Nierop, B.; Bader, D.L.; Oomens, C.W. Strain-time cell-death threshold for skeletal muscle in a tissue-engineered model system for deep tissue injury. J. Biomech. 2008, 41, 2003–2012. [Google Scholar] [CrossRef]
- Leopold, E.; Sopher, R.; Gefen, A. The effect of compressive deformations on the rate of build-up of oxygen in isolated skeletal muscle cells. Med. Eng. Phys. 2011, 33, 1072–1078. [Google Scholar] [CrossRef]
- Slomka, N.; Gefen, A. Relationship between strain levels and permeability of the plasma membrane in statically stretched myoblasts. Ann. Biomed. Eng. 2012, 40, 606–618. [Google Scholar] [CrossRef]
- Gefen, A.; Weihs, D. Mechanical cytoprotection: A review of cytoskeleton-protection approaches for cells. J. Biomech. 2016, 49, 1321–1329. [Google Scholar] [CrossRef]
- Gefen, A.; Weihs, D. Cytoskeleton and plasma-membrane damage resulting from exposure to sustained deformations: A review of the mechanobiology of chronic wounds. Med. Eng. Phys. 2016, 38, 828–833. [Google Scholar] [CrossRef]
- Yao, Y.; Da Ong, L.X.; Li, X.; Wan, K.; Mak, A.F. Effects of Biowastes Released by Mechanically Damaged Muscle Cells on the Propagation of Deep Tissue Injury: A Multiphysics Study. Ann. Biomed. Eng. 2017, 45, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Frost, R.A.; Lang, C.H.; Gelato, M.C. Transient exposure of human myoblasts to tumor necrosis factor-alpha inhibits serum and insulin-like growth factor-I stimulated protein synthesis. Endocrinology 1997, 138, 4153–4159. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Reid, M.B. Effect of tumor necrosis factor-alpha on skeletal muscle metabolism. Curr. Opin. Rheumatol. 2001, 13, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Huang, D.; Peng, Y.; Ma, K.; Qing, X.; Deng, X.; Li, Z.; Shao, Z. Puerarin Relieved Compression-Induced Apoptosis and Mitochondrial Dysfunction in Human Nucleus Pulposus Mesenchymal Stem Cells via the PI3K/Akt Pathway. Stem. Cells Int. 2020, 2020, 7126914. [Google Scholar] [CrossRef]
- Song, F.; Wang, Y.; Jiang, D.; Wang, T.; Zhang, Y.; Ma, H.; Kang, Y. Cyclic Compressive Stress Regulates Apoptosis in Rat Osteoblasts: Involvement of PI3K/Akt and JNK MAPK Signaling Pathways. PLoS ONE 2016, 11, e0165845. [Google Scholar] [CrossRef] [PubMed]
- Lauber, K.; Bohn, E.; Krober, S.M.; Xiao, Y.J.; Blumenthal, S.G.; Lindemann, R.K.; Marini, P.; Wiedig, C.; Zobywalski, A.; Baksh, S.; et al. Apoptotic cells induce migration of phagocytes via caspase-3-mediated release of a lipid attraction signal. Cell 2003, 113, 717–730. [Google Scholar] [CrossRef] [Green Version]
- Trahtemberg, U.; Mevorach, D. Apoptotic Cells Induced Signaling for Immune Homeostasis in Macrophages and Dendritic Cells. Front. Immunol. 2017, 8, 1356. [Google Scholar] [CrossRef] [Green Version]
- Khanna, S.; Biswas, S.; Shang, Y.; Collard, E.; Azad, A.; Kauh, C.; Bhasker, V.; Gordillo, G.M.; Sen, C.K.; Roy, S. Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice. PLoS ONE 2010, 5, e9539. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Zhao, J.; Ling, H.; Deng, Y.; Li, X.; He, Y. Exploring microRNAs in diabetic chronic cutaneous ulcers: Regulatory mechanisms and therapeutic potential. Br. J. Pharmacol. 2020, 177, 4077–4095. [Google Scholar] [CrossRef] [PubMed]
- Rosen, A.; Casciola-Rosen, L. Autoantigens as substrates for apoptotic proteases: Implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ. 1999, 6, 6–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Squarize, C.H.; Castilho, R.M.; Bugge, T.H.; Gutkind, J.S. Accelerated wound healing by mTOR activation in genetically defined mouse models. PLoS ONE 2010, 5, e10643. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Hasegawa, M.; Fujimoto, M.; Matsushita, T.; Horikawa, M.; Takenaka, M.; Ogawa, F.; Sugama, J.; Steeber, D.A.; Sato, S.; et al. The loss of MCP-1 attenuates cutaneous ischemia-reperfusion injury in a mouse model of pressure ulcer. J. Investig. Dermatol. 2008, 128, 1838–1851. [Google Scholar] [CrossRef] [Green Version]
- Diegelmann, R.F. Excessive neutrophils characterize chronic pressure ulcers. Wound Repair Regen. 2003, 11, 490–495. [Google Scholar] [CrossRef]
- Qing, C. The molecular biology in wound healing & non-healing wound. Chin. J. Traumatol. 2017, 20, 189–193. [Google Scholar] [CrossRef]
- Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol. 2011, 11, 723–737. [Google Scholar] [CrossRef]
- Zhang, E.; Gao, B.; Yang, L.; Wu, X.; Wang, Z. Notoginsenoside Ft1 Promotes Fibroblast Proliferation via PI3K/Akt/mTOR Signaling Pathway and Benefits Wound Healing in Genetically Diabetic Mice. J. Pharmacol. Exp. Ther. 2016, 356, 324–332. [Google Scholar] [CrossRef] [Green Version]
- Cummins, K.A.; Watters, R.; Leming-Lee, T. Reducing Pressure Injuries in the Pediatric Intensive Care Unit. Nurs. Clin. N. Am. 2019, 54, 127–140. [Google Scholar] [CrossRef]
- Gefen, A.; Creehan, S.; Black, J. Critical biomechanical and clinical insights concerning tissue protection when positioning patients in the operating room: A scoping review. Int. Wound J. 2020. [Google Scholar] [CrossRef]
- Gefen, A.; Alves, P.; Ciprandi, G.; Coyer, F.; Milne, C.T.; Ousey, K.; Ohura, N.; Waters, N.; Worsley, P. Device-related pressure ulcers: SECURE prevention. J. Wound Care 2020, 29 (Suppl. 2a), S1–S52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nixon, J. Silicone dressings for pressure ulcer prevention. Br. J. Dermatol. 2020, 183, 200–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, Z.E.H.; Webster, J. Dressings and topical agents for preventing pressure ulcers. Cochrane Db. Syst. Rev. 2018, CD009362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litchford, M.D. Putting the 2019 Nutrition Recommendations for Pressure Injury Prevention and Treatment into Practice. Adv. Skin Wound Care 2020, 33, 462–468. [Google Scholar] [CrossRef]
- Amano, K.; Morita, T.; Baba, M.; Kawasaki, M.; Nakajima, S.; Uemura, M.; Kobayashi, Y.; Hori, M.; Wakayama, H. Effect of nutritional support on terminally ill patients with cancer in a palliative care unit. Am. J. Hosp. Palliat. Care 2013, 30, 730–733. [Google Scholar] [CrossRef]
- Otero, T.M.N.; Canales, C.; Yeh, D.D.; Elsayes, A.; Belcher, D.M.; Quraishi, S.A. Vitamin D Status Is Associated With Development of Hospital-Acquired Pressure Injuries in Critically Ill Surgical Patients. Nutr. Clin. Pract. 2019, 34, 142–147. [Google Scholar] [CrossRef]
- Lyder, C.H.; Preston, J.; Grady, J.N.; Scinto, J.; Allman, R.; Bergstrom, N.; Rodeheaver, G. Quality of care for hospitalized medicare patients at risk for pressure ulcers. Arch. Intern. Med. 2001, 161, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Munoz, N.; Posthauer, M.E.; Cereda, E.; Schols, J.; Haesler, E. The Role of Nutrition for Pressure Injury Prevention and Healing: The 2019 International Clinical Practice Guideline Recommendations. Adv. Skin Wound Care 2020, 33, 123–136. [Google Scholar] [CrossRef] [Green Version]
- Mervis, J.S.; Phillips, T.J. Pressure ulcers: Prevention and management. J. Am. Acad. Dermatol. 2019, 81, 893–902. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Mishra, R.K. Pressure ulcers: Current understanding and newer modalities of treatment. Indian J. Plast. Surg. 2015, 48, 4–16. [Google Scholar] [CrossRef]
- Mohammed, A.H.; Hamed, S.A.; Abdelghany, A.I. Comparison between two different protocols of negative pressure therapy for healing of chronic ulcers. J. Tissue Viability 2020, 29, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, X.; Fan, L.; Chen, B.; Liu, J.; Tao, Y.; Wang, X. Negative pressure wound therapy promoted wound healing by suppressing inflammation via down-regulating MAPK-JNK signaling pathway in diabetic foot patients. Diabetes Res. Clin. Pract. 2019, 150, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Boyko, T.V.; Longaker, M.T.; Yang, G.P. Review of the Current Management of Pressure Ulcers. Adv. Wound Care 2018, 7, 57–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, A.G.; Chou, J.J.; Hammond, P.T. Approaches to Modulate the Chronic Wound Environment Using Localized Nucleic Acid Delivery. Adv. Wound Care 2020. [Google Scholar] [CrossRef] [PubMed]
- Zgheib, C.; Hilton, S.A.; Dewberry, L.C.; Hodges, M.M.; Ghatak, S.; Xu, J.; Singh, S.; Roy, S.; Sen, C.K.; Seal, S.; et al. Use of Cerium Oxide Nanoparticles Conjugated with MicroRNA-146a to Correct the Diabetic Wound Healing Impairment. J. Am. Coll Surg. 2019, 228, 107–115. [Google Scholar] [CrossRef] [PubMed]
- Zgheib, C.; Liechty, K.W. Shedding light on miR-26a: Another key regulator of angiogenesis in diabetic wound healing. J. Mol. Cell Cardiol. 2016, 92, 203–205. [Google Scholar] [CrossRef] [PubMed]
- Mulholland, E.J.; Dunne, N.; McCarthy, H.O. MicroRNA as Therapeutic Targets for Chronic Wound Healing. Mol. Ther. Nucleic Acids. 2017, 8, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Garcia, I.; Miska, E.A. MicroRNA functions in animal development and human disease. Development 2005, 132, 4653–4662. [Google Scholar] [CrossRef] [Green Version]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Song, Y.; Cui, X.; Zhao, R.; Hu, L.; Li, Y.; Liu, C. Emodin protects against lipopolysaccharide-induced inflammatory injury in HaCaT cells through upregulation of miR-21. Artif. Cells Nanomed. Biotechnol. 2019, 47, 2654–2661. [Google Scholar] [CrossRef] [Green Version]
- Ji, X.; Mao, J.; Zhou, S. Rs739837 Polymorphism in MiR-885-3p Binding Site Within 3’-Untranslated Region of Vitamin D Receptor is Associated with a Decreased Risk of Pressure Ulcers. Cell Physiol. Biochem. 2017, 44, 2129–2137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Wang, H. Ligustrazine promoted hypoxia-treated cell growth by upregulation of miR-135b in human umbilical vein endothelial cells. Exp. Mol. Pathol. 2019, 106, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Wang, Q.; Liu, N.; Zhao, J.; Yu, J.; Tao, S. Circular RNA circ-Ttc3 protects HaCaT cells from hypoxic injury by downregulation of miR-449a. IUBMB Life 2020, 72, 505–514. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Sun, Y.; Zhang, J.; Zhu, Q.; Yang, Y.; Niu, X.; Deng, Z.; Li, Q.; Wang, Y. Human embryonic stem cell-derived exosomes promote pressure ulcer healing in aged mice by rejuvenating senescent endothelial cells. Stem. Cell Res. Ther. 2019, 10, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Xue, H.; Zhou, P.; Liu, L.; Yu, J.; Dai, P.; Qu, M. Angelica polysaccharide alleviates oxidative response damage in HaCaT cells through up-regulation of miR-126. Exp. Mol. Pathol. 2019, 110, 104281. [Google Scholar] [CrossRef] [PubMed]
- Ge, R.; Gao, G. Anti-antioxidant impacts of circZNF609 silence in HaCaT cells through regulating miR-145. Artif. Cells Nanomed. Biotechnol. 2020, 48, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Han, L.; Zeng, X. A functional polymorphism at miR4915p binding site in the 3’UTR of MMP9 gene confers increased risk for pressure ulcers after hip fracture. Oncol. Rep. 2018, 39, 2695–2702. [Google Scholar] [CrossRef]
- Akino, K.; Mineda, T.; Akita, S. Early cellular changes of human mesenchymal stem cells and their interaction with other cells. Wound Repair Regen. 2005, 13, 434–440. [Google Scholar] [CrossRef]
- Chan, Y.C.; Khanna, S.; Roy, S.; Sen, C.K. miR-200b targets Ets-1 and is down-regulated by hypoxia to induce angiogenic response of endothelial cells. J. Biol. Chem. 2011, 286, 2047–2056. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Peng, H.; Ruan, Q.; Fatima, A.; Getsios, S.; Lavker, R.M. MicroRNA-205 promotes keratinocyte migration via the lipid phosphatase SHIP2. FASEB J. 2010, 24, 3950–3959. [Google Scholar] [CrossRef] [Green Version]
- Sekar, D.; Venugopal, B.; Sekar, P.; Ramalingam, K. Role of microRNA 21 in diabetes and associated/related diseases. Gene 2016, 582, 14–18. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhao, H.; Chen, W.; Huang, P.; Bi, J. Human keratinocyte-derived microvesicle miRNA-21 promotes skin wound healing in diabetic rats through facilitating fibroblast function and angiogenesis. Int. J. Biochem. Cell Biol. 2019, 114, 105570. [Google Scholar] [CrossRef] [PubMed]
- Lv, Q.; Deng, J.; Chen, Y.; Wang, Y.; Liu, B.; Liu, J. Engineered Human Adipose Stem-Cell-Derived Exosomes Loaded with miR-21-5p to Promote Diabetic Cutaneous Wound Healing. Mol. Pharm. 2020, 17, 1723–1733. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhang, K.; Liu, R.; Zhang, H.; Chen, D.; Yu, S.; Chen, W.; Wan, S.; Zhang, Y.; Jia, Z.; et al. MicroRNA-21-3p accelerates diabetic wound healing in mice by downregulating SPRY1. Aging 2020, 12, 15436–15445. [Google Scholar] [CrossRef]
- Das, A.; Ganesh, K.; Khanna, S.; Sen, C.K.; Roy, S. Engulfment of apoptotic cells by macrophages: A role of microRNA-21 in the resolution of wound inflammation. J. Immunol. 2014, 192, 1120–1129. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Feng, Y.; Sun, H.; Zhang, L.; Hao, L.; Shi, C.; Wang, J.; Li, R.; Ran, X.; Su, Y.; et al. miR-21 regulates skin wound healing by targeting multiple aspects of the healing process. Am. J. Pathol. 2012, 181, 1911–1920. [Google Scholar] [CrossRef]
- Wang, Z.; Brandt, S.; Medeiros, A.; Wang, S.; Wu, H.; Dent, A.; Serezani, C.H. MicroRNA 21 is a homeostatic regulator of macrophage polarization and prevents prostaglandin E2-mediated M2 generation. PLoS ONE 2015, 10, e0115855. [Google Scholar] [CrossRef]
- Smith, K.; Hewlings, S. Correlation between vitamin D levels and hard-to-heal wounds: A systematic review. J. Wound Care 2020, 29 (Suppl. 7), S24–S30. [Google Scholar] [CrossRef]
- Fatturi, A.L.; Menoncin, B.L.; Reyes, M.T.; Meger, M.; Scariot, R.; Brancher, J.A.; Kuchler, E.C.; Feltrin-Souza, J. The relationship between molar incisor hypomineralization, dental caries, socioeconomic factors, and polymorphisms in the vitamin D receptor gene: A population-based study. Clin. Oral. Investig. 2020, 24, 3971–3980. [Google Scholar] [CrossRef]
- Yang, G.S.; Hou, W.; Ou, J.L. Rs739837 affects the severity of asthma by disrupting the binding of microRNA-885. Per. Med. 2020, 17, 121–127. [Google Scholar] [CrossRef]
- Zhang, X.; Gu, H.; Wang, L.; Huang, F.; Cai, J. MiR-885-3p is down-regulated in peripheral blood mononuclear cells from T1D patients and regulates the inflammatory response via targeting TLR4/NF-kappaB signaling. J. Gene Med. 2020, 22, e3145. [Google Scholar] [CrossRef] [PubMed]
- Won, S.; Sayeed, I.; Peterson, B.L.; Wali, B.; Kahn, J.S.; Stein, D.G. Vitamin D prevents hypoxia/reoxygenation-induced blood-brain barrier disruption via vitamin D receptor-mediated NF-kB signaling pathways. PLoS ONE 2015, 10, e0122821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.; Silveira, D.A.; Mombach, J.C.M. Modeling the role of microRNA-449a in the regulation of the G2/M cell cycle checkpoint in prostate LNCaP cells under ionizing radiation. PLoS ONE 2018, 13, e0200768. [Google Scholar] [CrossRef] [PubMed]
- Lu, D.G.; Tang, Q.L.; Wei, J.H.; He, F.Y.; Lu, L.; Tang, Y.J. Targeting EZH2 by microRNA-449a inhibits osteosarcoma cell proliferation, invasion and migration via regulation of PI3K/AKT signaling pathway and epithelial-mesenchymal transition. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1656–1665. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhao, Y.; Xiong, W.; Ye, W.; Zhao, W.; Hua, Y. MicroRNA-449a Is Downregulated in Cervical Cancer and Inhibits Proliferation, Migration, and Invasion. Oncol. Res. Treat. 2019, 42, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Hayden, M.S. Celebrating 25 years of NF-kappaB research. Immunol. Rev. 2012, 246, 5–13. [Google Scholar] [CrossRef]
- Goldminz, A.M.; Au, S.C.; Kim, N.; Gottlieb, A.B.; Lizzul, P.F. NF-kappaB: An essential transcription factor in psoriasis. J. Dermatol. Sci. 2013, 69, 89–94. [Google Scholar] [CrossRef]
- Sun, J.; Wang, Z.; Wang, X. Suppression of LRRC19 promotes cutaneous wound healing in pressure ulcers in mice. Organogenesis 2018, 14, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Ling, H.; Zhang, M.; Yang, Z.; Wang, X.; Zeng, F.; Wang, C.; Feng, J. Oxidative stress mediates chemical hypoxia-induced injury and inflammation by activating NF-kappab-COX-2 pathway in HaCaT cells. Mol. Cells 2011, 31, 531–538. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, T.S.; Christman, J.W. The role of nuclear factor-kappa B in cytokine gene regulation. Am. J. Respir Cell Mol. Biol. 1997, 17, 3–9. [Google Scholar] [CrossRef]
- Romana-Souza, B.; Dos Santos, J.S.; Monte-Alto-Costa, A. Caffeic acid phenethyl ester promotes wound healing of mice pressure ulcers affecting NF-kappaB, NOS2 and NRF2 expression. Life Sci. 2018, 207, 158–165. [Google Scholar] [CrossRef] [PubMed]
- Culver, C.; Sundqvist, A.; Mudie, S.; Melvin, A.; Xirodimas, D.; Rocha, S. Mechanism of hypoxia-induced NF-kappaB. Mol. Cell Biol. 2010, 30, 4901–4921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, X.J.; Fan, D.M.; Xi, K.; Chen, Y.W.; Qi, P.W.; Li, Q.H.; Fang, L.; Ma, L.G. Suppression of microRNA-135b-5p protects against myocardial ischemia/reperfusion injury by activating JAK2/STAT3 signaling pathway in mice during sevoflurane anesthesia. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danilenko, M.; Studzinski, G.P. Keep Harm at Bay: Oxidative Phosphorylation Induces Nrf2-Driven Antioxidant Response Via ERK5/MEF2/miR-23a Signaling to Keap-1. EBioMedicine 2016, 3, 4–5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zimta, A.A.; Cenariu, D.; Irimie, A.; Magdo, L.; Nabavi, S.M.; Atanasov, A.G.; Berindan-Neagoe, I. The Role of Nrf2 Activity in Cancer Development and Progression. Cancers 2019, 11, 1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suresh Babu, S.; Thandavarayan, R.A.; Joladarashi, D.; Jeyabal, P.; Krishnamurthy, S.; Bhimaraj, A.; Youker, K.A.; Krishnamurthy, P. MicroRNA-126 overexpression rescues diabetes-induced impairment in efferocytosis of apoptotic cardiomyocytes. Sci. Rep. 2016, 6, 36207. [Google Scholar] [CrossRef] [Green Version]
- Pishavar, E.; Behravan, J. miR-126 as a Therapeutic Agent for Diabetes Mellitus. Curr. Pharm. Des. 2017, 23, 3309–3314. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Z.; Wang, Z.; Zeng, F.; Xiao, W.; Yu, A. MicroRNA-126: A promising biomarker for angiogenesis of diabetic wounds treated with negative pressure wound therapy. Diabetes Metab. Syndr. Obes. 2019, 12, 1685–1696. [Google Scholar] [CrossRef] [Green Version]
- Chang, L.; Liang, J.; Xia, X.; Chen, X. miRNA-126 enhances viability, colony formation, and migration of keratinocytes HaCaT cells by regulating PI3 K/AKT signaling pathway. Cell Biol. Int. 2019, 43, 182–191. [Google Scholar] [CrossRef]
- Ren, R.; Chen, S.D.; Fan, J.; Zhang, G.; Li, J.B. miRNA-138 regulates MLK3/JNK/MAPK pathway to protect BV-2 cells from H2O2-induced apoptosis. Bratisl. Lek. Listy 2018, 119, 284–288. [Google Scholar] [CrossRef] [Green Version]
- Dynoodt, P.; Speeckaert, R.; De Wever, O.; Chevolet, I.; Brochez, L.; Lambert, J.; Van Gele, M. miR-145 overexpression suppresses the migration and invasion of metastatic melanoma cells. Int. J. Oncol. 2013, 42, 1443–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunz, M. MicroRNAs in melanoma biology. Adv. Exp. Med. Biol. 2013, 774, 103–120. [Google Scholar] [CrossRef] [PubMed]
- Barta, T.; Peskova, L.; Collin, J.; Montaner, D.; Neganova, I.; Armstrong, L.; Lako, M. Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells. Stem. Cells 2016, 34, 246–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gras, C.; Ratuszny, D.; Hadamitzky, C.; Zhang, H.; Blasczyk, R.; Figueiredo, C. miR-145 Contributes to Hypertrophic Scarring of the Skin by Inducing Myofibroblast Activity. Mol. Med. 2015, 21, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Song, H.F.; He, S.; Li, S.H.; Wu, J.; Yin, W.; Shao, Z.; Du, G.Q.; Wu, J.; Li, J.; Weisel, R.D.; et al. Knock-out of MicroRNA 145 impairs cardiac fibroblast function and wound healing post-myocardial infarction. J. Cell Mol. Med. 2020. [Google Scholar] [CrossRef]
- Rancan, L.; Simon, C.; Marchal-Duval, E.; Casanova, J.; Paredes, S.D.; Calvo, A.; Garcia, C.; Rincon, D.; Turrero, A.; Garutti, I.; et al. Lidocaine Administration Controls MicroRNAs Alterations Observed After Lung Ischemia-Reperfusion Injury. Anesth. Analg. 2016, 123, 1437–1447. [Google Scholar] [CrossRef]
- Ladwig, G.P.; Robson, M.C.; Liu, R.; Kuhn, M.A.; Muir, D.F.; Schultz, G.S. Ratios of activated matrix metalloproteinase-9 to tissue inhibitor of matrix metalloproteinase-1 in wound fluids are inversely correlated with healing of pressure ulcers. Wound Repair Regen. 2002, 10, 26–37. [Google Scholar] [CrossRef]
- Tian, X.; Zhang, X. A Single Nucleotide Polymorphism (rs1056629) in 3’-UTR of MMP-9 is Responsible for a Decreased Risk of Metastatic Osteosarcoma by Compromising its Interaction with microRNA-491-5p. Cell Physiol. Biochem. 2016, 38, 1415–1424. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Ye, J.; Jiang, R.; Yan, H.; Yang, X.; Liu, Q.; Zhang, J. MicroRNA-491 is involved in metastasis of hepatocellular carcinoma by inhibitions of matrix metalloproteinase and epithelial to mesenchymal transition. Liver Int. 2013, 33, 1271–1280. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, Y.; Jiang, Q.; Yang, Y.; Dang, C.; Sun, R. miR-491 inhibits BGC-823 cell migration via targeting HMGA2. Int. J. Biol. Markers 2019, 34, 364–372. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, Y.; Li, N.; Wu, Y.; Zhang, J.; Xu, R.; Ming, H. LBX2-AS1 up-regulated by NFIC boosts cell proliferation, migration and invasion in gastric cancer through targeting miR-491-5p/ZNF703. Cancer Cell Int. 2020, 20, 136. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Zhou, Y.; Li, J.; Zhang, D. MicroRNA4915p inhibits trophoblast cell migration and invasion through targeting matrix metalloproteinase9 in preeclampsia. Mol. Med. Rep. 2020, 22, 5033–5040. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, D.; Morrison, C.J.; Overall, C.M. Matrix metalloproteinases: What do they not do? New substrates and biological roles identified by murine models and proteomics. Biochim. Biophys Acta 2010, 1803, 39–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schonbeck, U.; Mach, F.; Libby, P. Generation of biologically active IL-1 beta by matrix metalloproteinases: A novel caspase-1-independent pathway of IL-1 beta processing. J. Immunol. 1998, 161, 3340–3346. [Google Scholar] [PubMed]
- Meng, Z.; Zhou, D.; Gao, Y.; Zeng, M.; Wang, W. miRNA delivery for skin wound healing. Adv. Drug. Deliv. Rev. 2018, 129, 308–318. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, X.; Icli, B.; Feinberg, M.W. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocr. Rev. 2017, 38, 145–168. [Google Scholar] [CrossRef] [Green Version]
- Endo-Takahashi, Y.; Negishi, Y.; Nakamura, A.; Ukai, S.; Ooaku, K.; Oda, Y.; Sugimoto, K.; Moriyasu, F.; Takagi, N.; Suzuki, R.; et al. Systemic delivery of miR-126 by miRNA-loaded Bubble liposomes for the treatment of hindlimb ischemia. Sci. Rep. 2014, 4, 3883. [Google Scholar] [CrossRef]
Study | MicroRNA | Effect |
---|---|---|
Song et al. 2019 [81] | miR-21 | Levels are decreased in inflammatory conditions. Decreases pro-inflammatory iNOS, COX-2, IL-6, and IL-1β to improve keratinocyte viability |
Ji et al. 2017 [82] | miR-885-3p | Increases vitamin D receptor (VDR) activity and lowers pressure ulcer risk. Patients with Rs739836 VDR polymorphism have poor miR-885-3p binding and increased risk of ulcer development |
Wei et al. 2019 [83] | miR-135b | Decreases hypoxic injury by increasing PI3K/AKT and increasing JAK/SAPK activity, lowering endothelial cell apoptosis |
Yu et al. 2020 [84] | miR-449a | Increases hypoxic injury by inhibiting PI3K/AKT and NFκB activity, increasing keratinocyte apoptosis |
Chen et al. 2019 [85] | miR-200a | Increases angiogenesis in murine model of pressure ulcers by decreasing Keap1, an upstream inhibitor of Nrf2 |
Zhang et al. 2019 [86] | miR-126 | Decreases oxidative damage in keratinocytes by reducing ROS. Increases PI3K/AKT/mTOR activity |
Ge and Gao 2020 [87] | miR-145 | Decreases oxidative damage in keratinocytes by reducing ROS. Decreases JNK and p38-MAPK activity lowering ROS |
Yang et al. 2018 [88] | miR-491-5p | Impaired binding to the MMP9 gene results in an increased risk of pressure ulcer development |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niemiec, S.M.; Louiselle, A.E.; Liechty, K.W.; Zgheib, C. Role of microRNAs in Pressure Ulcer Immune Response, Pathogenesis, and Treatment. Int. J. Mol. Sci. 2021, 22, 64. https://doi.org/10.3390/ijms22010064
Niemiec SM, Louiselle AE, Liechty KW, Zgheib C. Role of microRNAs in Pressure Ulcer Immune Response, Pathogenesis, and Treatment. International Journal of Molecular Sciences. 2021; 22(1):64. https://doi.org/10.3390/ijms22010064
Chicago/Turabian StyleNiemiec, Stephen M., Amanda E. Louiselle, Kenneth W. Liechty, and Carlos Zgheib. 2021. "Role of microRNAs in Pressure Ulcer Immune Response, Pathogenesis, and Treatment" International Journal of Molecular Sciences 22, no. 1: 64. https://doi.org/10.3390/ijms22010064
APA StyleNiemiec, S. M., Louiselle, A. E., Liechty, K. W., & Zgheib, C. (2021). Role of microRNAs in Pressure Ulcer Immune Response, Pathogenesis, and Treatment. International Journal of Molecular Sciences, 22(1), 64. https://doi.org/10.3390/ijms22010064