Dual Reproductive Cell-Specific Promoter-Mediated Split-Cre/LoxP System Suitable for Exogenous Gene Deletion in Hybrid Progeny of Transgenic Arabidopsis
Abstract
:1. Introduction
2. Results
2.1. Construction of Vectors Containing Split-Cre Recombinase Driven by Reproductive Cell-Specific Promoters
2.2. Validation of the Recombination Efficiency of Split-Cre Recombinase Driven by an Ovule-Specific Promoter
2.3. Recombination Activity Verification of Split-Cre Recombinase Controlled by Pollen-Specific Promoters
2.4. Analysis of Gene Deletion Efficiency in the Dual Reproductive Cell-Specific Promoter-Mediated Split-Cre/LoxP System
3. Discussion
4. Materials and Methods
4.1. Vectors Construction
4.2. Genetic Transformation and Plant Materials
4.3. RNA Extraction and Quantitative RT-PCR
4.4. GFP fluorescence Detection
4.5. Histochemical Staining
4.6. Pollen Grains Protein Extraction
4.7. GUS Activity Assay
4.8. Deletion Efficiency Statistics
4.9. Chemicals
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fraiture, M.A.; Herman, P.; Taverniers, I.; De Loose, M.; Deforce, D.; Roosens, N.H. Current and new approaches in GMO detection: Challenges and solutions. Biomed. Res. Int. 2015, 2015, 392872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grohmann, L.; Keilwagen, J.; Duensing, N.; Dagand, E.; Hartung, F.; Wilhelm, R.; Bendiek, J.; Sprink, T. Detection and Identification of Genome Editing in Plants: Challenges and Opportunities. Front. Plant. Sci. 2019, 10, 236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clive, J. Global Status of Commercialized Biotech/GM Crops: 2019; ISAAA Brief 55: Kenya, PH, USA, 2019. [Google Scholar]
- Kwit, C.; Moon, H.S.; Warwick, S.I.; Stewart, C.N., Jr. Transgene introgression in crop relatives: Molecular evidence and mitigation strategies. Trends Biotechnol. 2011, 29, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Kamle, S.; Ali, S. Genetically modified crops: Detection strategies and biosafety issues. Gene 2013, 522, 123–132. [Google Scholar] [CrossRef]
- Paarlberg, R.L. The real threat to GM crops in poor countries: Consumer and policy resistance to GM foods in rich countries. Food Policy 2002, 27, 247–250. [Google Scholar] [CrossRef]
- Stewart, C.N.; Richards, H.A.; Halfhill, M.D. Transgenic plants and biosafety: Science, misconceptions and public perceptions. Biotechniques 2000, 29, 832–843. [Google Scholar] [CrossRef] [Green Version]
- Daniell, H.; Ruiz, O.N.; Dhingra, A. Chloroplast genetic engineering to improve agronomic traits. Methods Mol. Biol. 2005, 286, 111–138. [Google Scholar] [PubMed]
- Kim, Y.G.; Cha, J.; Chandrasegaran, S. Hybrid restriction enzymes: Zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 1996, 93, 1156–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, D.F.; Fahrenkrug, S.C.; Hackett, P.B. Targeting DNA With Fingers and TALENs. Mol. Ther. Nucleic Acids 2012, 1, e3. [Google Scholar] [CrossRef]
- Barrangou, R.; Fremaux, C.; Deveau, H.; Richards, M.; Boyaval, P.; Moineau, S.; Romero, D.A.; Horvath, P. CRISPR provides acquired resistance against viruses in prokaryotes. Science 2007, 315, 1709–1712. [Google Scholar] [CrossRef]
- Horvath, P.; Barrangou, R. CRISPR/Cas, the immune system of bacteria and archaea. Science 2010, 327, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.; Gilbertson, L.A.; Adams, T.H.; Malloy, K.P.; Reisenbigler, E.K.; Birr, D.H.; Snyder, M.W.; Zhang, Q.; Luethy, M.H. Generation of marker-free transgenic maize by regular two-border Agrobacterium transformation vectors. Transgenic Res. 2004, 13, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Goldsbrough, A.P.; Lastrella, C.N.; Yoder, J.I. Transposition Mediated Repositioning and Subsequent Elimination of Marker Genes from Transgenic Tomato. Nat. Biotechnol. 1993, 11, 1286–1292. [Google Scholar] [CrossRef]
- Miki, B.; McHugh, S. Selectable marker genes in transgenic plants: Applications, alternatives and biosafety. J. Biotechnol. 2004, 107, 193–232. [Google Scholar] [CrossRef] [PubMed]
- Zubko, E.; Scutt, C.; Meyer, P. Intrachromosomal recombination between attP regions as a tool to remove selectable marker genes from tobacco transgenes. Nat. Biotechnol. 2000, 18, 442–445. [Google Scholar] [CrossRef] [PubMed]
- Ow, D.W. Recombinase-directed plant transformation for the post-genomic era. Plant. Mol. Biol. 2002, 48, 183–200. [Google Scholar] [CrossRef] [PubMed]
- Warren, D.; Laxmikanthan, G.; Landy, A. A chimeric Cre recombinase with regulated directionality. Proc. Natl. Acad. Sci. USA 2008, 105, 18278–18283. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Kausch, A.P. Application of FLP/FRT site-specific DNA recombination system in plants. Genet. Eng. (N. Y.) 2002, 24, 1–16. [Google Scholar]
- Darwish, N.A.; Khan, R.S.; Ntui, V.O.; Nakamura, I.; Mii, M. Generation of selectable marker-free transgenic eggplant resistant to Alternaria solani using the R/RS site-specific recombination system. Plant. Cell Rep. 2014, 33, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Abremski, K.; Wierzbicki, A.; Frommer, B.; Hoess, R.H. Bacteriophage P1 Cre-loxP site-specific recombination. Site-specific DNA topoisomerase activity of the Cre recombination protein. J. Biol. Chem. 1986, 261, 391–396. [Google Scholar] [CrossRef]
- Srivastava, V.; Ow, D.W. Marker-free site-specific gene integration in plants. Trends Biotechnol. 2004, 22, 627–629. [Google Scholar] [CrossRef] [PubMed]
- Shimshek, D.R.; Kim, J.; Hubner, M.R.; Spergel, D.J.; Buchholz, F.; Casanova, E.; Stewart, A.F.; Seeburg, P.H.; Sprengel, R. Codon-improved Cre recombinase (iCre) expression in the mouse. Genesis 2002, 32, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Sauer, B.; Henderson, N. Site-Specific DNA Recombination in Mammalian-Cells by the Cre Recombinase of Bacteriophage-P1. Proc. Natl. Acad. Sci. USA 1988, 85, 5166–5170. [Google Scholar] [CrossRef] [Green Version]
- Sauer, B. Functional Expression of the Cre-Lox Site-Specific Recombination System in the Yeast Saccharomyces-Cerevisiae. Mol. Cell Biol. 1987, 7, 2087–2096. [Google Scholar] [CrossRef]
- Metzger, D.; Chambon, P. Site- and time-specific gene targeting in the mouse. Methods 2001, 24, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Gilbertson, L. Cre-lox recombination: Cre-ative tools for plant biotechnology. Trends Biotechnol. 2003, 21, 550–555. [Google Scholar] [CrossRef]
- Stricklett, P.K.; Nelson, R.D.; Kohan, D.E. Site-specific recombination using an epitope tagged bacteriophage P1 Cre recombinase. Gene 1998, 215, 415–423. [Google Scholar]
- Srivastava, V.; Anderson, O.D.; Ow, D.W. Single-copy transgenic wheat generated through the resolution of complex integration patterns. Proc. Natl. Acad. Sci. USA 1999, 96, 11117–11121. [Google Scholar] [CrossRef] [Green Version]
- Luo, K.M.; Duan, H.; Zhao, D.G.; Zheng, X.L.; Deng, W.; Chen, Y.Q.; Stewart, C.N.; McAvoy, R.; Jiang, X.N.; Wu, Y.H.; et al. ’GM-gene-deletor’: Fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. Plant. Biotechnol. J. 2007, 5, 263–274. [Google Scholar] [CrossRef]
- Wen, M.; Gao, Y.; Wang, L.; Ran, L.; Li, J.; Luo, K. Split-Cre complementation restores combination activity on transgene excision in hair roots of transgenic tobacco. PLoS ONE 2014, 9, e110290. [Google Scholar] [CrossRef]
- Ge, J.; Wang, L.J.; Yang, C.; Ran, L.Y.; Wen, M.L.; Fu, X.A.; Fan, D.; Luo, K.M. Intein-mediated Cre protein assembly for transgene excision in hybrid progeny of transgenic Arabidopsis. Plant. Cell Rep. 2016, 35, 2045–2053. [Google Scholar] [CrossRef]
- Steffen, J.G.; Kang, I.H.; Macfarlane, J.; Drews, G.N. Identification of genes expressed in the Arabidopsis female gametophyte. Plant. J. 2007, 51, 281–292. [Google Scholar] [CrossRef]
- Schiott, M.; Romanowsky, S.M.; Baekgaard, L.; Jakobsen, M.K.; Palmgren, M.G.; Harper, J.F. A plant plasma membrane Ca2+ pump is required for normal pollen tube growth and fertilization. Proc. Natl. Acad. Sci. USA 2004, 101, 9502–9507. [Google Scholar] [CrossRef] [Green Version]
- Jopcik, M.; Bauer, M.; Moravcikova, J.; Boszoradova, E.; Matusikova, I.; Libantova, J. Plant tissue-specific promoters can drive gene expression in Escherichia coli. Plant Cell Tissue Organ Cult. 2013, 113, 387–396. [Google Scholar] [CrossRef]
- Francois, I.E.; De Bolle, M.F.; Dwyer, G.; Goderis, I.J.; Woutors, P.F.; Verhaert, P.D.; Proost, P.; Schaaper, W.M.; Cammue, B.P.; Broekaert, W.F. Transgenic expression in Arabidopsis of a polyprotein construct leading to production of two different antimicrobial proteins. Plant. Physiol. 2002, 128, 1346–1358. [Google Scholar] [CrossRef] [Green Version]
- Hirrlinger, J.; Scheller, A.; Hirrlinger, P.G.; Kellert, B.; Tang, W.; Wehr, M.C.; Goebbels, S.; Reichenbach, A.; Sprengel, R.; Rossner, M.J.; et al. Split-cre complementation indicates coincident activity of different genes in vivo. PLoS ONE 2009, 4, e4286. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jullien, N.; Sampieri, F.; Enjalbert, A.; Herman, J.P. Regulation of Cre recombinase by ligand-induced complementation of inactive fragments. Nucleic Acids Res. 2003, 31, e131. [Google Scholar] [CrossRef] [Green Version]
- Hirrlinger, J.; Requardt, R.P.; Winkler, U.; Wilhelm, F.; Schulze, C.; Hirrlinger, P.G. Split-CreERT2: Temporal control of DNA recombination mediated by split-Cre protein fragment complementation. PLoS ONE 2009, 4, e8354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ray, D.K.; Mueller, N.D.; West, P.C.; Foley, J.A. Yield Trends Are Insufficient to Double Global Crop Production by 2050. PLoS ONE 2013, 8, e66428. [Google Scholar] [CrossRef] [Green Version]
- Mills, G.; Sharps, K.; Simpson, D.; Pleijel, H.; Frei, M.; Burkey, K.; Emberson, L.; Uddling, J.; Broberg, M.; Feng, Z.; et al. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance. Glob. Chang. Biol. 2018, 24, 4869–4893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nelson, R.; Wiesner-Hanks, T.; Wisser, R.; Balint-Kurti, P. Navigating complexity to breed disease-resistant crops. Nat. Rev. Genet. 2018, 19, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Bailey-Serres, J.; Parker, J.E.; Ainsworth, E.A.; Oldroyd, G.E.D.; Schroeder, J.I. Genetic strategies for improving crop yields. Nature 2019, 575, 109–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, S.; Songkumarn, P.; Liu, J.; Wang, G.L. A versatile zero background T-vector system for gene cloning and functional genomics. Plant. Physiol. 2009, 150, 1111–1121. [Google Scholar] [CrossRef] [Green Version]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant. J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Jefferson, R.A.; Kavanagh, T.A.; Bevan, M.W. Beta-Glucuronidase (Gus) as a Sensitive and Versatile Gene Fusion Marker in Plants. J. Cell Biochem. 1987, 6, 3901–3907. [Google Scholar]
- Chang, M.; Huang, S.J. Rapid Isolation of Total Protein from Arabidopsis Pollen. Bio-Protocol 2017, 7, 7. [Google Scholar] [CrossRef]
- Wang, L.J.; Lu, W.X.; Ran, L.Y.; Dou, L.W.; Yao, S.; Hu, J.; Fan, D.; Li, C.F.; Luo, K.M. R2R3-MYB transcription factor MYB6 promotes anthocyanin and proanthocyanidin biosynthesis but inhibits secondary cell wall formation in Populus tomentosa. Plant. J. 2019, 99, 733–751. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Ge, J.; Fu, X.; Luo, K.; Xu, C. Dual Reproductive Cell-Specific Promoter-Mediated Split-Cre/LoxP System Suitable for Exogenous Gene Deletion in Hybrid Progeny of Transgenic Arabidopsis. Int. J. Mol. Sci. 2021, 22, 5080. https://doi.org/10.3390/ijms22105080
Yang C, Ge J, Fu X, Luo K, Xu C. Dual Reproductive Cell-Specific Promoter-Mediated Split-Cre/LoxP System Suitable for Exogenous Gene Deletion in Hybrid Progeny of Transgenic Arabidopsis. International Journal of Molecular Sciences. 2021; 22(10):5080. https://doi.org/10.3390/ijms22105080
Chicago/Turabian StyleYang, Chen, Jia Ge, Xiaokang Fu, Keming Luo, and Changzheng Xu. 2021. "Dual Reproductive Cell-Specific Promoter-Mediated Split-Cre/LoxP System Suitable for Exogenous Gene Deletion in Hybrid Progeny of Transgenic Arabidopsis" International Journal of Molecular Sciences 22, no. 10: 5080. https://doi.org/10.3390/ijms22105080
APA StyleYang, C., Ge, J., Fu, X., Luo, K., & Xu, C. (2021). Dual Reproductive Cell-Specific Promoter-Mediated Split-Cre/LoxP System Suitable for Exogenous Gene Deletion in Hybrid Progeny of Transgenic Arabidopsis. International Journal of Molecular Sciences, 22(10), 5080. https://doi.org/10.3390/ijms22105080