Principles and Practical Considerations for the Analysis of Disease-Associated Alternative Splicing Events Using the Gateway Cloning-Based Minigene Vectors pDESTsplice and pSpliceExpress
Abstract
:1. Introduction
2. Splicing and Types of Alternative Splicing Events of Protein-Coding Genes
3. Relevance of Alternative Splicing in Health and Disease
4. Experimental and Bioinformatic Methods for Investigating Splicing Variants
5. Splicing Reporter Minigene Assay via pDESTsplice and pSpliceExpress Vectors
6. Studies Using the pDESTsplice and pSpliceExpress Vectors
7. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Alt. | Alternative |
AmpR | Ampicillin resistance |
ASE | Alternative splicing events |
att | Attachment site |
BAC | Bacterial artificial chromosome |
BBP | Branch point-binding protein |
bps | Base pairs |
ccd | Control of cell death |
CmR | Chloramphenicol resistance |
ESE | Exonic splicing enhancer |
ESS | Exonic splicing silencer |
GFI | Genomic fragment of interest |
hnRNP | Heterogeneous nuclear ribonucleoprotein |
IHF | Integration host factor |
Int | Integrase |
ISE | Intronic splicing enhancer |
ISS | Intronic splicing silencer |
N/A | Not available |
NGS | Next-generation sequencing |
pMEIs | Polymorphic mobile element insertions |
PPT | Polypyrimidine tract |
RBP | RNA-binding protein |
RE | Restriction enzyme |
RT-PCR | Reverse transcriptase PCR |
RT-qPCR | Quantitative reverse transcriptase PCR |
snoRNA | Small nucleolar RNA |
SNP | Single-nucleotide polymorphism |
snRNP | Small nuclear ribonucleoprotein |
SRSF | Serine/arginine-rich splicing factor |
U2AF | U2 auxiliary factor |
Xis | Excisionase |
References
- Shi, Y. Mechanistic insights into precursor messenger RNA splicing by the spliceosome. Nat. Rev. Mol. Cell Biol. 2017, 18, 655–670. [Google Scholar] [CrossRef]
- Scotti, M.M.; Swanson, M.S. RNA mis-splicing in disease. Nat. Rev. Genet. 2016, 17, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Park, E.; Pan, Z.; Zhang, Z.; Lin, L.; Xing, Y. The expanding landscape of alternative splicing variation in human populations. Am. J. Hum. Genet. 2018, 102, 11–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kishore, S.; Khanna, A.; Stamm, S. Rapid generation of splicing reporters with pSpliceExpress. Gene 2008, 427, 104–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piovesan, A.; Caracausi, M.; Antonaros, F.; Pelleri, M.C.; Vitale, L. GeneBase 1.1: A tool to summarize data from NCBI gene datasets and its application to an update of human gene statistics. Database 2016, 2016. [Google Scholar] [CrossRef]
- Lee, Y.; Rio, D.C. Mechanisms and regulation of alternative pre-mRNA splicing. Annu. Rev. Biochem. 2015, 84, 291–323. [Google Scholar] [CrossRef] [Green Version]
- Manning, K.S.; Cooper, T.A. The roles of RNA processing in translating genotype to phenotype. Nat. Rev. Mol. Cell Biol. 2017, 8, 102–114. [Google Scholar] [CrossRef]
- Abramowicz, A.; Gos, M. Correction to: Splicing mutations in human genetic disorders: Examples, detection, and confirmation. J. Appl. Genet. 2018, 59, 253–268. [Google Scholar] [CrossRef] [Green Version]
- Pineda, J.M.B.; Bradley, R.K. Most human introns are recognized via multiple and tissue-specific branchpoints. Genes Dev. 2018, 32, 577–591. [Google Scholar] [CrossRef]
- Yabas, M.; Elliott, H.; Hoyne, G.F. The role of alternative splicing in the control of immune homeostasis and cellular dif-ferentiation. Int. J. Mol. Sci. 2016, 17, 3. [Google Scholar] [CrossRef] [Green Version]
- Fu, X.D.; Ares, M., Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nat. Rev. Genet. 2014, 15, 689–701. [Google Scholar] [CrossRef] [PubMed]
- Zamore, P.D.; Patton, J.G.; Green, M.R. Cloning and domain structure of the mammalian splicing factor U2AF. Nat. Cell Biol. 1992, 355, 609–614. [Google Scholar] [CrossRef]
- Russell, F.A.; King, R.; Smillie, S.-J.; Kodji, X.; Brain, S.D. Calcitonin gene-related peptide: Physiology and pathophysiology. Physiol. Rev. 2014, 94, 1099–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 2020, 369, 1318–1330. [Google Scholar] [CrossRef]
- Hecker, M.; Rüge, A.; Putscher, E.; Boxberger, N.; Rommer, P.S.; Fitzner, B.; Zettl, U.K. Aberrant expression of alternative splicing variants in multiple sclerosis—A systematic review. Autoimmun. Rev. 2019, 18, 721–732. [Google Scholar] [CrossRef]
- Kolb, S.J.; Kissel, J.T. Spinal muscular atrophy. Neurol. Clin. 2015, 33, 831–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.K.; Tisdale, S.; Lotti, F.; Pellizzoni, L. SMN control of RNP assembly: From post-transcriptional gene regulation to motor neuron disease. Semin. Cell Dev. Biol. 2014, 32, 22–29. [Google Scholar] [CrossRef] [Green Version]
- Gidaro, T.; Servais, L. Nusinersen treatment of spinal muscular atrophy: Current knowledge and existing gaps. Dev. Med. Child Neurol. 2019, 61, 19–24. [Google Scholar] [CrossRef] [Green Version]
- Levin, A.A. Treating disease at the RNA level with oligonucleotides. N. Engl. J. Med. 2019, 380, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Gonzalo, R.; Sánchez, A. Introduction to Microarrays Technology and Data Analysis. In Data Analysis for Omic Sciences: Methods and Applications; Jaumot, J., Bedia, C., Tauler, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 37–69. [Google Scholar]
- Goodwin, S.; McPherson, J.D.; McCombie, W.R. Coming of age: Ten years of next-generation sequencing technologies. Nat. Rev. Genet. 2016, 17, 333–351. [Google Scholar] [CrossRef]
- Howe, K.L.; Achuthan, P.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Azov, A.G.; Bennett, R.; Bhai, J.; Billis, K.; et al. Ensembl 2021. Nucleic Acids Res. 2021, 49, 884–891. [Google Scholar] [CrossRef]
- Slatko, B.E.; Gardner, A.F.; Ausubel, F.M. Overview of next-generation sequencing technologies. Curr. Protoc. Mol. Biol. 2018, 122, e59. [Google Scholar] [CrossRef] [PubMed]
- Ptok, J.; Müller, L.; Theiss, S.; Schaal, H. Context matters: Regulation of splice donor usage. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 194391. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Takeda, J.-I.; Masuda, A. Rules and tools to predict the splicing effects of exonic and intronic mutations. Wiley Interdiscip. Rev. RNA 2018, 9, e1451. [Google Scholar] [CrossRef]
- Yi, Y.; Zhao, Y.; Huang, Y.; Wang, D. A brief review of RNA-protein interaction database resources. Non-Coding RNA 2017, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Desmet, F.O.; Hamroun, D.; Lalande, M.; Collod-Béroud, G.; Claustres, M.; Béroud, C. Human splicing finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009, 37, e67. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Xu, G.; Yang, Y.T.; Xu, Z.; Chen, X.; Shi, B.; Xie, D.; Lu, Z.J.; Wang, P. POSTAR2: Deciphering the post-transcriptional regulatory logics. Nucleic Acids Res. 2019, 47, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Wang, Z.; Wang, J.; Li, S. SpliceFinder: Ab initio prediction of splice sites using convolutional neural network. BMC Bioinform. 2019, 20, 1–13. [Google Scholar] [CrossRef]
- Cooper, T.A. Use of minigene systems to dissect alternative splicing elements. Methods 2005, 37, 331–340. [Google Scholar] [CrossRef]
- Barash, Y.; Calarco, J.A.; Gao, W.; Pan, Q.; Wang, X.; Shai, O.; Blencowe, B.J.; Frey, B.J. Deciphering the splicing code. Nat. Cell Biol. 2010, 465, 53–59. [Google Scholar] [CrossRef]
- Carazo, F.; Romero, J.P.; Rubio, A. Upstream analysis of alternative splicing: A review of computational approaches to predict context-dependent splicing factors. Brief. Bioinform. 2018, 20, 1358–1375. [Google Scholar] [CrossRef] [PubMed]
- Vaz-Drago, R.; Custódio, N.; Carmo-Fonseca, M. Deep intronic mutations and human disease. Hum. Genet. 2017, 136, 1093–1111. [Google Scholar] [CrossRef]
- Hartley, J.L.; Temple, G.F.; Brasch, M.A. DNA cloning using in vitro site-specific recombination. Genome Res. 2000, 10, 1788–1795. [Google Scholar] [CrossRef] [Green Version]
- Weisberg, R.A.; Enquist, L.W.; Foeller, C.; Landy, A. Role for DNA homology in site-specific recombination: The isolation and char-acterization of a site affinity mutant of coliphage lambda. J. Mol. Biol. 1983, 170, 319–342. [Google Scholar] [CrossRef]
- Bahassi, E.M.; O’Dea, M.M.; Allali, N.; Messens, J.; Gellert, M.M.; Couturier, M. Interactions of CcdB with DNA gyrase: Inactivation of Gyra, poisoning of the gyrase-DNA complex, and the antidote action of CcdA. J. Biol. Chem. 1999, 274, 10936–10944. [Google Scholar] [CrossRef] [Green Version]
- Gaildrat, P.; Killian, A.; Martins, A.; Tournier, I.; Frébourg, T.; Tosi, M. Use of splicing reporter minigene assay to evaluate the effect on splicing of unclassified genetic variants. Methods Mol. Biol. 2010, 653, 249–257. [Google Scholar]
- Reece-Hoyes, J.S.; Walhout, A.J. Gateway recombinational cloning. Cold Spring Harb. Protoc. 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Melnikov, A.; Murugan, A.; Zhang, X.; Tesileanu, T.; Wang, L.; Rogov, P.; Feizi, S.; Gnirke, A.; Callan, C.G., Jr.; Kinney, J.B.; et al. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat. Biotechnol. 2012, 30, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, A.B.; Patwardhan, R.P.; Shendure, J.; Seelig, G. Learning the sequence determinants of alternative splicing from millions of random sequences. Cell 2015, 163, 698–711. [Google Scholar] [CrossRef] [Green Version]
- Kishore, S.; Khanna, A.; Zhang, Z.; Hui, J.; Balwierz, P.J.; Stefan, M.; Beach, C.; Nicholls, R.D.; Zavolan, M.; Stamm, S. The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alter-native splicing. Hum. Mol. Genet. 2010, 19, 1153–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sumanasekera, C.; Kelemen, O.; Beullens, M.; Aubol, B.E.; Adams, J.A.; Sunkara, M.; Morris, A.; Bollen, M.; Andreadis, A.; Stamm, S. C6 pyridinium ceramide influences alternative pre-mRNA splicing by in-hibiting protein phosphatase-1. Nucleic Acids Res. 2012, 40, 4025–4039. [Google Scholar] [CrossRef] [Green Version]
- Scott, A.; Petrykowska, H.M.; Hefferon, T.; Gotea, V.; Elnitski, L. Functional analysis of synonymous substitutions predicted to affect splicing of the CFTR gene. J. Cyst. Fibros. 2012, 11, 511–517. [Google Scholar] [CrossRef] [Green Version]
- Listerman, I.; Sun, J.; Gazzaniga, F.S.; Lukas, J.L.; Blackburn, E.H. The major reverse transcriptase–incompetent splice variant of the human telomerase protein inhibits telomerase activity but protects from apoptosis. Cancer Res. 2013, 73, 2817–2828. [Google Scholar] [CrossRef] [Green Version]
- Rittore, C.; Sanchez, E.; Soler, S.; Barat-Houari, M.; Albers, M.; Obici, L.; McDermott, M.F.; Touitou, I.; Grandemange, S. Identification of a new exon 2-skipped TNFR1 transcript: Regulation by three functional polymorphisms of the TNFR-associated periodic syndrome (TRAPS) gene. Ann. Rheum. Dis. 2013, 73, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Alaa El Din, F.; Patri, S.; Thoreau, V.; Rodriguez-Ballesteros, M.; Hamade, E.; Bailly, S.; Gilbert-Dussardier, B.; Abou Merhi, R.; Kitzis, A. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia. PLoS ONE 2015, 10, e0132111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiao, W.; Adhikari, S.; Dahal, U.; Chen, Y.S.; Hao, Y.J.; Sun, B.F.; Sun, H.Y.; Li, A.; Ping, X.L.; Lai, W.Y.; et al. Nuclear m(6)A reader YTHDC1 regulates mRNA splicing. Mol. Cell. 2016, 61, 925. [Google Scholar] [CrossRef]
- Starokadomskyy, P.; Gemelli, T.; Rios, J.J.; Xing, C.; Wang, R.C.; Li, H.; Pokatayev, V.; Dozmorov, I.; Khan, S.; Miyata, N.; et al. DNA polymerase-α regulates the activation of type I interferons through cytosolic RNA:DNA synthesis. Nat. Immunol. 2016, 17, 495–504. [Google Scholar] [CrossRef] [Green Version]
- Bartosovic, M.; Molares, H.C.; Gregorova, P.; Hrossova, D.; Kudla, G.; Vanacova, S. N6-methyladenosine demethylase FTO targets pre-mRNAs and regulates alternative splicing and 3′-end processing. Nucleic Acids Res. 2017, 45, 11356–11370. [Google Scholar] [CrossRef]
- Carvill, G.L.; Engel, K.L.; Ramamurthy, A.; Cochran, J.N.; Roovers, J.; Stamberger, H.; Lim, N.; Schneider, A.L.; Hollingsworth, G.; Holder, D.H.; et al. Aberrant inclusion of a poison exon causes dravet syndrome and related SCN1A-associated genetic epilepsies. Am. J. Hum. Genet. 2018, 103, 1022–1029. [Google Scholar] [CrossRef] [Green Version]
- Legendre, M.; Ballesteros, M.R.; Rossi, M.; Abadie, V.; Amiel, J.; Revencu, N.; Blanchet, P.; Brioude, F.; Delrue, M.-A.; Doubaj, Y.; et al. CHARGE syndrome: A recurrent hotspot of mutations in CHD7 IVS25 analyzed by bioinformatic tools and minigene assays. Eur. J. Hum. Genet. 2017, 26, 287–292. [Google Scholar] [CrossRef]
- Wang, C.-X.; Cui, G.-S.; Liu, X.; Xu, K.; Wang, M.; Zhang, X.-X.; Jiang, L.-Y.; Li, A.; Yang, Y.; Lai, W.-Y.; et al. METTL3-mediated m6A modification is required for cerebellar development. PLoS Biol. 2018, 16, e2004880. [Google Scholar] [CrossRef]
- Mattison, K.A.; Butler, K.M.; Inglis, G.A.S.; Dayan, O.; Boussidan, H.; Bhambhani, V.; Philbrook, B.; Da Silva, C.; Alexander, J.J.; Kanner, B.I.; et al. SLC6A1 variants identified in epilepsy patients reduce γ-aminobutyric acid transport. Epilepsia 2018, 59, 135–141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payer, L.M.; Steranka, J.P.; Ardeljan, D.; Walker, J.; Fitzgerald, K.C.; Calabresi, P.A.; Cooper, T.A.; Burns, K.H. Alu insertion variants alter mRNA splicing. Nucleic Acids Res. 2019, 47, 421–431. [Google Scholar] [CrossRef] [Green Version]
- Abdulhay, N.J.; Fiorini, C.; Verboon, J.M.; Ludwig, L.S.; Ulirsch, J.C.; Zieger, B.; Lareau, C.A.; Mi, X.; Roy, A.; Obeng, E.A.; et al. Impaired human hematopoiesis due to a cryptic intronic GATA1 splicing mutation. J. Exp. Med. 2019, 216, 1050–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Varga, L.; Danis, D.; Skopkova, M.; Masindova, I.; Slobodova, Z.; Demesova, L.; Profant, M.; Gasperikova, D. Novel EYA4 variant in Slovak family with late onset autosomal dominant hearing loss: A case report. BMC Med Genet. 2019, 20, 84. [Google Scholar] [CrossRef]
- Beaman, G.M.; Galatà, G.; Teik, K.W.; Urquhart, J.E.; Aishah, A.; O’Sullivan, J.; Bhaskar, S.S.; Wood, K.A.; Thomas, H.B.; O’Keefe, R.T.; et al. A homozygous missense variant in CHRM3 associated with familial urinary bladder disease. Clin. Genet. 2019, 96, 515–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dupont, M.A.; Humbert, C.; Huber, C.; Siour, Q.; Guerrera, I.C.; Jung, V.; Christensen, A.; Pouliet, A.; Garfa-Traoré, M.; Nitschké, P.; et al. Human IFT52 mutations uncover a novel role for the protein in microtubule dynamics and centrosome cohesion. Hum. Mol. Genet. 2019, 28, 2720–2737. [Google Scholar] [CrossRef]
- Ellingford, J.M.; Thomas, H.B.; Rowlands, C.; Arno, G.; Beaman, G.; Gomes-Silva, B.; Campbell, C.; Gossan, N.; Hardcastle, C.; Webb, K.; et al. Functional and in-silico interrogation of rare genomic variants impacting RNA splicing for the diagnosis of genomic disorders. BioRxiv 2019. [Google Scholar] [CrossRef] [Green Version]
- Chase, A.; Score, J.; Cross, N.C.P.; Lin, F.; Bryant, C.; Waghorn, K.; Yapp, S.; Carreno-Tarragona, G.; Aranaz, P.; Villasante, A.; et al. Mutational mechanisms of EZH2 inactivation in myeloid neoplasms. Leukemia 2020, 34, 3206–3214. [Google Scholar] [CrossRef]
- Thomas, H.B.; Wood, K.A.; Buczek, W.A.; Gordon, C.T.; Pingault, V.; Attié-Bitach, T.; Hentges, K.E.; Varghese, V.C.; Amiel, J.; Newman, W.G.; et al. EFTUD2 missense variants disrupt protein function and splicing in mandibulofacial dysostosis Guion-Almeida type. Hum. Mutat. 2020, 41, 1372–1382. [Google Scholar] [CrossRef]
- Cao, X.; Zhang, Y.; Payer, L.M.; Lords, H.; Steranka, J.P.; Burns, K.H.; Xing, J. Polymorphic mobile element insertions contribute to gene expression and alternative splicing in human tissues. Genome Biol. 2020, 21, 1–19. [Google Scholar] [CrossRef]
- Knapp, K.M.; Sullivan, R.; Murray, J.; Gimenez, G.; Arn, P.; D’Souza, P.; Gezdirici, A.; Wilson, W.G.; Jackson, A.P.; Ferreira, C.; et al. Linked-read genome sequencing identifies biallelic pathogenic variants in DONSON as a novel cause of Meier-Gorlin syndrome. J. Med Genet. 2019, 57, 195–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mutai, H.; Wasano, K.; Momozawa, Y.; Kamatani, Y.; Miya, F.; Masuda, S.; Morimoto, N.; Nara, K.; Takahashi, S.; Tsunoda, T.; et al. Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans. PLoS Genet. 2020, 16, e1008643. [Google Scholar] [CrossRef] [Green Version]
- Tang, M.; Alaniz, M.E.; Felsky, D.; Vardarajan, B.; Reyes-Dumeyer, D.; Lantigua, R.; Medrano, M.; Bennett, D.A.; De Jager, P.L.; Mayeux, R.; et al. Synonymous variants associated with Alzheimer disease in multiplex families. Neurol. Genet. 2020, 6, e450. [Google Scholar] [CrossRef] [PubMed]
Reference | Vector | Issue | Context | Study Topic | ASE | Special Features |
---|---|---|---|---|---|---|
Abdulhay et al., 2019 [55] | pSpliceExpress | Disease-related | Hematopoiesis | Genetic variants | Intron retention | Investigations on an intronic mutation disrupting the activity of snRNP U2 |
Alaa el Din et al., 2015 [46] | pSpliceExpress | Disease-related | Hereditary hemorrhagic telangiectasia syndrome | Genetic variants | Alt. splice site, Intron retention | Examination of the pathogenicity of genetic variants and their influence on splicing |
Bartosovic et al., 2017 [49] | pDESTsplice | Physiological role | RNA modification via FTO demethylase | RNA modification | Exon skipping | Comparison of splicing regulation in FTO knock-out cells vs. wildtype cells |
Beaman et al., 2019 [57] | derivate of pSpliceExpress | Disease-related | Urinary bladder disease | Genetic variants | N/A | Case report |
Cao et al., 2020 [62] | pSpliceExpress | Physiological role | pMEIs | Genetic variants | Exon skipping | Experimental validation of pMEI sQTLs based on data from the GTEx project |
Carvill et al., 2018 [50] | pDESTsplice | Disease-related | Dravet syndrome and related genetic epilepsies | Genetic variants | Intron retention | Analysis of a new genetic variant identified by genome sequencing in a patient |
Chase et al., 2020 [60] | pSpliceExpress | Disease-related | Myeloid neoplasms | Genetic variants | Exon skipping | Effect of mutations on methylation activity and the splicing process |
Dupont et al., 2019 [58] | pSpliceExpress | Disease-related | Diseases linked to cilium | Genetic variants | Exon skipping | Comparison of IFT52 mutations in fetuses with distinct phenotypes |
Ellingford et al., 2019 [59] | derivate of pSpliceExpress | Disease-related | Rare monogenic disorders | Genetic variants | Alt. splice site, Cryptic splice site, Exon skipping, Intron retention | Experimental set-up to examine accuracy of in silico variant prioritization strategies |
Kishore et al., 2010 [41] | pSpliceExpress | Disease-related | Prader–Willi syndrome | Splicing regulators | Exon skipping, Intron retention | Cotransfection of target minigenes and SNORD 115 expression constructs |
Knapp et al., 2020 [63] | pSpliceExpress | Disease-related | Meier–Gorlin syndrome | Genetic variants | Intron retention | Identification of novel genetic variants in genes that cause disease |
Legendre et al., 2018 [51] | pSpliceExpress | Disease-related | CHARGE syndrome | Genetic variants | Intron retention | Branch point analyses |
Listerman et al., 2013 [44] | pSpliceExpress | Disease-related | Cancer biology | Splicing regulators | Exon skipping | SRSF11, hnRNPH2 and hnRNPL regulate TERT exon 7/8 skipping |
Mattison et al., 2018 [53] | pDESTsplice | Disease-related | Epilepsy | Genetic variants | Exon skipping | Splicing studies on genetic variants discovered in patients |
Mutai et al., 2020 [64] | pSpliceExpress | Disease-related | Hereditary hearing loss | Genetic variants | Exon skipping | Combination of minigene assays and functional analyses in cochlear tissues |
Payer et al., 2019 [54] | pSpliceExpress | Physiological role | Alu polymorphisms | Genetic variants | Exon skipping | Influence of Alu element polymorphisms on splicing |
Rittore et al., 2014 [45] | pSpliceExpress | Disease-related | Inflammatory diseases | Genetic variants | Exon skipping | Assessment of combinatorial effects of SNPs |
Reference | Vector | Issue | Context | Study Topic | ASE | Special Features |
Scott et al., 2012 [43] | pDESTsplice | Disease-related | Cystic fibrosis | Genetic variants | Cryptic splice site, Exon skipping | Selection of genetic variants for experimental testing via bioinformatic tools |
Starokadomskyy et al., 2016 [48] | pSpliceExpress | Disease-related | X-linked late pigmentary disorder | Genetic variants | Intron retention | Investigations on an intronic mutation causing a rare X-chromosomal disease |
Sumanasekera et al., 2012 [42] | pSpliceExpress | Disease-related | Ceramide-mediated splicing, Cancer drug | Splicing regulators | Alt. splice site, Exon skipping | Influence of C6 pyridinium ceramide on splicing |
Tang et al., 2020 [65] | pDESTsplice | Disease-related | Alzheimer’s disease | Genetic variants | N/A | Investigations of genotype-dependent splicing efficiencies |
Thomas et al., 2020 [61] | pSpliceExpress | Disease-related | Mandibulofacial dysostosis Guion–Almeida type | Genetic variants | Cryptic splice site, Exon skipping, Intron retention | Investigations on pathogenic variants altering splicing of the human EFTUD2 gene and the yeast homolog SNU114 |
Varga et al., 2019 [56] | pSpliceExpress | Disease-related | Autosomal dominant sensorineural hearing loss | Genetic variants | Exon skipping | Case report |
Wang et al., 2018 [52] | pSpliceExpress | Physiological role | Mammalian cerebellar development | RNA modification | Exon skipping | Aberrant splicing due to METTL3-mediated m6A modification |
Xiao et al., 2016 [47] | pSpliceExpress | Physiological role | Splicing regulatory factors, RNA-binding proteins | Splicing regulators | Exon skipping | Splicing regulation of ZNF638 upon knockdown of YTHDC1, SRSF3 or SRSF10 |
Reference | Genes | Exons | Genetic Variants | Source (Size) | Variant Creation | Donor Vector | Cloning | Construct Verification | Cells | RNA Iso. | Detection Procedures |
---|---|---|---|---|---|---|---|---|---|---|---|
Abdulhay et al., 2019 [55] | GATA1 | Exon 5–6 | chrX:48652176C>T (hg19) | DNA (1335 bp *) | Control & patient | / | RE | N/A | HEK293T | 48 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Alaa el Din et al., 2015 [46] | ACVRL1 | Exon 6, Exon 7, Exon 9 | c.733A>G, c.1249A>T, c.1048+5G>A | DNA (≈500–700 bp) | N/A | / | Gateway | RE digestion, Sequencing (plasmid) | HeLa | 48 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Bartosovic et al., 2017 [49] | BRD8 | Exon 20–21 | / | Gene synthesis (1202 bp *) | Site-directed mutagenesis | N/A | Gibson Assembly | N/A | HEK293T | 24 h | RT-PCR, Gel electrophoresis |
Beaman et al., 2019 [57] | CHRM3 | Exon 7 * | c.352G>A | DNA (840 bp) | Control & patient | / | NEBuilder® | Sequencing (plasmid) | HEK293 | 20 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Cao et al., 2020 [62] | SS18L1, CAP1, IFT122 | Exon 2–3 (SS18L1) *, Exon 2 (CAP1) *, Exon 8–9 (IFT122) * | pMEIs | DNA (≈2800–5500 bp *) | N/A | / | Gateway | Sequencing (plasmid) | HEK293T | 24 h | RT-PCR, Gel electrophoresis |
Carvill et al., 2018 [50] | SCN1A | Exon 20–21 | chr2:166864064G>A, chr2:166864057_166864061del, chr2:166863778C>G, chr2:166863774C>T, chr2:166863726G>A (hg19) | DNA (≈7500 bp) | Site-directed mutagenesis | pDONR221 | Gateway | Sequencing (plasmid) | K562, A549 | 24 h | RT-qPCR |
Chase et al., 2020 [60] | EZH2 | Exon 8 | Y244D, E249K, L252V, A255T, R288Q, H297R, R298L | BAC-derived PCR fragment (1543 bp *) | Site-directed mutagenesis | / | Gateway | N/A | HEK293F, HeLa | 48 h | RT-PCR, Gel electrophoresis |
Dupont et al., 2019 [58] | IFT52 | Exon 8 | c.695–699delinsCA | DNA (464 bp *) | Control & patient | / | Gateway | N/A | HEK293T | 48 h | RT-PCR, Gel electrophoresis |
Ellingford et al., 2019 [59] | ABCA4, GUCY2D, PDE6B, MERTK, SCN2A, ABHD12, CRYBA1, DNAH11, CFTR, RPGR, MYBPC3, TRPM1 | N/A | NM_000350.2:c.5584+6T>C, NM_000180.3:c.3043+5G>A, NM_000283.3:c.2130-15G>A, NM_006343.2:c.2486+6T>A, NM_001040142.1:c.2919+3A>G, NM_015600.4:c.867+5G>A, NM_005208.4:c.213C>T, NM_001277115.1:c.6547-963G>A, NM_000492.3:c.3874-4522A>G, NM_001034853.1:c.247G>T, NM_001034853.1:c.1754-3G>C, NM_000256.3:c.1224-21A>G, NM_002420.5:c.899+29G>A | DNA (N/A) | Control & patient | / | NEBuilder® | Sequencing (plasmid) | HEK293 | 48 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Reference | Genes | Exons | Genetic Variants | Source (Size) | Variant Creation | Donor Vector | Cloning | Construct Verification | Cells | RNA Iso. | Detection Procedures |
Kishore et al., 2010 [41] | DPM2, TAF1, RALGPS1, PBRM1, CRHR1 | N/A | / | BAC-derived PCR fragments (N/A) | / | / | Gateway | RE digestion, Sequencing (plasmid) | Neuro2A | N/A | RT-PCR, Gel electrophoresis |
Knapp et al., 2020 [63] | DONSON | Exon 3–5 | c.607-36G>A | DNA (3130bp *) | Control & patient | / | Gateway | Sequencing (plasmid) | HeLa | 24 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Legendre et al., 2018 [51] | CHD7 | Exon 26 | rs398124321, rs1131690787, rs794727423, rs199981784 | DNA (566bp) | Site-directed mutagenesis | / | Gateway | Sequencing (plasmid) | HeLa | 48 h | RT-PCR, Fluorescent capillary electrophoresis, Nested lariat RT-PCR, Sequencing (PCR product) |
Listerman et al., 2013 [44] | TERT | Exon 5–9 | / | DNA from HeLa (N/A) | / | / | Gateway | RE digestion, Sequencing (plasmid) | HEK293T | 48 h | RT-qPCR |
Mattison et al., 2018 [53] | SLC6A1 | Exon 8–10 | c.850-2A>G | DNA (1450bp) | Site-directed mutagenesis | pENTR/D- TOPO | Gateway | RE digestion, Sequencing (plasmid) | HEK293 | 24 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Mutai et al., 2020 [64] | SLC12A2 | Exon 21–22 | c.2930-2A>G | DNA (2507bp) | Control & patient | / | Gateway | Sequencing (plasmid) | HEK293T | 48 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Payer et al., 2019 [54] | NUP160, CCDC110, BPIFC, SLC2A9, CD58 | Exon 33 (NUP160), Exon 5 (CCDC110), Exon 10–11 (BPIFC), Exon 2 (SLC2A9), Exon 3 (CD58) | AluYh3a3 (ALU_umary_ALU_8566), AluY (ALU_umary_ALU_4001), AluYa5 (ALU_umary_ALU_12481), AluYi6 (RIP-041), AluY (DEL_pindel_1315) | DNA, Gene synthesis (≈1000–2400bp *) | Control & patient, Gene synthesis | / | Gateway, Gibson Assembly | Sequencing (plasmid) | HEK293T | 24 h | RT-PCR, Gel electrophoresis |
Rittore et al., 2014 [45] | TNFRSF1A | Exon 1–4, Exon 1–2, Exon 2–4 | rs1800692, rs4149570, rs767455 | DNA (≈800–1600bp) | Site-directed mutagenesis | TOPO-TA | RE | N/A | HEK293T, SW480 | N/A | RT-qPCR |
Scott et al., 2012 [43] | CFTR | Exon 6, Exon 8, Exon 15, Exon 22 | rs35033453, rs1800083, rs1800084, rs1800105, rs1800122 | Gene synthesis (≈250–400bp) | Gene synthesis | TOPO-TA (pCR™8) | Gateway | RE digestion, Sequencing (plasmid) | K562, IB3-1 | 24 h | RT-PCR, Gel electrophoresis |
Starokadomskyy et al., 2016 [48] | POLA1 | Exon 13–14 | NC_000023.10:g.24744696A>G | DNA (N/A) | Control & patient | / | Gateway | Sequencing (plasmid) | HEK293 | 48 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Reference | Genes | Exons | Genetic Variants | Source (Size) | Variant Creation | Donor Vector | Cloning | Construct Verification | Cells | RNA Iso. | Detection Procedures |
Sumanasekera et al., 2012 [42] | DBF4B, MYO18A b, POLB, MAPT, SYK | Exon 10 (DBF4B) *, Exon 39–41 (MYO18A) *, Exon 1–2 (POLB) *, N/A (SYK, MAPT) | / | BAC-derived PCR fragments (≈2200–4400bp *) | / | / | Gateway | RE digestion, Sequencing (plasmid) | HEK293 | N/A | RT-PCR, Gel electrophoresis |
Tang et al., 2020 [65] | CDH23, SLC9A3R1 | Exon 50 (CDH23), Exon 3 (SLC9A3R1) | rs56013867, rs41282067 | Gene synthesis (≈150–230 bp) | Gene synthesis | pENTR/D- TOPO | Gateway | RE digestion, Sequencing (plasmid) | HEK293 | 24 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Thomas et al., 2020 [61] | EFTUD2 | Exon 5, Exon 9, Exon 10, Exon 13 Exon 15, Exon 16, Exon 18, Exon 19, Exon 20, Exon 23, Exon 25, Exon 26, Exon 27 | c.428C>T, c.620G>A, c.623A>G, c.670G>A, c.670G>C, c.784C>T c.857A>G, c.1149G>C, c.1306C>G, c.1426T>C, c.1496G>A, c.1732C>T, c.1860G>C, c.1860G>T, c.1910T>G, c.2033C>A, c.2305G>C, c.2332C>T, c.2467G>A, c.2485G>A, c.2566C>T, c.2813G>A | DNA (N/A) | Site-directed mutagenesis | / | Gibson Assembly | Sequencing (plasmid) | HEK293 | 48 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Varga et al., 2019 [56] | EYA4 | Exon 10 | c.804G>C | DNA (N/A) | Patients | / | Gateway | Colony PCR, Sequencing (plasmid) | HeLa | 24 h | RT-PCR, Gel electrophoresis, Sequencing (PCR product) |
Wang et al., 2018 [52] | Lrp8 a, Grin1 a | Exon 19 (Lrp8), Exon 21 (Grin1) | / | N/A (≈1000–1400bp *) | Site-directed mutagenesis | / | N/A | N/A | HeLa | 48 h | RT-PCR, Gel electrophoresis |
Xiao et al., 2016 [47] | ZNF638 | Exon 2 | / | DNA from HeLa (≈2500bp) | Site-directed mutagenesis | / | Gateway | N/A | HeLa | 48 h | RT-PCR, Gel electrophoresis |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Putscher, E.; Hecker, M.; Fitzner, B.; Lorenz, P.; Zettl, U.K. Principles and Practical Considerations for the Analysis of Disease-Associated Alternative Splicing Events Using the Gateway Cloning-Based Minigene Vectors pDESTsplice and pSpliceExpress. Int. J. Mol. Sci. 2021, 22, 5154. https://doi.org/10.3390/ijms22105154
Putscher E, Hecker M, Fitzner B, Lorenz P, Zettl UK. Principles and Practical Considerations for the Analysis of Disease-Associated Alternative Splicing Events Using the Gateway Cloning-Based Minigene Vectors pDESTsplice and pSpliceExpress. International Journal of Molecular Sciences. 2021; 22(10):5154. https://doi.org/10.3390/ijms22105154
Chicago/Turabian StylePutscher, Elena, Michael Hecker, Brit Fitzner, Peter Lorenz, and Uwe Klaus Zettl. 2021. "Principles and Practical Considerations for the Analysis of Disease-Associated Alternative Splicing Events Using the Gateway Cloning-Based Minigene Vectors pDESTsplice and pSpliceExpress" International Journal of Molecular Sciences 22, no. 10: 5154. https://doi.org/10.3390/ijms22105154
APA StylePutscher, E., Hecker, M., Fitzner, B., Lorenz, P., & Zettl, U. K. (2021). Principles and Practical Considerations for the Analysis of Disease-Associated Alternative Splicing Events Using the Gateway Cloning-Based Minigene Vectors pDESTsplice and pSpliceExpress. International Journal of Molecular Sciences, 22(10), 5154. https://doi.org/10.3390/ijms22105154