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Abstract: The review begins with molecular genetics, which hit the field unveiling the involvement of
oncogenes and tumor suppressor genes in the pathogenesis of colorectal cancer (CRC) and uncovering
genetic predispositions. Then the notion of molecular phenotypes with different clinical behaviors
was introduced and translated in the clinical arena, paving the way to next-generation sequencing
that captured previously unrecognized heterogeneity. Among other molecular regulators of CRC
progression, the extent of host immune response within the tumor micro-environment has a critical
position. Translational sciences deeply investigated the field, accelerating the pace toward clinical
transition, due to its strong association with outcomes. While the perturbation of gut homeostasis
occurring in inflammatory bowel diseases can fuel carcinogenesis, micronutrients like vitamin D
and calcium can act as brakes, and we discuss underlying molecular mechanisms. Among the
components of gut microbiota, Fusobacterium nucleatum is over-represented in CRC, and may
worsen patient outcome. However, any translational knowledge tracing the multifaceted evolution
of CRC should be interpreted according to the prognostic and predictive frame of the TNM-staging
system in a perspective of clinical actionability. Eventually, we examine challenges and promises of
pharmacological interventions aimed to restrain disease progression at different disease stages.

Keywords: colorectal cancer; progression; heterogeneity

1. Heterogeneous Gene Damage and Different Progression of Colorectal Cancer
The Discovery of the Main Patterns of Gene Damage, CIN and MSI

More than three decades ago, molecular genetics introduced a substantial revolu-
tion in oncology. The discovery of the derangements due to the activation of oncogenes
and the silencing of tumor suppressor genes put forward the notion that the type and
amount of genetic damage underlie the development and the evolution of cancer. In the
beginning, hunting for genes responsible for inherited predispositions to cancer had a
pivotal role, and colorectal cancer (CRC) acted as a key model. The discovery that APC
was the gene underlying the development of familial polyposis (FAP), once mutated in the
germline [1–3], fit the two-hit hypothesis by Knudson [4] in light of somatic inactivation of
the other allele in somatic tumor cells [5], mostly due to loss of heterozygosity, as in the
case of retinoblastoma [4]. It was also shown that the same type of gene damage occurs
in most sporadic tumors, inactivating the two alleles of this gatekeeper in somatic cells
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along colorectal carcinogenesis. In the early 1990s, the main players in CRC were APC,
KRAS [6] and TP53 [7,8], and a model for their mostly sequential multistep damage [9]
became a paradigm in cancer genetics [10]. Meanwhile, moving from the APC-FAP lesson,
researchers were trying to identify the culprit for hereditary non-polyposis colorectal cancer
(HNPCC; now referred to as Lynch syndrome) [11,12]. Independent teams contributed to
the discovery of the molecular phenotype of this disease, known as microsatellite instability
(MSI), although the initial terminology differed according to the groups engaged in the com-
petitive discovery [13–15]. It became rapidly appreciated that Lynch syndrome and MSI
arose because of germline defects in one of the genes of the DNA mismatch repair (MMR)
system (namely MLH1, MSH2, MSH6, PMS2 and EPCAM deletion) [16]. Additionally, MSI
observed in a relevant fraction of sporadic CRCs (≥10%) was short after being linked to
somatic silencing of MLH1, due to its promoter hypermethylation [17–19]. Altogether, MSI
inherited and sporadic cancers account for 15–20% of CRCs, and their somatic damage is
different from that of non-MSI CRCs (or MS-stable, MSS). MSI cancers harbor thousands of
unrepaired replication errors, mostly frameshift mutations not observed in MSS tumors,
which otherwise display much higher degrees of chromosomal damage (from rearrange-
ments to aneuploidy), and were thus also termed chromosomally unstable or CIN (Table 1).
The growing importance of understanding that a molecular classification of CRC could
be attained is exemplified by the appearance of the feasibility of a molecular screening
that could allow distinguishing MSI from MSS CRCs at end of the 1990s [20]. Surprisingly,
clinical actionability of such molecular differentiation, although well established, was
unanimously recognized by scientific societies active in the clinical arena 15 years later [21].
Expanding the lessons learned from inherited predispositions, the molecular heterogeneity
of CRC was becoming apparent, spreading the notion that this disease encompasses entities
with different progression (i.e., natural history) and postsurgical evolution [22]. Clinically,
it became increasingly appreciated that MSI cancers display a significant better postsurgical
outcome, largely explained by the low rate of patients presenting with advanced disease at
diagnosis, due to their reduced metastatic potential [23–25]. MSI and CIN cancers were
also differentiated according to the responsiveness to cytotoxic chemotherapy [26], thus
anticipating the notion that the type of genetic damage may modify the responsiveness to
drugs as well [27], and later it was shown that defective MMR is a predictive marker for
lack of efficacy of fluorouracil-based adjuvant therapy in CRC [28].

Table 1. Molecular phenotypes of colorectal cancer according to the prevalent patterns of alterations.

DNA mRNA

Type of Gene Damage Methylation Gene Expression Patterns

Microsatellite instability (MSI)
= mismatch repair (MMR) deficient CpG island methylator (CIMP+) Consensus molecular subtype (CMS) 1

CRC intrinsic subtype (CRIS)-A/B

Microsatellite stable (MSS)
= MMR proficient

= chromosomal instability (CIN)
Mostly CIMP-

CMS2, canonical CRIS-C

CMS3, metabolic CRIS-D

CMS4, mesenchymal CRIS-E/B

More recently, the responsiveness of progressive metastatic CRC to immune check-
point blockade (anti-programmed death 1 immune check point inhibitor) was shown to
occur more frequently in patients with MMR-deficient cancers (harboring an average of
1782 somatic mutations; see below) than in MMR-proficient cancers (harboring a mean of
73 mutations) [29].

Thus, molecular data over time have established the bases for the notion that different
types of genetic damage underlie different natural histories of CRC progression, as well as
its postsurgical outcome and drug-responsiveness.
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2. DNA Hypermethylation and CIMP

As the clinical–pathological differences between MSI and MSS CRCs were becoming
increasingly evident, a further molecular subtype was being investigated. Moving from
the methylation status of MLH1 in sporadic MSI CRCs [30], it was appreciated that gene
hypermethylation events cluster in a fraction of cases, overlapping with sporadic MSI [31]
ones due to MLH1 hypermethylation. The comparison of the increased frequency of
epigenetic events at certain loci (although these were not as well standardized as those
tested to establish MS-status) coincided with the proposal of a third CRC molecular subtype,
referred to as CpG island methylator phenotype, or CIMP [32,33] (Table 1). Promoter
hypermethylation leading to gene silencing would thus resemble other gene-silencing
mechanisms, and also can occur as a second hit in genes like APC [34]. Similar to MS
typing, the CIMP profile obtained by the analysis of given loci allows differentiating CRC
accordingly (i.e., CIMP high vs. low vs. no-CIMP). CIMP+ or high CRC had a peculiar
profile [35], associated with older age, proximal location, poor differentiation, MSI-high
and BRAF mutation [33], and inversely with LINE-1 hypomethylation. CIMP-high CRCs
were also found to have a better outcome than CIMP-low, particularly if showing wild-type
BRAF [36]. The concept that was originating was that it would be eventually possible to
reach a molecular pathological epidemiology of CRC exploiting molecular classification
and incorporating interactions with environmental factors, as well as associations with
clinical outcome [37].

3. The Advent of Next-Generation Sequencing and the Evidence of Widespread
Genetic Heterogeneity

While these classification schemes [36] were being variably adopted in translational
research [38], new sequencing technologies (i.e., next-generation sequencing, NGS) hit
the research ground, allowing an unbiased identification of the extent of genetic damage
in cancer [39], which was previously unthought. These innovative explorations showed
that the average number of gene mutations in CRC was approximately 80, of which one
out of 5–6 would occur in candidate cancer genes. It also emerged that such candidates
encompassed genes for which, in spite of functional studies, no mutational evidence had
been previously reported for their association with cancer, as well as genes not previously
linked to neoplasia. Such candidates comprised transcriptional regulators, genes involved
in cell adhesion and signal transduction. The heterogeneity of mutated genes was exempli-
fied by the shared number of candidate cancer gene mutations, not exceeding six common
mutants among cancers. These notions were refined shortly afterward by drawing the
genomic landscape of CRC [40], which, when recapitulating these results, showed how
a few mutational peaks (or “mountains”) in known cancer genes are outnumbered by
a multitude of hills represented by infrequently mutated genes. The previous focus on
mountains was largely determined by available technology, while NGS introduced new
paradigms. In this novel mutational milieu, a minority of the events is responsible for
driving the processes of tumor initiation, progression and maintenance. The vast hetero-
geneity of the mutational hills occurring in individual CRC could still be recapitulated
by the pathways they derange. Thus, it could be possible to classify the main alterations
occurring during tumorigenesis according to the pathways targeted by mutational events.
Along this line, mRNA sequencing by NGS provides a way to identify the alterations
of gene expression occurring in colorectal carcinogenesis, and by mean of this approach,
an international consensus was thus proposed comprising four molecular subtypes (i.e.,
CMS1 to CMS4) [41]. This network-based approach used aggregated expression data
from six previously analyzed cohorts [41], and eventually recapitulated CRC subtypes
into MSI immune (CMS1), canonical (CMS2), metabolic (CMS3) and mesenchymal (CMS4)
(Table 1). This taxonomy was based upon differences in gene expression, mainly refin-
ing the classification of non-MSI subtypes. These expression patterns also reflected in
individual clinical behaviors marked by different relapse-free survivals and survival after
relapse. However, gene-expression patterns are influenced by their stromal content, which
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contributes to the type and quantity of detected transcripts. Isella et al. showed that this is
the case for the mesenchymal subtype, and that transcriptional signatures incorporating
cancer-associated fibroblasts (CAF), leukocytes or endothelial cells were more abundant
in CRC classified as mesenchymal [42]. Interestingly, CRC with a high content of CAF
transcripts was associated with a worse outcome, specifically in the absence of adjuvant
therapy. Accordingly, an evolution of the classification employing transcriptional signa-
tures was then developed following the depletion of the stromal signatures, which can be
obtained by xeno-transplantation. This approach assessing intrinsic translational features
of cancer cells led to the identification of five CRC intrinsic subtypes (CRIS; A to E), in
which transcriptional signatures are inherent to neoplastic cells deprived of the stromal
components [43] (Table 1). As this classification was experimentally developed by moving
from CRC samples that had produced liver metastases, it might better fit aggressive tumors
than those with smolder behavior. These studies testify that together with technological
improvement, bioinformatics entered into the arena of molecular analysis, modifying the
classic “black and white” or null hypothesis approach. Clearly, overlaps exist among
the different classification schemes, and certain historically proven paradigms persist,
chiefly the taxonomic independence of MSI/CIMP/BRAF-mutated tumors. Differently,
the stromal contamination may affect the independence of a mesenchymal subtype, thus
questioning the occurrence of epithelial to mesenchymal transition (EMT) in CRC [44].
At any event, taxonomic features like the content of CAF signatures remain a negative
prognostic factor, indicating the relevant contribution exerted by the stromal compartment
in determining disease progression.

Under several respects, it became progressively evident that intrinsic genetic and
epigenetic features of the tumor are not the only factor that can explain the different
behaviors of CRC. While the type of gene damage inherently drives the evolutive speed of
cancer, other “extrinsic” processes are involved in determining its progression. Among
these is the immune response of the host, comprising chiefly its adaptive immune arm [45],
but not restricted to it [46,47]. The playgrounds for cancer restraint or fueling could be
local; i.e., the tumor microenvironment (TME), as well as systemic and at distant sites, such
as the metastatic niche [48].

4. Tumor-Host Immune Response as Switcher on the Routes of Cancer Progression

Alongside more common histopathological and molecular classifiers, recent years have
witnessed the emergence of immune components as prognostic markers in CRC [45,49,50].
What is commonly referred to as the immune contexture [51]; i.e., the density and types
of immune cells infiltrating cancer tissues, has been object of studies aimed at both high-
resolution definition (primarily achieved with multidimensional approaches) and narrow-
ing down to specific biomarkers to be used in daily routines. The Immunoscore represents
the ultimate output of those studies [52,53].

Efforts aimed at providing associative links between specific immune cell types and
distinct disease outcomes set their foundations on earlier observations that most cancer
tissues host immune cells in their microenvironment [54,55], and on mechanistic evidence
of the involvement of immune-based circuits in cancer progression [56–60]. Particularly
relevant have been studies aimed at showing the causative link between inflammation
and cancer occurrence and progression [56,60]. On the other hand, the contribution of
adaptive immunity to recognition and elimination of cancer cells has been known for
a long time [54,55]. Both components, innate and adaptive, with their complex and
intersecting protumor and antitumor capabilities clearly emerge from deep analyses of
the microenvironment of CRC [61]. A balance between the two is likely to contribute to
progression versus resistance.

Human studies have not allowed, so far, to mechanistically define the sequence of
events that cause accumulation of specific immune subsets in cancer tissues. Despite the
fact that recent high-dimensional studies have shed light on the variety of immune cells in
human CRC tissues [61], fully elucidating the complex dynamics and relative contribution
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of resident versus recruited immune components requires further studies. Nonetheless,
a general scenario depicting how immune cells infiltrate a tumor is represented by the
cancer immune cycle [62], according to which antigen-presenting cells, mostly dendritic
cells (DCs), infiltrate the tumor tissue, uptake tumor-derived products by various innate
recognition receptors, produce type I interferons and traffic to draining lymph nodes,
where they present antigens to antigen-specific cytotoxic T cells (Figure 1). This event may
be more efficient in tumors expressing neoantigens or with a high mutational burden [63].
Subsequent migration of activated T cells through the circulation and back to the tumor,
guided by chemokine gradients including primarily CXCL9/CXCL10, would account
for the high density of T cells in cancer tissues [64]. As to the activation status of T
cells, prolonged immunosuppressive circuits, such as inhibitory axes like CTLA-4 and
PD-1, may be responsible for T-cell dysfunction, accounting for the immune escape and
cancer progression.
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to antigen-specific cytotoxic T cells. Sustained immunosuppressive circuits may induce T-cell dysfunction, immune escape
and eventually cancer progression.

As mentioned, resident immune populations; e.g., tissue resident macrophages (TRMs)
or intraepithelial lymphocytes (IELs), variably contribute to the balance of protumor or
antitumor functions. Macrophages are specialized phagocytes with a high capability to
ingest cellular debris, present antigens and impact on the adaptive immune response
through cytokine production [65]. Their plasticity is a peculiar feature, whereby they
can adopt an inflammatory phenotype ensuing in tumor elimination, as well as mature
to subtypes evidently engaged in protumor functions. In the colon, TRMs have been
described as constantly replenished by circulating monocytes [66]. This peculiarity that
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distinguishes them from other, long-lived TRMs may account for the exceptional favorable
prognosis associated with macrophages in human CRC.

5. Cellular and Molecular Players in the Tumor Microenvironment: Meaningful Links

The immune microenvironment of CRC has gained much attention in the last few
years, primarily because of the coexistence of protumor inflammatory signals and antitumor
adaptive immune responses. These two almost opposite scenarios impinge into distinct
clinically relevant outcomes. The link between chronic inflammation and CRC is robustly
reflected in a higher risk of malignant transformation in inflammatory bowel disease
(IBD) patients [60,67–70]. On the other hand, the strong capability shown by T-cell-related
variables to stratify CRC patients in prognostic groups [45,49] suggests the existence of
effective antitumor adaptive circuits. Translation of this knowledge to evidence-based
biomarker identification is an active field and holds promise for better management of CRC
patients. Both soluble mediators and cell types are being evaluated as markers of disease
progression, based on mechanistic evidence of their involvement in the TME of CRC.

5.1. Soluble Mediators

The considerable and persistent release of inflammatory mediators in the TME is
causatively linked to the strong association between IBD and CRC development [68,71–73].
Persistent infections [60,74], as well as sterile tissue damage (leading to release of alarmins,
cell-stress signals, free nucleic acids), are acknowledged as drivers of the inflammatory
response, by generating molecular patterns recognized as harmful by innate inflammatory
cells [58,59]. Activation of key transcription factors, such as NF-kB and STAT-3, critically
induces production of inflammatory mediators, including interleukin 1 beta (IL-1β), tumor
necrosis factor-alpha (TNFα), interleukin 6 (IL-6) and chemokines (CCL2 and CXCL8),
further fueling recruitment of inflammatory leukocytes. Both cytokine mediators with a
clear tumor-inhibitor effect, such as interferon-gamma (IFN-7); IL-12, 15 and 18 [73]; and a
protumor one, such as IL-6, IL-17A, IL-22 and IL-23, have been recorded in CRC [73,75]. For
others, such as IL-1 and TNFα, which are master inflammatory cytokines, the role is still
debated and highly dependent on the experimental setting [71]. Collectively, the divergent
roles of cytokines in CRC could be explained by the coexistence of some inflammatory
mediators orchestrating specific antitumor immunity [71,76] and a variety of cytokines
sustaining and fueling detrimental protumorigenic inflammation. The critical contribution
of these players and of other innate mediators, such as pentraxin-3 (PTX3) and C reactive
protein (CRP), involved in early inflammatory circuits to the inflammatory milieu, have
promoted studies aimed at testing their prognostic value in CRC [73,77–79]. Blood markers
of oxidative stress have been found to be strongly associated with poor prognosis in
CRC [80]. AN emerging concept is that profiling of multiple cytokines is a better approach,
based on evidence that protumorigenic and antitumorigenic cytokines are found and
correlate with disease outcome [76].

5.2. Immune Cell Players

The occurrence and clinical relevance of effector T cells in CRC has enjoyed a lot of atten-
tion in the last decade, due to the already-discussed translational implications [45,49,50,81]. In
a recent study on CRC, Zhang et al. finely profiled immune subsets using a comprehensive
sequencing approach and identified 20 clusters of T cells, of which eight were CD8+ and 12
were CD4+ T cells [82], allowing concomitant tracking of trajectories of some T-cell subsets
to others. These approaches open a range of possibilities to gain more insights into immune
infiltrating cells, with the potential to be translated to identification of relevant markers.

Regulatory T cells (Treg) are essential suppressive modulators of intestinal inflamma-
tion, thanks to their production of the anti-inflammatory cytokines IL-10 and transforming
growth factor beta (TGF-β); therefore, they were supposed to be impairing anti-tumor
immune responses. Instead, solid evidence of an association of Treg density with favor-
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able prognosis [83–85] in human CRC suggest that they may in fact be beneficial for the
restriction over protumorigenic inflammation [86].

Attention to B-cell infiltration in CRC has been raised by their frequent occurrence
within tertiary lymphoid structures, organized environments of T and B cells commonly
associated with favorable prognosis across cancers, including CRC [87–89]. Nonetheless, B
cells infiltrating cancer tissues as scattered cells have been shown to possess protumor func-
tions in other malignancies [90,91], suggesting that the local organization of B lymphocytes
is an important feature, with impact on their function and prognostic significance.

Macrophages, the most abundant immune cells within the CRC microenvironment,
have the capability to modulate every step leading to carcinogenesis and tumor pro-
gression [58,92–94]. In CRC, macrophages are orchestrators of an inflammatory milieu
considered a driver of tumor initiation and progression [95]. Single-cell analyses identified
six macrophage subsets, including two clusters of TAMs enriched in tumors and three
clusters of recruited macrophages [61]. Despite this clear engagement in protumor func-
tions, studies aimed at defining the prognostic role of macrophages in CRC have shown
surprisingly association with favorable prognosis [96–98] and response to therapy [99].

6. Links between Genetic Changes and the Immune-Contexture

Clearly, a link exists between genetic damage and the host immune response, and
again the lesson comes from MSI CRCs, which have long been known as deeply infiltrated
by T cells [100]. Such association also led in the past to the inclusion of a dense immune
infiltrate (as in Crohn’s colitis) among the criteria advocated for MSI testing [101], long
before universal screening for MMR defects were endorsed. High immunogenicity of MSI
CRCs is sustained by their defective MMR, which results in large amounts of truncated pep-
tides [102–104], acting as neo-antigens [105]. Thus, dense tumor infiltrating lymphocytes
(TILs) are a sort of twin of most MSI CRCs [106], and sustain the associative link with better
outcomes for this tumor type [49]. Yet, it is worth noting that high TIL amounts may not be
the only reason for such a prognostic link. In MSI CRCs, the lack of CIN and of relevant
damage in TSG is coupled with the peculiar genetic damage ensuing from the mutator that
mutates other mutator pathways [103], which may not undergo the same type of selective
pressure that pushes toward the enrichment of aggressive clones in MSS CRCs. MSI tumors
are not the only ones significantly associated with dense TILs and better outcomes, as MSS
CRCs with pathogenic somatic mutations in the POLE proofreading domain also share
both high TILs and good outcomes [107,108]. Accordingly, “ultramutated” CRCs have a
different clinical behavior, dictated by the type of genetic damage (whether it originates
in the germline or in somatic cells), and sustained by the amount of adaptive immune
reaction that they elicit.

It would be advisable to link the classifications pursued by DNA and mRNA data
with those obtained by typing infiltrating immune cells, which include TILs but also
innate cells, chiefly macrophages [109]. Such classification effort is meaningful, looking at
patient outcome in various settings that should move from stage at diagnosis and include
treatment [110]. An interesting paper published by Giannakis and colleagues joined the
assessment of TILs with NGS analysis [111]. They found that even within MSS CRC, a
high TIL amount correlates with high loads of neo-antigens. Other associations were with
mutations in HLA genes and in members of the antigen-processing machinery.

Immune cells in the microenvironment of human CRC significantly correlate with
postoperative tumor progression and response to therapy, fostering the development of
new immune prognostic tools and increasing our ability to stratify patients into clinical
subgroups. Most of the work done until now has focused on histopathological assessment,
while high-resolution technologies are rapidly unearthing the complexity and diversity of
immune cells in cancer tissues. In nonmetastatic settings, one could look for TNM together
with biomarkers that could allow the prognostication of CRC cured from surgery alone
and the prediction of responsiveness to adjuvant treatment of those requiring postsurgical
therapy [110].
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7. Inflammation as an Accelerator of Carcinogenesis in Inflammatory Bowel Diseases

The crucial role of immune hyperactivity and inflammation as cancer promoters
is also exemplified by the increased risk of cancer in IBD patients, which is historically
acknowledged, both for those affected by ulcerative colitis (UC) and Crohn’s disease (CD).
Therefore, the theme of cancer surveillance has become of growing importance in recent
decades, in terms of early diagnosis, understanding of the mechanisms for carcinogenesis
and awareness of the risk factors concerning this particular group of patients, including
mucosal inflammation and long-term immunosuppression [58]. From an epidemiologic
point of view, cancerous lesions usually develop in the adult age, but the adaptation of the
treatment and the optimization of the management are of paramount importance for the
long course of the disease, starting from the pediatric age.

With respect to the basic risk of developing specific cancers, pathogenesis and epi-
demiology, literature data are conflicted. Patients affected by UC included in a Finnish
study demonstrated an increased risk of colon, rectal, biliary tract and thyroid cancers,
with the risk of CRC being highest among the youngest patients. Patients with CD had a
significantly increased risk for cancers of the small intestine, anus and biliary tract, and also
for myeloma [112]. In contrast, data from Denmark indicated that only CD patients had an
increased risk of developing malignancies overall, such as small bowel cancer, lung cancer
or non-Hodgkin’s lymphoma, while the general risk for developing cancer in UC patients
was not increased [113]. Again, a large population-based study using Danish healthcare
databases found that patients with IBD, particularly CD, were at an increased risk for gas-
trointestinal and extraintestinal malignancies [114]. One pediatric French population-based
study estimated the risk of cancer in patients with childhood-onset CD (median age at
diagnosis 14.6 years; median follow-up 11.4 years), and found a significant 2.5-fold increase
compared with the background population [115]. A similar two-fold significant increased
risk of cancer was also described in a Danish study that evidenced an overall risk of cancer
in the population diagnosed at the age of 19 years or less of 2.17-fold, compared with
the non-IBD population, and was the highest among the other age groups [116]. Overall,
IBD are well-recognized risk factors for the development of colorectal and small bowel
cancer; in particular, UC and colic CD are risk factors for CRC, with 2.2 times higher risk of
developing CRC compared with the general population [117], which is specifically called
colitis-associated colorectal cancer (CAC), while ileal CD has to be surveilled with regard
to SBA. An updated meta-analysis of population-based cohort studies has quantified the
incidence of CRC among patients with IBD to be 1%, 2% and 5% after 10, 20 and >20 years
of disease duration [118]. Another large meta-analysis assessing CRC risk in patients with
IBD showed a risk of 2% at 10 years after UC diagnosis, 8% at 20 years and 18% at 30 years
after colitis onset [119,120]. Taken together, CAC remains an important consequence of
long-standing IBD, with an estimated incidence of approximately 5% after 20 years of
disease duration [121]. Important clinical differences exist between CAC and sporadic CRC
in the general population. The first is more common among young patients both in cases
of UC and CD (average age of 50–60 years in IBD compared with 65–75 years for sporadic
CRC in the general population) [122]; CAC is more likely to be found in the proximal colon
(51.5%) compared to sporadic CRC (36.4%), especially in presence of primary sclerosing
cholangitis (PSC) [123]. Furthermore, CACs are more commonly synchronous (15–20% of
CAC compared with 3–5% of sporadic CRC), have an increased frequency of mucinous
or signet ring cell histology and bear generally different genetic alterations [119,124,125].
The evolution of the epidemiology of CACs over the years seems to show a reduction
in the incidence rate. This result might be attributed to the improvement of therapies
for patients with IBD and to the advent of surveillance colonoscopy programs with early
colectomy [122,126].

The principal risk factors for the development of CAC are: IBD diagnosis at young
age (<15 years) and longer duration of the disease; male sex; extensive colitis; persistence
and severity of the inflammation; and coexistence of PSC [121,127]. An important marker
of disease severity and persistence of inflammation may be the development of colonic
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strictures. Recent studies suggest that 2% to 3.5% of colonic strictures harbor dyspla-
sia or CRC [121,128,129]. Unlike sporadic CRC, usually occurring as the end point of
the adenoma–carcinoma sequence, CACs follow the sequence inflammation–dysplasia
carcinoma [122].

Chronic inflammation and the degree of immunosuppression are the main driv-
ing factors for IBD-related carcinogenesis, which is a process of clonal evolution [119].
IBD-associated inflammation has the potential to mediate clonal evolution over time, by
mechanisms of induced by oxidative stress, inflammatory chemokines and cytokine (IL-6,
STAT3, TNF-α, IL-10, IL-12 and IL-23) hyperproduction that affect numerous metabolic
processes involved in cell repair, eventually creating a microenvironment that provides a
selective advantage to those clones able to more rapidly repopulate the healing mucosa
and to survive a cytotoxic inflammatory insult [119,130].

A proper understanding of genetic mutations should allow a better stratification of
IBD patients according to their risk for dysplasia and invasive carcinoma, in order to
personalize their treatment and surveillance; for example, a recent study found that archi-
tectural distortion seems to be significantly correlated with p53 and p21 overexpression in
epithelial cells. Several studies have identified the tissue expression of specific proteins
such as p53 and p21 in patients with IBD, in order to identify the natural evolution of these
biomarkers and their relationship with carcinogenesis [119,130]. CACs have increased
mutation frequencies of various other intracellular and intercellular signaling molecules,
such as IL-16, which is overexpressed in IBD in an inflammation-dependent manner, or
RADIL, a gene encoding a modulator of Rho GTPase signaling in cell migration, which
might provide a selective advantage in mucosal healing [119]. Emerging studies in the field
of microbiome analysis are revealing the role of the gut microbiota and intestinal barrier
function in tumorigenesis, and animal studies are beginning to shed some light on the
complex and dynamic interplay between the altered immune system, the aberrant gut mi-
crobiome and cancer development in IBD. Specifically, it was hypothesized that dysbiosis,
and changes in population of microbial species including Fusobacterium nucleatum (Fn),
Bacteroides or Prevotella, might enhance CRC progression by simultaneously regulating
multiple signaling cascades that could lead to upregulation of proinflammatory responses,
oncogenes, modulation of host immune defense mechanisms and suppression of DNA
repair systems [131,132].

8. Micronutrients and Molecular Tuning of Colorectal Carcinogenesis
8.1. Vitamin D

Among the multiple factors involved in cancer development and progression, vitamin
D is assuming an increasingly important role due to its pleiotropic effects [133].

Vitamin D comprises a group of fat-soluble secosteroids responsible for increasing
intestinal absorption of calcium, magnesium and phosphate, and many other biological
effects. In humans, the most important compounds in this group are vitamin D3 (also
known as cholecalciferol) and vitamin D2 (ergocalciferol). Vitamin D’s influence on multi-
ple biologic functions is expressed through the action of calcitriol, the product of a double
hydroxylation of cholecalciferol, and the vitamin D3 receptor; therefore, aberrations in
the physiological activity of Vitamin D may be a consequence of both its impaired serum
concentration and defective receptor activity due to genetic mutations/variants [134].

The relationship between vitamin D and CRC has been explained both by epidemio-
logic studies evidencing low concentrations of the vitamin in subjects affected by cancer
and by an alteration of its metabolic pathway in CRC tissues, although these findings do
not have a clear clinical application yet [135]. Several studies have demonstrated its ability
to interfere with cellular differentiation and proliferation both in normal and malignant
tissues, with particular antiproliferative, proapoptotic, antimigration, anti-invasion, antian-
giogenic and immunosuppressive activity in neoplastic cells [133,136]. The antiproliferative
mechanism of vitamin D is due to the influence of calcitriol on cell cycle arrest in the resting
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phase G0/G1 by inducing the expression of the inhibitors of cyclin-dependent kinase,
including p21, p27 and cystatin D, and stimulation of apoptosis [137–139].

Calcitriol was shown to upregulate miR-627, a ligand of the jumonji domain of histone
demethylase, thus inhibiting the proliferation of CRC cells through epigenetic regulation
in vitro and in vivo [139].

Vitamin D3 also promotes cell differentiation by increasing the expression of E-
cadherin, cell adhesion proteins, alkaline phosphatase and maltase. Calcitriol is proved
to inhibit β-catenin transcriptional activity in CRC cells, hence countering the aberrant
activation of WNT-β-catenin pathway, which is the most commonly alternated signal
pathway in sporadic CRC [140].

Moreover, the vitamin D receptor (VDR) inhibits cell proliferation and induces cell
differentiation by binding to pi3k. Clinical trials showed that in KRAS-mutated/PI3K-
mutated CRC tumor tissues, VDR was independently overexpressed [141]. Mocellin
discussed epidemiologic data, suggesting a connection between vitamin D3 and cancer,
and the results of clinical trials, which are conflicted [142]. Gandini et al. found that there
was an inverse relationship between these levels and CRC [134,143].

The inhibition of angiogenesis was suggested in a paper by Pendas-Franco et al.
that showed the ability of vitamin D to downregulate DKK-4, an antagonist of Wnt in
CRC cells [144]; the same concept was also confirmed in papers by Meeker et al. and
Shintani et al., who suggested vitamin D as anticancer agent due to its ability to inhibit
growth of oral squamous cell carcinoma [145–147]. Antineoplastic roles of biologically
active vitamin D3 includes the suppression of chronic inflammation, which indirectly
inhibits cancer angiogenesis and invasion, and modulates the activity of factors related to
cancer promotion (e.g., cyclooxygenase 2 (COX-2) and NF-kB). Another indirect evidence
of anticancer properties of vitamin D is its role in the modulation of the immune response,
and in particular inflammation [145,148]. Calcitriol may exert anti-inflammatory properties
by inhibiting NF-kB signaling, the activation of which results in the production of proin-
flammatory cytokines [149,150]. Moreover, it may suppress p38 stress kinase signaling,
therefore inhibiting the production of proinflammatory cytokines including IL-6, IL-8 and
TNFα. Multiple studies have demonstrated the impact of vitamin D on lymphocytes CD4+
and CD8+, decreasing their proliferation, as well as on macrophages and dendritic cells,
decreasing the secretion of proinflammatory cytokines after activation [145].

Although studies are limited, vitamin D has demonstrated to improve the cytotoxic
activity of NK cells and the migration of dendritic cells into lymph nodes [151], overall
modulating the immune response. The effects of active vitamin D are conveyed by its
intracellular nuclear receptor VDR, the alterations and polymorphisms of which are re-
sponsible for an impaired activity of vitamin D. The VDR coding gene, located on the long
arm of chromosome 12 (12q13-14), is associated with several SNPs, the most frequently
studied being FokI, BsmI, Tru9I, ApaI and TaqI. Among them, the variation in FokI genotypes
produces a smaller protein with increased activity. Several studies have demonstrated the
association of the VDR polymorphisms with various diseases, including CRC [152,153],
although results are still controversial and vary based on the considered population. A
case–control study by Zhang et al. conducted in a Thai population failed to demonstrate
significant associations between VDR SNPs and CRC, although a specific haplotype, AGGT,
significantly predicted a lower risk of CRC [154]; moreover, the study found an interaction
between dietary vitamin D intake and VDR ApaI genetic polymorphism in relation to the
risk of CRC. A meta-analysis by Yu et al. suggested a moderate protective effect against
CRC of the VDR BsmI polymorphism [155]. A study by Slattery et al. reported that the
FokI (rs10735810), BsmI (rs11568820) and CDX2 (rs11568820) polymorphisms of VDR were
associated with KRAS mutation in CRC [156]. Clinical consequences of such a broad
spectrum of regulations of cell cycle and differentiation have been evaluated in several epi-
demiological studies that aimed to clarify whether vitamin D deficiency can be considered
a risk factor for CRC, or conversely if vitamin D physiological serum concentration and
eventual supplementation may represent protective factors against CRC.
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Over the last 20–30 years, several trials have been conducted, mostly finding a link
between vitamin D deficiency and increased CRC risk and mortality [157–159], although
other works could not confirm a statistical significance for this association. A meta-analysis
by Lee et al. suggested an inverse association between circulating 25(OH)vitamin D levels
and CRC (OR 0.77), with a stronger association for rectal cancer (OR 0.20) [160]. Similarly, a
systematic review and meta-analysis by Yin et al. supported an inverse association between
serum 25(OH)vitamin D and the risk of colon and rectal cancer, with odds ratios of 0.78
and 0.41, respectively [161]. Besides the potential role of vitamin D as a protective factor
for CRC, other studies focused on its effects on the outcome of affected patients. A meta-
analysis by Li et al., although including heterogeneous studies, confirmed that patients with
the highest quartile of circulating 25(OH)vitamin D had a better overall survival compared
to those in the lowest quartile [162]. With the aim to apply vitamin D as a prognostic marker
for CRC patients, a recent study by Yuan et al. also investigated the relationships between
plasma vitamin D binding protein (VDBP), bioavailable or free 25(OH)vitamin D and CRC
survival, concluding that prediagnostic circulating concentrations of VDBP were positively
associated with survival, while neither bioavailable nor free 25(OH)vitamin D levels were
associated with overall or CRC-specific mortality [163]. Starting from these premises, other
studies focused on the potential usefulness of vitamin D supplementation to improve
CRC patient management. A systematic review with a meta-analysis of randomized
controlled trials by Vaughan-Shaw et al. examined the effect of vitamin D supplementation
on survival outcomes in patients with CRC, concluding that supplementation imparts a
30% reduction in adverse survival outcomes overall, with a 24% reduction in CRC-specific
death and a 33% reduction in disease progression or death [164]. Overall, vitamin D seems
to have a promising role as a prognostic factor for CRC patients’ outcome and an easy
element to improve in case of deficiency, being widely available and cheap to apply in
large populations at all ages.

8.2. Calcium

Strictly related to vitamin D, calcium has also been explored as a molecule impacting
on CRC risk. Being a ubiquitous second messenger, and signaling for a variety of cellular
processes such as control of the cell cycle, apoptosis and migration, calcium activates a
variety of ion-specific channels, cotransporters and pumps. The expression of several
genes coding for calcium channels has demonstrated to be upregulated in CRC cells,
including TRPC1 and TRPM2 [165,166], the activity of which has been related to the
promotion of metastases; while TPRM6, the expression of which has been related to
better patient survival, has been found to be downregulated in CRC cells [167]. Moreover,
stromal interaction proteins 1 and 2 were revealed to be up- and downregulated in CRC,
respectively, causing increased CRC cell motility and apoptosis resistance [168,169]. Besides
regulating cell signaling, clinical applications of calcium supplementation with diet and
cancer risk or progression have also been explored. Although cancer proliferation has been
associated with an upregulation of calcium [170], Garland et al. found that a calcium-rich
diet reduced the risk of CRC [171]. A systematic review of randomized controlled trials
found that calcium supplementation with doses from 1200 to 2000 mg/day and treatment
duration from 36 to 60 months reduced the risk of recurrent colorectal adenomas (RR = 0.89,
95% CI: 0.82–0.96, 5 studies, 2984 participants) [172]. It was proposed that calcium binds
bile acids in the bowel lumen, inhibiting their proliferative and carcinogenic effects [173].
In support of this hypothesis, studies in animals have indicated a protective effect of dietary
calcium on bile-induced mucosal damage and experimental bowel carcinogenesis [174].

Although the biochemical and the clinical behavior of calcium with regard to CRC
seem contrasting, calcium signaling promotes or inhibits cancer based on the ability of
the tissue environment to maintain balance of its intra- and extracellular concentrations:
the increase of intracellular calcium promotes cancer progression, but once the level has
reached overload, cancer cell death is favored, deteriorating cancerous tissue. Although
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the clinical application of such behavior is not yet available, calcium channels may present
as possible drug targets to reduce tumor burden [175].

9. Attempting Pharmacological Interference with CRC Development: Chemoprevention

In the last decades, the growing knowledge about the physiopathology of CRC and
its molecular players has allowed researchers to shed light on the potential application of
drugs as preventive tools. Chemoprevention refers to the long-term use of a variety of oral
medications that can delay, prevent or even reverse the development of colonic adenomas,
and interfere with the multistep progression from adenoma to carcinoma.

Focusing on IBD patients, the use of maintenance therapies, and notably the better
control of inflammation by improved medical therapy and higher rates of mucosal heal-
ing, could be important strategies for reducing CRC risk in UC patients [176]. Literature
data about the preventive effect of specific drugs on the development of CAC are scarce;
moreover, the available studies are focused on the use of the first molecules used for the
treatment of IBD, while long-term trials about the effect of biologic therapies are awaited.
5-ASA is a first-line agent for IBD therapy. This molecule is able to reduce oxidative
stress, inhibit cell proliferation and promote apoptosis. Most reports indicated that 5-ASA
reduces the risk of CRC in UC, although literature data are controversial [177,178]. This
protective effect has also been studied in CD; a study by Cahil et al. concluded that the use
of salicylates is protective against SBA [179]. Overall, the protective effect of immunomod-
ulators is primarily due to their role in the control of inflammation [180]. Ursodeoxycholic
acid (UDCA) may be a practical chemoprevention against colonic exposure to bile acid
in patients with PSC. UDCA reduces the colonic concentration of the secondary bile acid
as a carcinogen [126]. Given the known importance of TNF and interleukins within the
pathogenesis of CAC, more targeted inhibition of these pathways may offer an opportu-
nity to prevent CAC, particularly among high-risk individuals who have developed early
dysplastic lesions, where these cytokines serve to stabilize the cancer microenvironment.
Animal models have suggested that TNF antagonists may prevent the development or
progression of dysplasia and cancer, and some population-based data within IBD have
demonstrated a lower frequency of CRC among those treated with infliximab.

Although the role of anti-inflammatory agents as chemopreventive drugs is crucial
in CAC, these medications have been considered for sporadic and hereditary CRC for
decades [181].

Aspirin has been the first extensively investigated drug in the chemoprevention
of colorectal adenomas and cancer, thanks to its ability to inhibit COX-1 and COX-2
enzymes, both of which are important mediators of prostaglandin production. In 1988, a
population-based case–control study by Kune et al. demonstrated that regular aspirin users
showed a relative risk of 0.53 of developing CRC, compared with nonconsumers [182].
Since then, several large studies have been developed, agreeing on the protective role
of aspirin against CRC [183,184]. Unfortunately, aspirin has several well-known side
effects, including gastrointestinal hemorrhage, renal toxicity, and risk of developing Reye’s
syndrome [185] or Stevens–Johnson syndrome. Being that most side effects of aspirin and
NSAIDs in general are related to their inhibition of COX-1, selective drugs to inhibit COX-2
have been developed and applied not only in the treatment of inflammation, but also in
chemoprevention of CRC, also justified by the demonstration of an overexpression of COX2
in adenomatous lesions [186]. In particular, hereditary syndromes at risk of developing
CRC have been addressed, including FAP and Lynch syndrome [187]. In 2000, a double-
blind, placebo-controlled study by Steinbach et al. conducted on 77 patients affected by FAP
demonstrated a significant reduction of the number of polyps after 6 months of treatment
with oral celecoxib [187]. A recent double-blind, placebo-controlled trial by Burn et al.
reporting a 10-year follow-up of 861 patients affected by Lynch syndrome demonstrated
a significantly reduced risk of developing CRC for aspirin consumers compared to the
placebo group (HR 0.65), with a similar adverse-events rate between groups [188]. Overall,
evidence is in favor of NSAIDs’ long-term use in the case of hereditary syndromes at
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risk of developing CRC, although this type of chemoprevention is not yet uniform nor
systematically used worldwide, probably because the risk/benefit ratio and the optimal
dosing have not yet been standardized.

10. Microbial Hosts: Fusobacterium Nucleatum

Considering the environmental factors potentially participating in CRC onset and
progression, in the last decades, growing attention has been paid to the role of the in-
testinal microbiota alterations. Among bacteria, Fn may contribute to CRC development
through multiple mechanisms, including the interaction with the host immune system,
the production of cancer-associated metabolites and the release of genotoxic virulence
factors [189,190]. The protumorigenic role of Fn and its association with CRC are supported
by several studies and experimental models [191,192].

First, Fn has demonstrated to be enriched in CRC lesions compared to matched
normal colonic mucosa; moreover, Fn sequences were found in lymph node and distant
metastases [193,194]. The cancerogenic mechanisms of Fn start from the adhesion and
invasion of the enterocytes by the bacterium, thanks to adhesion molecules (FadA and
Fap2) able to recognize epithelial cells. After adhesion, Fn activates the β-catenin and
NF-kB signaling pathways [195] as FadA-cadherin-E binding accelerates carcinogenesis
in the presence of genetic alterations by beta-catenin activation; moreover, Fap2-TIGIT
binding promotes tumor survival by smoldering antitumor immunity [196]. However, Fn
cannot be yet considered a carcinogen per se, but rather a promoter of cancer progression
in cells already altered by an initiating factor [192,197]. Studies also suggested than Fn
could trigger EMT in the neoplastic colonic cells, promoting proliferation and invasion by
enhancing the expression of EMT-related genes (E-cadherin and N-cadherin) [198,199].

Besides its mechanisms of action, Fn seems to play a double-faceted role in CRC
progression and clinical behavior. Although Fn enrichment in stool or epithelial samples is
associated with mucosal degeneration, presence of metastases [193,194,200] and chemore-
sistance [201] and increased risk of disease-specific mortality [202,203], Fn-positive CRCs
are more frequently characterized by microsatellite instability [202,204,205], a group of
tumors classified as usually having better prognosis than their counterpart microsatel-
lite stable CRC, due to their higher immune infiltrate (TILs) and low metastatic poten-
tial [25,110,206]. Therefore, Fn could be intended as an accelerator of the carcinogenesis
process and a modifier of cancer clinical behavior in a specific subset of tumors, namely
MSI cancers. However, most recent data also implicate Fn in the responsiveness of locally
advanced rectal cancers to neoadjuvant therapy. In such a setting, the persistence of Fn after
therapy was associated with a worse outcome in two independent studies from Europe and
Asia [207,208]. Accordingly, the role of Fn in CRC might be wider and more relevant than
previously thought. Noticeably, large differences in study methodologies may account for
discrepancies in findings so far, and the field requires appropriate validations in different
clinical–pathological settings.

11. The Frame for Biomarker Actionability: TNM Staging System Turning in the
21st Century

The stage of cancer by the TNM system describes its advancement based on its local
extent at the site of origin (T), coupled to the presence or absence of the involvement of
the regional lymph nodes (N), and eventually of metastases at distant sites (M) [209]. The
TNM continues to represent the cornerstone prognostic system for solid malignancies,
although the American Joint Committee on Cancer (AJCC) has increasingly acknowledged
the necessity to move toward individualized, more precise outcome estimates, mainly
through the application of accurate risk models and calculators [210,211] incorporating
nonanatomic prognostic features. Regarding CRC, in the latest AJCC 8th edition [209],
published in 2016, particular emphasis has been given to MMR deficiency sustained by
germline and somatic mutations or epigenetic changes, as well to RAS pathway mutations
(i.e., KRAS, BRAF and NRAS). Still, a key drawback of risk calculators is the incapability to
convey with heterogeneity within each stage groups.



Int. J. Mol. Sci. 2021, 22, 5246 14 of 29

The spread of cancer cells from the primary tumor to tumor-draining lymph nodes
defines stage III CRC disease, and is the most relevant prognostic factor triggering the
administration of adjuvant chemotherapy. The relationship between lymph nodes and
distant metastases has been acknowledged since the 19th century, and together with the
finding that lymph node disease frequently precedes systemic disease, has since then
prompted the conception that surgical resection of positive lymph nodes may decrease
the rate of recurrence. However, results from clinical trials have suggested that lymph
node resection does not always increase patient survival [212], rousing the different notion
that lymph node metastases do not necessarily imply distant metastatic spread [213]. This
alternative view could be in line with the wide variability in survival rates within stage III
CRC, ranging between 70% for T1N1a and 10–15% for T4bN2b tumors [214,215], despite
adjuvant chemotherapy. A pooled analysis of more than 12,000 stage III CRC patients
enrolled in the IDEA trial confirmed the large variability of five-year disease-free survival
(DFS) within 16 substages based on T and N categories, ranging from 89% for T1N1a to 31%
for T4N2b CRC [216]. Interestingly, the analysis also evaluated the contribution of each
therapeutic option across the different substages. The authors used a metaregression model
to estimate the five-year DFS within each T and N subgroup. While the projected five-year
DFS for T1N1 cancer patients treated with surgery alone was 79.6%, patients with T4N2b
disease showed a 13.9% five-year DFS with surgery alone, with an additional 11.2% absolute
gain with adjuvant fluoropyrimidines alone, an additional 6.4% with oxaliplatin for three
months and 2.5% with oxaliplatin for six months (Figure 2). These data underline the
existence of distinct prognostic categories within stage III CRC contemporarily, implying a
reappraisal of the bases of current treatment strategies. Likewise, a better interpretation of
the link between lymph node involvement and the development of distant metastases is
pivotal, considering the changes related to empirical treatment strategies.
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the sequential progression of metastatic cascade, in which cancer cells from the primary
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tumor (T) seed local lymph node dissemination (N) that may eventually lead to metastases
at distant sites (M) [217]. Metastatic spreading has been depicted in several genome
sequencing studies that have revealed a clonal evolution of cells from primary tumor to
metastatic sites [218,219]. Conversely, another view would posit that cancer cells can spread
as early as from preneoplastic lesions [220,221] and from early-stage primary tumors, the
vasculature abnormalities of which favor the escape of cancer cells into the circulation [222].
At any event, it remains unclear whether a distinct metastatic subclone develops in the
primary tumor, afterwards disseminating to lymph nodes and distant sites [223–225], or
whether multiple subclones in the primary tumor separately scatter lymphatic and distant
metastases [219,226,227]. To evaluate the evolutionary origin of lymphatic and distant
metastases, Naxerova and colleagues [228] studied 213 CRC specimens from 17 patients,
showing that in up to 70% of the cases, lymphatic and distant metastases developed from
independent subclones in the primary tumor. Thus, in the majority of patients, lymphatic
and distant metastases might have an independent origin. Still, around 30% of cases shared
a common subclonal origin.

12. Molecular Heterogeneity and Metastatic Seeding

Besides the timing of cancer cell spreading, it remains largely unclear how cancer cells
develop the capability to colonize distant tissues. This ability may arise during primary
tumor growth as a consequence of intrinsic properties of the tumor cells and of (faulty) host
response, or as the effect of the selective pressure on previously spread cancer cells to adapt
to distant tissue microenvironments [229]. Interaction among tumor cells themselves, as
well as between host and tumor cells, can cause alterations in their behavior and plasticity.
For example, hypoxia may exert a negative selection against RAS-mutant clones through a
mechanism identified as secretory senescence [230]. In addition, KRAS-mutant senescent
cells can then induce the development of RAS wild-type subpopulations by a paracrine
mechanism, leading to their progressive outgrowth [231,232].

A better understanding of the biology of the development of metastases and of the
properties of the cells selected along this process is critical for precision medicine and
treatment selection for patients with systemic disease. Still, identification of the hallmarks
of metastatic potential has been complex due to heterogeneity among tumor cells [233].
Throughout primary tumor evolution, abnormal levels of genetic instability lead to the de-
velopment of cells with newly acquired features [233,234]. Several studies have assessed the
genetic and phenotypic diversity of the tumor cells that encompass primary tumors [235];
nevertheless, the level of genetic and epigenetic heterogeneity and phenotypic plasticity
below metastatic growth remains undefined. Single-cell and sequencing data indicate that
some metastases develop from separate lineages [228,236–240], and metastases themselves
can generate other metastases [236,241]. Hence, heterogeneity is part of an evolutionary and
temporal process [242], yet it has a critical role in drug resistance and disease progression by
preventing efficacy of single targeted therapy (Figure 3). As concerns CRC, Ciardiello and
colleagues [243] have depicted specific molecular alterations differing among cancers (i.e.,
intertumor heterogeneity), as well as the presence of cancer cells with distinct molecular
alterations within the same tumor sample (i.e., intratumor heterogeneity).
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13. Molecular Heterogeneity and the Emergence of Resistance to Target Treatment in
Metastatic CRC

Mutations along the RAS pathway are responsible for both primary and acquired
resistance to anti-epidermal growth factor receptor (EGFR) therapies [230,244–251]. In
various cases, RAS mutations arise early during CRC carcinogenesis, as a clonal (truncal)
mutation maintained in primary and metastatic lesions [9,252], and RAS-mutant tumors
are unresponsive to anti-EGFR therapies. Still, notwithstanding stringent selection based
on screening for somatic RAS mutations, about 65–70% of patients progress within three
to 12 months after initial anti-EGFR therapies. Analysis of post-treatment samples has
revealed acquired resistance as a major limitation of therapies targeting oncoproteins such
as EGFR and BRAF [253]. Seminal studies on plasma-cell-free DNA have shown that under
drug selective pressure, undetectable RAS-mutant subpopulations at baseline undertake a
clonal expansion, preceding acquired therapy resistance [254–256]. The clinical managing
of patients who acquire RAS mutations subsequent to EGFR inhibition is doubtful. At
progression, the majority of patients receive further lines of therapies based on chemother-
apy alone or combined with antiangiogenic drugs, and eventually a monotherapy with
the multikinase inhibitor regorafenib. Siravegna and colleagues [256] showed that KRAS-
mutant alleles, which develop at the time of disease progression, decline when anti-EGFR
treatment is interrupted, persisting under the limit of detection across succeeding lines
of treatment. The decline of KRAS-mutant alleles detected in blood from patients after
interruption of the anti-EGFR blockade [257] suggests not only a dynamic evolution of
cancer cells, but also that a rechallenge therapy may be a clinically valuable choice in these
patients, as CRC secondary lesions are likely to respond to anti-EGFR rechallenge [258].

Other changes can occur under the pressure of treatments. Drug-tolerant cancer cells
that survive EGFR/BRAF inhibitor treatment show a decreased expression of mismatch and
homologous recombination (HR) proteins, and increase their mutagenic rate [259]. All these
alterations may trigger the RAS–MEK–ERK pathway [246,260–262]. Therefore, though
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resistance to anti-EGFR inhibitors can be polyclonal, it mostly converges on the downstream
signaling pathways of EGFR [253]. In addition, the efficacy of monoclonal antibodies
targeting a single pathway has been mainly limited by the occurrence of compensatory
feedback loops in other pathways, such as increased secretion of vascular endothelial factor
(VEGF) during anti-EGFR treatment [263].

The molecular heterogeneity detectable following anti-EGFR therapy emphasizes
how a single therapeutic approach is unlikely to overwhelm extensive mechanisms of
resistance, as most of these alterations involve multiple pathways in a single patient.
Hence, the picture of tumor heterogeneity at the time of secondary resistance, as depicted
for EGFR inhibitors, indicate that multitargeted drug combinations before relapse could
better target the bulk tumor cells and reduce the expected acquired resistance mechanisms,
thus providing a substantial improvement in survival compared with administration at
progression [264,265].

14. Restraining the Progression of Metastatic CRC: The Frontier

The latest scientific enhancements of molecular diagnostics; i.e., blood-based tumor
genotyping, have permitted the assessment of clonal evolution in patients with cancer, and
introduced the new concept of time, to guide adaptive therapy strategies.

Regorafenib is an oral multikinase inhibitor approved by both the Food and Drug
Administration and the European Medicines Agency for CRC patients who have not re-
sponded to available therapies [266]. It inhibits three oncogenic pathways, specifically: (a)
cell growth by inhibition of KIT, RET, RAF-1 and BRAF; (b) tumor angiogenesis by targeting
vascular endothelial growth factor receptors (VEGFR) 1, 2 and 3, and the tyrosine kinase
with immunoglobulin and EGF homology domain 2 (TIE2); and (c) the tumor microen-
vironment by hampering fibroblast growth factor receptor (FGFR) and platelet-derived
growth factor receptor-b (PDGR-b) [267–269]. The combined treatment with cetuximab
and regorafenib prompts synergistic antiproliferative and proapoptotic effects by blocking
MAPK and AKT pathways both in vitro and in vivo [270], and is a potential approach
worth exploring in an attempt to overwhelm primary or secondary resistance to EGFR in-
hibitors in patients with advanced CRC. The results of the REVERCE randomized phase II
trial suggest that the sequence of second-line regorafenib followed by cetuximab/irinotecan
in CRC after failure of fluoropyrimidine, oxaliplatin and irinotecan is associated with a
longer survival compared with the standard sequence of cetuximab/irinotecan followed
by regorafenib [271]. Biomarker analyses have revealed earlier occurrence of changes in
RAS, BRAF, EGFR, HER2 and MET, commonly associated with resistance to anti-EGFR
therapy [246,255,272,273] after cetuximab compared with regorafenib, thus explaining the
poorer outcomes with cetuximab in the first treatment arm compared with regorafenib
given first. The randomized REVERCE II trial (NCT04117945) comparing regorafenib
followed by anti-EGFR monoclonal antibody therapy versus the reverse sequencing for
metastatic CRC patients formerly treated with fluoropyrimidine, oxaliplatin and irinote-
can is currently ongoing, and will probably provide further data concerning the optimal
sequence of treatments.

The expected utility of liquid biopsy in this setting is to identify the circulating clonal
background in cancer patients through the analysis of circulating tumor DNA, providing in-
novative and clinically meaningful understandings of tumor heterogeneity sustaining drug
resistance [274]. Acquired resistance to EGFR-targeted monoclonal antibodies has been ex-
tensively associated with the emergence of RAS pathway mutations detectable in the blood
of patients before the appearance of clinically manifest disease progression [254,257,275].
Contrariwise, the selective pressure exerted by antiangiogenic drugs in CRC patients with
RAS-mutant disease has been less frequently examined. Liquid biopsy under antiangio-
genic treatment has revealed the relative prevalence of RAS wild-type clones, which can be
translated in a clinically significant advantage for patients. Targeting this gap with EGFR
inhibitors potentially could provide an available second-line choice in RAS-mutant CRC.
The KAIROS trial (Keeping the Advantage of the Impermanent RAS–Wild Type Window
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Offering Second-Line EGFR Inhibitors, EudraCT Number 2019-001328-36) may help to
establish whether the response to EGFR blockade, in patients with RAS-mutant primary
tumors could switch to RAS wild-type clones during first-line antiangiogenic therapy.

Over the decades, the vision on CRC has tremendously changed. The application of
genetics, NGS, advances in immunology and the understanding of the value of TME, mi-
cronutrients and the microbiome are leading to a deeper understanding of the multifaceted
behavior and subtypes of CRC, providing the bases for precision medicine, with the aim to
improve the patient’s outcome.
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