Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies
Abstract
:1. Introduction
2. Toward the Identification of Resistance Genes/Loci
2.1. Traditional and NGS-Enabled Mapping Approaches
2.2. NGS-Enabled Fine-Mapping/Cloning Approaches
2.3. Meta-QTL Analysis for Disease Resistance in Crops
3. Marker-Assisted Selection
4. Genomic Selection and Machine Learning
5. Effectoromics
6. New Breeding Technologies (NBTs)
6.1. Cisgenesis/Intragenesis
6.2. Genome Editing (GE)
7. Conclusions and Prospects for New Breeding Scenarios
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
QTL | Quantitative Trait Locus |
MAS | Marker-Assisted Selection |
NBT | New Breeding Technologies |
BSA | Bulk-Segregant Analysis |
Mut | Mutant |
Ren | Resistance gene Enrichment |
R | Resistance |
GWAS | Genome Wide Association Analysis |
QRL | Quantitative Resistance Locus |
NGS | Next Generation Sequencing |
SNP | Single Nucleotide Polymorphism |
GBS | Genotyping By Sequencing |
SLAF | Specific Locus Amplified Fragment |
RAD | Restriction site Associated DNA |
LD | Linkage Disequilibrium |
AB | Ascochyta Blight |
BSR | Bulked Segregant RNA |
TACCA | Targeted Chromosome-based Cloning via long range Assembly |
SSR | Simple Sequence Repeat |
NB-LRR | Nucleotide binding and Leucine-Rich Repeat |
SMRT | Single Molecule Real Time |
CI | Confidence Interval |
MQTL | Meta-Quantitative Trait Locus |
FHB | Fusarium Head Blight |
KASP | Kompetitive Allele Specific PCR |
BLUP | Best Linear Unbiased Predictors |
GS | Genomic Selection |
RR-BLUP | Ridge Regression Best Linear Unbiased Predictors |
wBSR | weighted Bayesan Shrinkage Regression |
RKHS | Reproducing Kernel Hilbert Space |
GEBV | Genomic Estimated Breeding Value |
CV | Cross Validation |
ML | Machine Learning |
AI | Artificial Intelligence |
SVM | Support Vector Machine |
ANN | Artificial Neural Networks |
UAV | Unmanned Aerial Vehicles |
S | Susceptibility |
GE | Genome Editing |
VVTL | Vitis Vinifera Thaumatin like |
ZFN | Zinc Finger Nuclease |
TALEN | Transcription Activator like Effector nuclease |
CRISPR | Clustered Regularly Interspaced Short Palindromic Repeat |
DSB | Double Strand Break |
ORF | Open Reading Frame |
EBE | Effector Binding Element |
DMR | Downy Mildew Resistance |
LOB | Lateral Organ Boundaries |
MP | Movement Protein |
IR | Intergenic Region |
CP | Coat Protein |
LIR | Long Intergenic Region |
BSV | Banana Streak Virus |
CMV | Cucumber Mosaic Virus |
TMV | Tobacco Mosaic Virus |
References
- Li, W.; Deng, Y.; Ning, Y.; He, Z.; Wang, G.L. Exploiting Broad-spectrum Disease Resistance in Crops: From Molecular Dissection to Breeding. Annu. Rev. Plant Biol. 2020, 71, 575–603. [Google Scholar] [CrossRef] [Green Version]
- Mahlein, A.K.; Kuska, M.T.; Thomas, S.; Wahabzada, M.; Behmann, J.; Rascher, U.; Kersting, K. Quantitative and Qualitative Phenotyping of Disease Resistance of Crops by Hyperspectral Sensors: Seamless Interlocking of Phytopathology, Sensors, and Machine Learning is Needed! Curr. Opin. Plant Biol. 2019, 50, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Piquerez, S.J.; Harvey, S.E.; Beynon, J.L.; Ntoukakis, V. Improving Crop Disease Resistance: Lessons from Research on Arabidopsis and Tomato. Front. Plant Sci. 2014, 5, 671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niks, R.E.; Qi, X.; Marcel, T.C. Quantitative Resistance to Biotrophic Filamentous Plant Pathogens: Concepts, Misconceptions, and Mechanisms. Annu. Rev. Phytopathol. 2015, 53, 445–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilet-Nayel, M.L.; Moury, B.; Caffier, V.; Montarry, J.; Kerlan, M.C.; Fournet, S.; Durel, C.E.; Delourme, R. Quantitative Resistance to Plant Pathogens in Pyramiding Strategies for Durable Crop Protection. Front. Plant Sci. 2017, 8, 1838. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rant, J.C.; Arraiano, L.S.; Chabannes, M.; Brown, J.K.M. Quantitative Trait Loci for Partial Resistance to Pseudomonas syringae pv. Maculicola in Arabidopsis thaliana. Mol. Plant Pathol. 2013, 14, 828–837. [Google Scholar] [CrossRef] [Green Version]
- Hickey, L.T.; Germán, S.E.; Pereyra, S.A.; Diaz, J.E.; Ziems, L.A.; Fowler, R.A.; Platz, G.J.; Franckowiak, J.D.; Dieters, M.J. Speed Breeding for Multiple Disease Resistance in Barley. Euphytica 2017, 213, 64. [Google Scholar] [CrossRef]
- Varshney, R.K.; Bansal, K.C.; Aggarwal, P.K.; Datta, S.K.; Craufurd, P.Q. Agricultural Biotechnology for Crop Improvement in a Variable Climate: Hope or Hype? Trends Plant Sci. 2011, 16, 363–371. [Google Scholar] [CrossRef] [Green Version]
- St. Clair, D.A. Quantitative Disease Resistance and Quantitative Resistance Loci in Breeding. Annu. Rev. Phytopathol. 2010, 48, 247–268. [Google Scholar] [CrossRef]
- Ganal, M.W.; Durstewitz, G.; Polley, A.; Berard, A.; Buckler, E.S.; Charcosset, A.; Clarke, J.D.; Graner, E.M.; Hansen, M.; Joets, J.; et al. A Large Maize (Zea mays L.) SNP Genotyping Array: Development and Germplasm Genotyping, and Genetic Mapping to Compare with the B73 Reference Genome. PLoS ONE 2011, 6, e28334. [Google Scholar] [CrossRef] [Green Version]
- Unterseer, S.; Bauer, E.; Haberer, G.; Seidel, M.; Knaak, C.; Ouzunova, M.; Meitinger, T.; Strom, T.M.; Fries, R.; Pausch, H.; et al. A Powerful Tool for Genome Analysis in Maize: Development and Evaluation of the High Density 600 k SNP Genotyping Array. BMC Genom. 2014, 15, 823. [Google Scholar] [CrossRef] [Green Version]
- Zhao, K.; Tung, C.W.; Eizenga, G.C.; Wright, M.H.; Ali, M.L.; Price, A.H.; Norton, G.J.; Islam, M.R.; Reynolds, A.; Mezey, J.; et al. Genome-wide Association Mapping Reveals a Rich Genetic Architecture of Complex Traits in Oryza sativa. Nat. Commun. 2011, 2, 467. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xie, W.; He, H.; Yu, H.; Chen, W.; Li, J.; Yu, R.; Yao, Y.; Zhang, W.; He, Y.; et al. A High-density SNP Genotyping Array for Rice Biology and Molecular Breeding. Mol. Plant 2014, 7, 541–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavanagh, C.R.; Chao, S.; Wang, S.; Huang, B.E.; Stephen, S.; Kiani, S.; Forrest, K.; Saintenac, C.; Brown-Guedira, G.L.; Akhunova, A.; et al. Genome-wide Comparative Diversity Uncovers Multiple Targets of Selection for Improvement in Hexaploid Wheat Landraces and Cultivars. Proc. Natl. Acad. Sci. USA 2013, 110, 8057–8062. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Wong, D.; Forrest, K.; Allen, A.; Chao, S.; Huang, B.E.; Maccaferri, M.; Salvi, S.; Milner, S.G.; Cattivelli, L.; et al. Characterization of Polyploid Wheat Genomic Diversity Using a High-density 90,000 Single Nucleotide Polymorphism Array. Plant Biotech. J. 2014, 12, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Winfield, M.O.; Allen, A.M.; Burridge, A.J.; Barker, G.L.; Benbow, H.R.; Wilkinson, P.A.; Coghill, J.; Waterfall, C.; Davassi, A.; Scopes, G.; et al. High-density SNP Genotyping Array for Hexaploid Wheat and Its Secondary and Tertiary Gene Pool. Plant Biotechnol. J. 2016, 14, 1195–1206. [Google Scholar] [CrossRef] [PubMed]
- Allen, A.M.; Winfield, M.O.; Burridge, A.J.; Downie, R.C.; Benbow, H.R.; Barker, G.L.; Wilkinson, P.A.; Coghill, J.; Waterfall, C.; Davassi, A.; et al. Characterization of a Wheat Breeders’ Array Suitable for High-throughput SNP Genotyping of Global Accessions of Hexaploid Bread Wheat (Triticum aestivum). Plant Biotechnol. J. 2017, 15, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, J.P.; Hansey, C.N.; Whitty, B.R.; Stoffel, K.; Massa, A.N.; van Deynze, A.; Jong, D.; Walter, S.; Douches, D.S.; Buell, C.R. Single Nucleotide Polymorphism Discovery in Elite North American Potato Germplasm. BMC Genom. 2011, 12, 302. [Google Scholar] [CrossRef] [Green Version]
- Comadran, J.; Kilian, B.; Russell, J.; Ramsay, L.; Stein, N.; Ganal, M.; Shaw, P.; Bayer, M.; Thomas, W.; Marshall, D.; et al. Natural Variation in a Homolog of Antirrhinum CENTRORADIALIS Contributed to Spring Growth Habit and Environmental Adaptation in Cultivated Barley. Nat. Genet. 2012, 44, 1388–1392. [Google Scholar] [CrossRef] [PubMed]
- Song, Q.; Hyten, D.L.; Jia, G.; Quigley, C.V.; Fickus, E.W.; Nelson, R.L.; Cregan, P.B. Development and Evaluation of Soy SNP50K, a High Density Genotyping Array for Soybean. PLoS ONE 2013, 8, e54985. [Google Scholar]
- Edwards, D.; Batley, J.; Snowdon, R.J. Accessing Complex Crop Genomes with Next-generation Sequencing. Theor. Appl. Genet. 2013, 126, 1–11. [Google Scholar] [CrossRef]
- Bekele, W.A.; Wieckhorst, S.; Friedt, W.; Snowdon, R.J. High Throughput Genomics in Sorghum: From Whole-genome Resequencing to a SNP Screening Array. Plant Biotech. J. 2013, 11, 1112–1125. [Google Scholar] [CrossRef]
- Wieckhorst, S.; Bekele, W.; Kloiber-Maitz, M.; Schulz-Streeck, T.; Knaak, C.; Ouzunova, M.; Davassi, A.; Snowdon, R. A High-density SNP Genotyping Array for Genome-based Breeding of Energy Sorghum for Central Europe. In Proceedings of the Plant and Animal Genome XXIII Conference, San Diego, CA, USA, 10–14 January 2015. [Google Scholar]
- Thomson, M.J. High-throughput SNP Genotyping to Accelerate Crop Improvement. Plant Breed. Biotech. 2014, 2, 195–212. [Google Scholar] [CrossRef]
- He, J.; Zhao, X.; Laroche, A.; Lu, Z.X.; Liu, H.; Li, Z. Genotyping-by-sequencing (GBS), an Ultimate Marker-assisted Selection (MAS) Tool to Accelerate Plant Breeding. Front. Plant Sci. 2014, 5, 484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Liu, D.; Zhang, X.; Li, W.; Liu, H.; Hong, W.; Jiang, C.; Guan, N.; Ma, C.; Zeng, H.; et al. SLAF-seq: An Efficient Method of Large-scale de novo SNP Discovery and Genotyping Using High-throughput Sequencing. PLoS ONE 2013, 8, e58700. [Google Scholar]
- Qi, Z.; Huang, L.; Zhu, R.; Xin, D.; Liu, C.; Han, X.; Jiang, H.; Hong, W.; Hu, G.; Zheng, H.; et al. A High-density Genetic Map for Soybean Based on Specific Length Amplified Fragment Sequencing. PLoS ONE 2014, 9, e104871. [Google Scholar] [CrossRef] [Green Version]
- Varshney, R.K.; Terauchi, R.; McCouch, S.R. Harvesting the Promising Fruits of Genomics: Applying Genome Sequencing Technologies to Crop Breeding. PLoS Biol. 2014, 12, e1001883. [Google Scholar] [CrossRef] [Green Version]
- Voss-Fels, K.; Snowdon, R.J. Understanding and Utilizing Crop Genome Diversity via High-resolution Genotyping. Plant Biotechnol. J. 2015, 14, 1086–1094. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Han, B. Natural Variations and Genome-wide Association Studies in Crop Plants. Annu. Rev. Plant Biol. 2014, 65, 531–551. [Google Scholar] [CrossRef]
- Wray, N.R.; Yang, J.; Hayes, B.J.; Price, A.L.; Goddard, M.E.; Visscher, P.M. Pitfalls of Predicting Complex Traits from SNPs. Nat. Rev. Genet. 2013, 14, 507–515. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; He, Y.; Kabahuma, M.; Chaya, T.; Kelly, A.; Borrego, E.; Bian, Y.; El Kasmi, F.; Yang, L.; Teixeira, P.; et al. A Gene Encoding Maize Caffeoyl-CoA O Methyltransferase Confers Quantitative Resistance to Multiple Pathogens. Nat. Genet. 2017, 49, 1364–1372. [Google Scholar] [CrossRef] [PubMed]
- Zhao, K.; Aranzana, M.J.; Kim, S.; Lister, C.; Shindo, C.; Tang, C.; Toomajian, C.; Zheng, H.; Dean, C.; Marjoram, P.; et al. An Arabidopsis Example of Association Mapping in Structured Samples. PLoS Genet. 2007, 3, e4. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, H.E.; Prom, L.K.; Cruet-Burgos, C.M. Genome-Wide Association Mapping of Anthracnose (Colletotrichum sublineolum) Resistance in NPGS Ethiopian Sorghum Germplasm. Genes Genomes Genet. 2019, 9, 2879–2885. [Google Scholar] [CrossRef] [Green Version]
- Yano, K.; Yamamoto, E.; Aya, K.; Takeuchi, H.; Lo, P.C.; Hu, L.; Yamasaki, M.; Yoshida, S.; Kitano, H.; Hirano, K.; et al. Genome-wide Association Study Using Whole-genome Sequencing Rapidly Identifies New Genes Influencing Agronomic Traits in Rice. Nat Genet. 2016, 48, 927–934. [Google Scholar] [CrossRef]
- Wu, J.; Yu, R.; Wang, H.; Zhou, C.; Huang, S.; Jiao, H.; Yu, S.; Nie, X.; Wang, Q.; Liu, S.; et al. A Large-scale Genomic Association Analysis Identifies the Candidate Causal Genes Conferring Stripe Rust Resistance under Multiple Field Environments. Plant Biotechnol. J. 2021, 19, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, S.; Shah, T.; Xie, C.; Hao, Z.; Li, X.; Farkhari, M.; Ribaut, J.M.; Cao, M.; Rong, T.; et al. Joint Linkage-linkage Disequilibrium Mapping is a Powerful Approach to Detecting Quantitative Trait Loci Underlying Drought Tolerance in Maize. Proc. Natl. Acad. Sci. USA 2010, 107, 19585–19590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.S.; Unfried, J.R.; Hyten, D.L.; Frederick, R.D.; Hartman, G.L.; Nelson, R.L.; Song, Q.; Diers, B.W. Molecular Mapping of Soybean Rust Resistance in Soybean Accession PI 561356 and SNP Haplotype Analysis of the Rpp1 Region in Diverse Germplasm. Theor. Appl. Genet. 2012, 125, 1339–1352. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krattinger, S.G.; Jordan, D.R.; Mace, E.S.; Raghavan, C.; Luo, M.C.; Keller, B.; Lagudah, E.S. Recent Emergence of the Wheat Lr34 Multi-pathogen Resistance: Insights from Haplotype Analysis in Wheat, Rice, Sorghum and Aegilops tauschii. Theor. Appl. Genet. 2013, 126, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Zeng, Q.; Wang, Q.; Liu, S.; Yu, S.; Mu, J.; Huang, S.; Sela, H.; Distelfeld, A.; Huang, L.; et al. SNP-based Pool Genotyping and Haplotype Analysis Accelerate Fine-mapping of the Wheat Genomic Region Containing Stripe Rust Resistance Gene Yr26. Theor. Appl. Genet. 2018, 131, 1481–1496. [Google Scholar] [CrossRef]
- Haile, J.K.; Hammer, K.; Badebo, A.; Singh, R.P.; Röder, M.S. Haplotype Analysis of Molecular Markers Linked to Stem Rust Resistance Genes in Ethiopian Improved Durum Wheat Varieties and Tetraploid Wheat Landraces. Genet. Resour. Crop Evol. 2013, 60, 853–864. [Google Scholar] [CrossRef]
- Cheng, P.; Gedling, C.R.; Patil, G.; Vuong, T.D.; Shannon, J.G.; Dorrance, A.E.; Nguyen, H.T. Genetic Mapping and Haplotype Analysis of a Locus for Quantitative Resistance to Fusarium graminearum in Soybean Accession PI 567516C. Theor. Appl. Genet. 2017, 130, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Niwa, S.; Kazama, Y.; Abe, T.; Ban, T. Tracking Haplotype for QTLs Associated with Fusarium Head Blight Resistance in Japanese Wheat (Triticum aestivum L.) Lineage. Agric. Food Secur. 2018, 7, 4. [Google Scholar] [CrossRef] [Green Version]
- Joshi, V.; Shinde, S.; Nimmakayala, P.; Abburi, V.L.; Alaparthi, S.B.; Lopez-Ortiz, C.; Levi, A.; Panicker, G.; Reddy, U.K. Haplotype Networking of GWAS Hits for Citrulline Variation Associated with the Domestication of Watermelon. Int. J. Mol. Sci. 2019, 20, 5392. [Google Scholar] [CrossRef] [Green Version]
- He, J.; Meng, S.; Zhao, T.; Xing, G.; Yang, S.; Li, Y.; Guan, R.; Lu, J.; Wang, Y.; Xia, Q.; et al. An Innovative Procedure of Genome-wide Association Analysis Fits Studies on Germplasm Population and Plant Breeding. Theor. Appl. Genet. 2017, 130, 2327–2343. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.K.; Khan, A.W.; Saxena, R.K.; Sinha, P.; Kale, S.M.; Parupalli, S.; Kumar, V.; Chitikineni, A.; Vechalapu, S.; Kumar, S.C.V.; et al. Indel-seq: A Fast-forward Genetics Approach for Identification of Trait-associated Putative Candidate Genomic Regions and Its Application in Pigeonpea (Cajanus cajan). Plant Biotechnol. J. 2017, 15, 906–914. [Google Scholar] [CrossRef] [Green Version]
- Takagi, H.; Abe, A.; Yoshida, K.; Kosugi, S.; Natsume, S.; Mitsuoka, C.; Uemura, A.; Utsushi, H.; Tamiru, M.; Takuno, S.; et al. QTL-seq: Rapid Mapping of Quantitative Trait Loci in Rice by Whole Genome Resequencing of DNA from Two Bulked Populations. Plant J. 2013, 74, 174–183. [Google Scholar] [CrossRef]
- Singh, V.K.; Khan, A.W.; Saxena, R.K.; Kumar, V.; Kale, S.M.; Sinha, P.; Chitikineni, A.; Pazhamala, L.T.; Garg, V.; Sharma, M.; et al. Next Generation Sequencing for Identification of Candidate Genes for Fusarium Wilt and Sterility Mosaic Disease in Pigeonpea (Cajanus cajan). Plant Biotechnol. J. 2016, 14, 1183–1194. [Google Scholar] [CrossRef] [Green Version]
- Luo, H.; Pandey, M.K.; Khan, A.W. Next-generation Sequencing Identified Genomic Region and Diagnostic Markers for Resistance to Bacterial Wilt on Chromosome B02 in Peanut (Arachis hypogaea L.). Plant Biotechnol. J. 2019, 17, 2356–2369. [Google Scholar] [CrossRef] [Green Version]
- Pandey, M.K.; Khan, A.W.; Singh, V.K.; Vishwakarma, M.K.; Shasidhar, Y.; Kumar, V.; Garg, V.; Bhat, R.S.; Chitikineni, A.; Janila, P.; et al. QTL-seq Approach Identified Genomic Regions and Diagnostic Markers for Rust and Late Leaf Spot Resistance in Groundnut (Arachis hypogaea L.). Plant Biotechnol. J. 2017, 15, 927–941. [Google Scholar] [CrossRef] [Green Version]
- Clevenger, J.; Chu, Y.; Chavarro, C.; Botton, S.; Culbreath, A.K.; Isleib, T.G.; Holbrook, C.C.; Ozias-Akins, P. Mapping Late Leaf Spot Resistance in Peanut (Arachis hypogaea) Using QTL-seq Reveals Markers for Marker Assisted Selection. Front. Plant Sci. 2018, 9, 83. [Google Scholar] [CrossRef] [Green Version]
- Guo, G.; Wang, S.; Liu, J.; Pan, B.; Diao, W.; Ge, W.; Gao, C.; Snyder, J.C. Rapid Identification of QTLs Underlying Resistance to Cucumber Mosaic Virus in Pepper (Capsicum frutescens). Theor. Appl. Genet. 2017, 130, 41–52. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, T.; You, X.; Jiang, J.; Li, J.; Xu, X. Molecular Mapping of the Cf-10 Gene by Combining SNP/InDel-index and Linkage Analysis in Tomato (Solanum lycopersicum). BMC Plant Biol. 2019, 19, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Branham, S.E.; Wechter, W.P.; Lambel, S.; Massey, L.; Ma, M.; Fauve, J.; Farnham, M.W.; Levi, A. QTL-seq and Marker Development for Resistance to Fusarium oxysporum f. sp. Niveum race 1 in Cultivated Watermelon. Mol. Breed. 2018, 38, 139. [Google Scholar]
- Das, S.; Singh, M.; Srivastava, R.; Bajaj, D.; Saxena, M.S.; Rana, J.C.; Bansal, K.C.; Tyagi, A.K.; Parida, S.K. mQTL-seq Delineates Functionally Relevant Candidate Gene Harbouring a Major QTL Regulating Pod Number in Chickpea. DNA Res. 2016, 23, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Kumar, K.; Purayannur, S.; Kaladhar, V.C.; Parida, S.K.; Verma, P.K. mQTL-seq and Classical Mapping Implicates the Role of an AT-HOOK MOTIF CONTAINING NUCLEAR LOCALIZED (AHL) Family Gene in Ascochyta Blight Resistance of Chickpea. Plant Cell Environ. 2018, 41, 2128–2140. [Google Scholar] [CrossRef]
- Liu, S.; Yeh, C.T.; Tang, H.M.; Nettleton, D.; Schnable, P.S. Gene Mapping via Bulked Segregant RNA-Seq (BSR-Seq). PLoS ONE 2012, 7, e36406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, Z.; Geng, M.; Hao, Y.; Zhang, Y.; Zhang, L.; Wen, S.; Wang, R.; Liu, G. Screening for Differential Expression of Genes for Resistance to Sitodiplosis mosellana in Bread Wheat via BSR-seq Analysis. Theor. Appl. Genet. 2019, 132, 3201–3221. [Google Scholar] [CrossRef]
- Shi, L.; Jiang, C.; He, Q.; Habekuß, A.; Ordon, F.; Luan, H.; Shen, H.; Liu, J.; Feng, Z.; Zhang, J.; et al. Bulked Segregant RNA-sequencing (BSR-seq) Identified a Novel Rare Allele of eIF4E Effective Against Multiple Isolates of BaYMV/BaMMV. Theor. Appl. Genet. 2019, 132, 1777–1788. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, H.; Xie, J.; Guo, B.; Chen, Y.; Zhang, H.; Lu, P.; Wu, Q.; Li, M.; Zhang, D.; et al. Mapping Stripe Rust Resistance Genes by BSR-Seq: YrMM58 and YrHY1 on Chromosome 2AS in Chinese Wheat Lines Mengmai 58 and Huaiyang 1 are Yr17. Crop J. 2018, 6, 91–98. [Google Scholar] [CrossRef]
- Hu, J.; Li, J.; Wu, P.; Li, Y.; Qiu, D.; Qu, Y.; Xie, J.; Zhang, H.; Yang, L.; Fu, T.; et al. Development of SNP, KASP, and SSR Markers by BSR-Seq Technology for Saturation of Genetic Linkage Map and Efficient Detection of Wheat Powdery Mildew Resistance Gene Pm61. Int. J. Mol. Sci. 2019, 20, 750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramirez-Gonzalez, R.H.; Segovia, V.; Bird, N.; Fenwick, P.; Holdgate, S.; Berry, S.; Jack, P.; Caccamo, M.; Uauy, C. RNA-Seq Bulked Segregant Analysis Enables the Identification of High-resolution Genetic Markers for Breeding in Hexaploid Wheat. Plant Biotechnol. J. 2015, 13, 613–624. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Han, D.; Huang, K.; Du, Y.; Yang, J.; Zhang, J.; Wen, C.; Wu, T. Genome-based Breeding Approaches in Major Vegetable Crops. Theor. Appl. Genet. 2020, 133, 1739–1752. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Chen, M.; Qi, X.; Xu, Q.; Zhou, F.; Chen, X. QTL Mapping by SLAF-seq and Expression Analysis of Candidate Genes for Aphid Resistance in Cucumber. Front. Plant Sci. 2016, 7, 1000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, J.; Li, N.; Li, N.; Xu, Y.; Ma, S.; Wang, J. Construction of a High-density Genetic Map for Watermelon (Citrullus lanatus L.) Based on Large-scale SNP Discovery by Specific Length Amplified Fragment Sequencing (SLAF-seq). Sci. Hortic. 2016, 203, 38–46. [Google Scholar] [CrossRef]
- Xu, X.; Chao, J.; Cheng, X.; Wang, R.; Sun, B.; Wang, H.; Luo, S.; Xu, X.; Wu, T.; Li, Y. Mapping of a Novel Race Specific Resistance Gene to Phytophthora Root Rot of Pepper (Capsicum annuum) Using Bulked Segregant Analysis Combined with Specific Length Amplified Fragment Sequencing Strategy. PLoS ONE 2016, 11, e0151401. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, G.; Chen, B.; Du, H.; Zhang, F.; Zhang, H.; Wang, Q.; Geng, S. Candidate Genes for First Flower Node Identified in Pepper Using Combined SLAF-seq and BSA. PLoS ONE 2018, 13, e0194071. [Google Scholar] [CrossRef] [PubMed]
- Abe, A.; Kosugi, S.; Yoshida, K.; Natsume, S.; Takagi, H.; Kanzaki, H.; Matsumura, H.; Yoshida, K.; Mitsuoka, C.; Tamiru, M.; et al. Genome Sequencing Reveals Agronomically Important Loci in Rice Using MutMap. Nat. Biotechnol. 2012, 30, 174–178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, H.; Uemura, A.; Yaegashi, H.; Tamiru, M.; Abe, A.; Mitsuoka, C.; Utsushi, H.; Natsume, S.; Kanzaki, H.; Matsumura, H.; et al. MutMap-Gap: Whole-genome Resequencing of Mutant F2 Progeny Bulk Combined with de novo Assembly of Gap Regions Identifies the Rice Blast Resistance Gene Pii. New Phytol. 2013, 200, 276–283. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Q.; Zhang, Y.; Chen, Y.; Yu, N.; Cao, Y.; Zhan, X.; Cheng, S.; Cao, L. LMM24 Encodes Receptor-Like Cytoplasmic Kinase 109, Which Regulates Cell Death and Defense Responses in Rice. Int. J. Mol. Sci. 2019, 20, 3243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Martín, J.; Steuernagel, B.; Ghosh, S.; Herren, G.; Hurni, S.; Adamski, N.; Vrána, J.; Kubaláková, M.; Krattinger, S.G.; Wicker, T.; et al. Rapid Gene Isolation in Barley and Wheat by Mutant Chromosome Sequencing. Genome Biol. 2016, 17, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dracatos, P.M.; Bartos, J.; Elmansour, H.; Singh, D.; Karafiatova, M.; Zhang, P. The Coiled-coil NLR Rph1, Confers Leaf Rust Resistance in Barley Cultivar Sudan. Plant Physiol. 2019, 179, 1362–1372. [Google Scholar] [CrossRef] [Green Version]
- Thind, A.K.; Wicker, T.; Simkova, H.; Fossati, D.; Moullet, O.; Brabant, C.; Vrana, J.; Dolezel, J.; Krattinger, S.G. Rapid Cloning of Genes in Hexaploid Wheat Using Cultivar-specific Long-range Chromosome Assembly. Nat. Biotechnol. 2017, 35, 793–796. [Google Scholar] [CrossRef]
- Jupe, F.; Witek, K.; Verweij, W.; Sliwka, J.; Pritchard, L.; Etherington, G.J.; Maclean, D.; Cock, P.J.; Leggett, R.M.; Bryan, G.J.; et al. Resistance Gene Enrichment Sequencing (RenSeq) Enables Re-annotation of the NB-LRR Gene Family from Sequenced Plant Genomes and Rapid Mapping of Resistance Loci in Segregating Populations. Plant J. 2013, 76, 530–544. [Google Scholar] [CrossRef] [Green Version]
- Steuernagel, B.; Periyannan, S.K.; Hernández-Pinzón, I.; Witek, K.; Rouse, M.N.; Yu, G.; Hatta, A.; Ayliffe, M.; Bariana, H.; Jones, J.D.; et al. Rapid Cloning of Disease-resistance Genes in Plants Using Mutagenesis and Sequence Capture. Nat. Biotechnol. 2016, 34, 652–655. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Steuernagel, B.; Gaurav, K.; Chandramohan, S.; Long, Y.; Matny, O.; Johnson, R.; Enk, J.; Periyannan, S.; Singh, N.; et al. Resistance Gene Cloning from a Wild Crop Relative by Sequence Capture and Association Genetics. Nat. Biotechnol. 2019, 37, 139–143. [Google Scholar] [CrossRef] [PubMed]
- Witek, K.; Jupe, F.; Witek, K.I.; Baker, D.; Clark, M.D.; Jones, J.D. Accelerated Cloning of a Potato Late Blight–resistance Gene Using RenSeq and SMRT Sequencing. Nat. Biotechnol. 2016, 34, 656–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanaud, C.; Fouet, O.; Clement, D.; Boccara, M.; Risterucci, A.; Surujdeo-Maharaj, S.; Legavre, T.; Argout, X. A Meta–QTL Analysis of Disease Resistance Traits of Theobroma cacao L. Mol. Breed. 2009, 24, 361–374. [Google Scholar] [CrossRef]
- Schweizer, P.; Stein, N. Large-scale Data Integration Reveals Colocalization of Gene Functional Groups with Meta-QTL for Multiple Disease Resistance in Barley. Mol. Plant Microbe Interact. 2011, 24, 1492–1501. [Google Scholar] [CrossRef] [Green Version]
- Said, J.; Lin, Z.; Zhang, X.; Song, M.; Zhang, J. A Comprehensive Meta QTL Analysis for Fiber Quality, Yield, Yield Related and Morphological Traits, Drought Tolerance, and Disease Resistance in Tetraploid Cotton. BMC Genom. 2013, 14, 776. [Google Scholar] [CrossRef] [Green Version]
- Javed, M.; Hussain, S.; Baber, M. Role of QTL Mapping to Circumscribe Various Diseases in Different Crops with Special Emphasis on Cotton. J. Genet. Mol. Biol. 2019, 3, 1. [Google Scholar]
- Hamon, C.; Coyne, C.J.; McGee, R.J.; Lesné, A.; Esnault, R.; Mangin, P.; Hervé, M.; Le Goff, I.; Deniot, G.; Roux-Duparque, M.; et al. QTL Meta-analysis Provides a Comprehensive View of Loci Controlling Partial Resistance to Aphanomyces euteiches in Four Sources of Resistance in Pea. BMC Plant Biol. 2013, 13, 45. [Google Scholar] [CrossRef] [Green Version]
- Marone, D.; Russo, M.A.; Laidò, G.; De Vita, P.; Papa, R.; Blanco, A.; Gadaleta, A.; Rubiales, D.; Mastrangelo, A.M. Genetic Basis of Qualitative and Quantitative Resistance to Powdery Mildew in Wheat: From Consensus Regions to Candidate Genes. BMC Genom. 2013, 14, 562. [Google Scholar] [CrossRef] [Green Version]
- Emebiri, L.; Singh, S.; Tan, M.K.; Singh, P.K.; Fuentes-Dávila, G.; Ogbonnaya, F. Unravelling the Complex Genetics of Karnal Bunt (Tilletia indica) Resistance in Common Wheat (Triticum aestivum) by Genetic Linkage and Genome-Wide Association Analyses. Genes Genomes Genet. 2019, 9, 1437–1447. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Xu, J.; Deng, D.; Ding, H.; Bian, Y.; Yin, Z.; Wu, Y.; Zhou, B.; Zhao, Y. A Comprehensive Meta-analysis of Plant Morphology, Yield, Stay-green, and Virus Disease Resistance QTL in Maize (Zea mays L.). Planta 2016, 243, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Liu, H.; Hong, Y.; Li, H.; Liu, H.; Li, X.; Wen, S.; Zhou, G.; Li, S.; Chen, X.; et al. Consensus Map Integration and QTL Meta-analysis Narrowed a Locus for Yield Traits to 0.7 cM and Refined a Region for Late Leaf Spot Resistance Traits to 0.38 cM on Linkage Group A05 in Peanut (Arachis hypogaea L.). BMC Genom. 2018, 19, 887. [Google Scholar] [CrossRef] [Green Version]
- Delfino, P.; Zenoni, S.; Imanifard, Z.; Tornielli, G.B.; Bellin, D. Selection of Candidate Genes Controlling Veraison Time in Grapevine through Integration of Meta-QTL and Transcriptomic Data. BMC Genom. 2019, 20, 739. [Google Scholar] [CrossRef] [Green Version]
- Rolling, W.; Lake, R.; Dorrance, A.E.; McHale, L.K. Genome-wide Association Analyses of Quantitative Disease Resistance in Diverse Sets of Soybean [Glycine max (L.) Merr.] Plant Introductions. PLoS ONE 2020, 15, e0227710. [Google Scholar] [CrossRef] [Green Version]
- Badji, A.; Otim, M.; Machida, L.; Odong, T.; Kwemoi, D.B.; Okii, D.; Agbahoungba, S.; Mwila, N.; Kumi, F.; Ibanda, A.; et al. Maize Combined Insect Resistance Genomic Regions and Their Co-localization With Cell Wall Constituents Revealed by Tissue-Specific QTL Meta-Analyses. Front. Plant Sci. 2018, 9, 895. [Google Scholar] [CrossRef]
- Venske, E.; dos Santos, R.S.; da Rosa Farias, D.; Rother, V.; da Maia, L.C.; Pegoraro, C.; Costa de Oliveira, A. Meta-Analysis of the QTLome of Fusarium Head Blight Resistance in Bread Wheat: Refining the Current Puzzle. Front. Plant Sci. 2019, 10, 727. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.A.; Stack, R.W.; Liu, S.; Waldron, B.L.; Fjeld, A.D.; Coyne, C.; Moreno-Sevilla, B.; Fetch, J.M.; Song, Q.J.; Cregan, P.B.; et al. DNA Markers for Fusarium Head Blight Resistance QTLs in Two Wheat Populations. Theor. Appl. Genet. 2001, 102, 1164–1168. [Google Scholar] [CrossRef]
- Cai, J.; Wang, S.; Su, Z.; Li, T.; Zhang, X.; Bai, G. Meta-analysis of QTL for Fusarium Head Blight Resistance in Chinese Wheat Landraces. Crop J. 2019, 7, 784–798. [Google Scholar] [CrossRef]
- Vasconcellos, R.C.C.; Oraguzie, O.B.; Soler, A.; Arkwazee, H.; Myers, J.R.; Ferreira, J.J.; Song, Q.; McClean, P.; Miklas, P.N. Meta-QTL for Resistance to White Mold in Common Bean. PLoS ONE 2017, 12, e0171685. [Google Scholar] [CrossRef] [PubMed]
- Maccaferri, M.; Harris, N.S.; Twardziok, S.O.; Pasam, R.K.; Gundlach, H.; Spannagl, M.; Ormanbekova, D.; Lux, T.; Prade, V.M.; Milner, S.G.; et al. Durum wheat Genome Highlights Past Domestication Signatures and Future Improvement Targets. Nat. Genet. 2019, 51, 885–895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, P.J.; Wen, Z.; Zhang, S. Marker-Assisted Breeding for Disease Resistance in Crop Plants. In Biotechnologies of Crop Improvement; Gosal, S., Wani, S., Eds.; Springer: Cham, Switzerland, 2018; Volume 3. [Google Scholar]
- Cobb, J.N.; Biswas, P.S.; Platten, J.D. Back to the Future: Revisiting MAS as a Tool for Modern Plant Breeding. Theor. Appl. Genet. 2019, 132, 647–667. [Google Scholar] [CrossRef] [Green Version]
- Hsu, Y.C.; Chiu, C.H.; Yap, R.; Tseng, Y.C.; Wu, Y.P. Pyramiding Bacterial Blight Resistance Genes in Tainung82 for Broad-Spectrum Resistance Using Marker-Assisted Selection. Int. J. Mol. Sci. 2020, 21, 1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashkani, S.; Rafii, M.Y.; Shabanimofrad, M.; Miah, G.; Sahebi, M.; Azizi, P.; Tanweer, F.A.; Akhtar, M.S.; Nasehi, A. Molecular Breeding Strategy and Challenges Towards Improvement of Blast Disease Resistance in Rice Crop. Front. Plant Sci. 2015, 6, 886. [Google Scholar] [CrossRef] [Green Version]
- Chukwu, S.C.; Rafii, M.Y.; Ramlee, S.I.; Ismail, S.I.; Oladosu, Y.; Okporie, E.; Onyishi, G.; Utobo, E.; Ekwu, L.; Swaray, S.; et al. Marker-assisted Selection and Gene Pyramiding for Resistance to Bacterial Leaf Blight Disease of Rice (Oryza sativa L.). Biotechnol. Biotechnol. Equip. 2019, 33, 440–455. [Google Scholar] [CrossRef] [Green Version]
- Ridzuan, R.; Rafii, M.Y.; Ismail, S.I.; Yusoff, M.M.; Miah, G.; Usman, M. Breeding for Anthracnose Disease Resistance in Chili: Progress and Prospects. Int. J. Mol. Sci. 2018, 19, 3122. [Google Scholar] [CrossRef] [Green Version]
- Mehraj, H.; Akter, A.; Miyaji, N.; Miyazaki, J.; Shea, D.J.; Fujimoto, R.; Doullah, M.A. Genetics of Clubroot and Fusarium Wilt Disease Resistance in Brassica Vegetables: The Application of Marker Assisted Breeding for Disease Resistance. Plants 2020, 9, 726. [Google Scholar] [CrossRef]
- Shah, L.; Rehman, S.; Ali, A.; Yahya, M.; Riaz, M.W.; Si, H.; Ma, C.; Lu, J. Genes Responsible for Powdery Mildew Resistance and Improvement in Wheat Using Molecular Marker-assisted Selection. J. Plant. Dis. Prot. 2017. [Google Scholar] [CrossRef]
- Savadi, S.; Prasad, P.; Kashyap, P.L.; Bhardwaj, S.C. Molecular Breeding Technologies and Strategies for Rust Resistance in Wheat (Triticum aestivum) for Sustained Food Security. Plant Pathol. 2018, 67, 771–791. [Google Scholar] [CrossRef]
- Baliyan, N.; Malik, R.; Rani, R.; Mehta, K.; Vashisth, U.; Dhillon, S.; Singh Boora, K. Integrating Marker-assisted Background Analysis with Foreground Selection for Pyramiding Bacterial Blight Resistance Genes into Basmati Rice. Comptes Rendus Biol. 2018, 341, 1–8. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, X.; Hou, Y.; Cai, J.; Shen, X.; Zhou, T.; Xu, H.; Ohm, H.W.; Wang, H.; Li, A.; et al. High-density Mapping of the Major FHB Resistance Gene Fhb7 Derived from Thinopyrum ponticum and Its Pyramiding with Fhb1 by Marker-assisted Selection. Theor. Appl. Genet. 2015, 128, 2301–2316. [Google Scholar] [CrossRef]
- Watson, A.; Ghosh, S.; Williams, M.J.; Cuddy, W.S.; Simmonds, J.; Rey, M.D.; Md Hatta, M.A.; Hinchliffe, A.; Steed, A.; Reynolds, D.; et al. Speed Breeding is a Powerful Tool to Accelerate Crop Research and Breeding. Nat. Plants 2018, 4, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Flachowsky, H.; Roux, P.L.; Peil, A.; Patocchi, A.; Richter, K.; Hanke, M. Application of a High-speed Breeding Technology to Apple (Malus × domestica) Based on Transgenic Early Flowering Plants and Marker-assisted Selection. New Phytol. 2011, 192, 364–377. [Google Scholar] [CrossRef]
- Endo, T.; Fujii, H.; Omura, M.; Shimada, T. Fast-track Breeding System to Introduce CTV Resistance of Trifoliate Orange into Citrus Germplasm, by Integrating Early Flowering Transgenic Plants with Marker Assisted Selection. BMC Plant Biol. 2020, 20, 224. [Google Scholar] [CrossRef] [PubMed]
- Castro, P.; Rubio, J.; Madrid, E.; Fernàndez-Romero, M.D.; Millàn, T.; GIL, J. Efficiency of Marker-assisted Selection for Ascochyta Blight in Chickpea. J. Agric. Sci. 2013, 153, 1–12. [Google Scholar] [CrossRef]
- Arruda, M.P.; Lipka, A.E.; Brown, P.J.; Krill, A.M.; Thurber, C.; Brown-Guedira, G.; Dong, Y.; Foresman, B.J.; Kolb, F.L. Comparing Genomic Selection and Marker-assisted Selection for Fusarium Head Blight Resistance in Wheat (Triticum aestivum L.). Mol. Breed. 2016, 36, 84. [Google Scholar] [CrossRef]
- Ni, D.; Song, F.; Ni, J.; Zhang, A.; Wang, C.; Zhao, K.; Yang, Y.; Wei, P.; Yang, J.; Li, L. Marker-assisted Selection of Two-line Hybrid Rice for Disease resistance to Rice Blast and Bacterial Blight. Field Crops Res. 2015, 184, 1–8. [Google Scholar] [CrossRef]
- Mi, J.; Yang, D.; Chen, Y.; Jiang, J.; Mou, H.; Huang, J.; Ouyang, Y.; Mou, T. Accelerated Molecular Breeding of a Novel P/TGMS Line with Broad-spectrum Resistance to Rice Blast and Bacterial Blight in Two-line Hybrid Rice. Rice 2018, 11, 11. [Google Scholar] [CrossRef]
- Chen, Q.; Zeng, G.; Hao, M.; Jiang, H.; Xiao, Y. Improvement of Rice Blast and Brown Planthopper Resistance of PTGMS Line C815S in Two-line Hybrid Rice through Marker-assisted Selection. Mol. Breed. 2020, 40, 21. [Google Scholar] [CrossRef]
- Kim, M.S.; Ouk, S.; Jung, K.H.; Song, Y.; Trang, L.V.; Yang, J.Y.; Cho, Y.G. Breeding Hybrid Rice with Genes Resistant to Diseases and Insects Using Marker-Assisted Selection and Evaluation of Biological Assay. Plant Breed. Biotech. 2019, 7, 272–286. [Google Scholar] [CrossRef]
- Henderson, C.R.; Quaas, R.L. Multiple Trait Evaluation Using Relative’s Records. J. Anim. Sci. 1976, 43, 11–88. [Google Scholar] [CrossRef]
- Crossa, J.; Pérez-Rodríguez, P.; Cuevas, J.; Montesinos-López, O.; Jarquín, D.; de Los Campos, G.; Burgueño, J.; González-Camacho, J.M.; Pérez-Elizalde, S.; Beyene, Y.; et al. Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends Plant Sci. 2017, 22, 961–975. [Google Scholar] [CrossRef] [PubMed]
- Robertsen, C.D.; Hjortshøj, R.L.; Janss, L.L. Genomic Selection in Cereal Breeding. Agronomy 2019, 9, 95. [Google Scholar] [CrossRef] [Green Version]
- Bernardo, R. Bandwagons I, Too, Have Known. Theor. Appl. Genet. 2016, 129, 2323–2332. [Google Scholar] [CrossRef] [PubMed]
- Meuwissen, T.H.E.; Hayes, B.J.; Goddard, M.E. Prediction of Total Genetic Value Using Genome-wide Dense Marker Maps. Genetics 2001, 157, 1819–1829. [Google Scholar] [CrossRef]
- Habier, D.; Fernando, R.L.; Dekkers, J.C.M. The Impact of Genetic Relationship Information on Genome-Assisted Breeding Values. Genetics 2007, 177, 2389–2397. [Google Scholar] [CrossRef] [Green Version]
- Heffner, E.L.; Sorrells, M.E.; Jannink, J.L. Genomic Selection for Crop Improvement. Crop Sci. 2009, 49, 1–12. [Google Scholar] [CrossRef]
- Heslot, N.; Yang, H.P.; Sorrells, M.E.; Jannink, J.L. Genomic Selection in Plant Breeding: A Comparison of Models. Crop Sci. 2012, 52, 146–160. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, X.; Fu, J.; Wang, H.; Wang, J.; Huang, C.; Prasanna, B.M.; Olsen, M.S.; Wang, G.; Zhang, A. Enhancing Genetic Gain through Genomic Selection: From Livestock to Plants. Plant Commun. 2020, 1, 1. [Google Scholar]
- Daetwyler, H.D.; Kemper, K.E.; van der Werf, J.H.J.; Hayes, B.J. Components of the Accuracy of Genomic Prediction in a Multi-breed Sheep Population. J. Anim. Sci. 2012, 90, 3375–3384. [Google Scholar]
- MacLeod, I.M.; Bowman, P.J.; Vander Jagt, C.J.; Haile-Mariam, M.; Kemper, K.E.; Chamberlain, A.J.; Schrooten, C.; Hayes, B.J.; Goddard, M.E. Exploiting Biological Priors and Sequence Variants Enhances QTL Discovery and Genomic Prediction of Complex Traits. BMC Genom. 2016, 17, 144. [Google Scholar]
- Cericola, F.; Jahoor, A.; Orabi, J.; Andersen, J.R.; Janss, L.L.; Jensen, J. Optimizing Training Population Size and Genotyping Strategy for Genomic Prediction Using Association Study Results and Pedigree Information. A Case of Study in Advanced Wheat Breeding Lines. PLoS ONE 2017, 12, e0169606. [Google Scholar]
- Podlich, D.W.; Winkler, C.R.; Cooper, M. Mapping as You Go: An Effective Approach for Marker-Assisted Selection of Complex Traits. Crop Sci. 2004, 44, 1560–1571. [Google Scholar]
- Rutkoski, E.R.; Poland, J.A.; Singh, R.P.; Huerta-Espino, J.; Bhavani, S.; Barbier, H.; Rouse, M.N.; Jannink, J.L.; Sorrells, M.E. Genomic Selection for Quantitative Adult Plant Stem Rust Resistance in Wheat. Plant Genome 2014, 7, 3. [Google Scholar]
- Rutkoski, J.; Singh, R.P.; Huerta-Espino, J.; Bhavani, S.; Poland, J.; Jannink, J.L.; Sorrells, M.E. Genetic Gain from Phenotypic and Genomic Selection for Quantitative Resistance to Stem Rust of Wheat. Plant Genome 2015, 8, 2. [Google Scholar]
- Daetwyler, H.D.; Capitan, A.; Pausch, H.; Stothard, P.; van Binsbergen, R.; Brøndum, R.F.; Liao, X.; Djari, A.; Rodriguez, S.C.; Grohs, C.; et al. Whole-genome Sequencing of 234 Bulls Facilitates Mapping of Monogenic and Complex Traits in Cattle. Nat. Genet. 2014, 46, 858–865. [Google Scholar] [CrossRef]
- Juliana, P.; Singh, R.P.; Singh, P.K.; Crossa, J.; Huerta-Espino, J.; Lan, C.; Bhavani, S.; Rutkoski, J.E.; Poland, J.A.; Bergstrom, G.C.; et al. Genomic and Pedigree-based Prediction for Leaf, Stem, and Stripe Rust Resistance in Wheat. Theor. Appl. Genet. 2017, 130, 1415–1430. [Google Scholar] [PubMed] [Green Version]
- Rutkoski, J.; Benson, J.; Jia, Y.; Brown-Guedira, G.; Jannink, J.L.; Sorrells, M. Evaluation of Genomic Prediction Methods for Fusarium Head Blight Resistance in Wheat. Plant Genome 2012, 5, 51–61. [Google Scholar]
- Technow, F.; Bürger, A.; Melchinger, A.E. Genomic Prediction of Northern Corn 23 Leaf Blight Resistance in Maize with Combined or Separated Training Sets for Heterotic 24 Groups. Genes Genomes Genet. 2013, 3, 197–203. [Google Scholar]
- Heffner, E.L.; Lorenz, A.J.; Jannink, J.L.; Sorrells, M.E. Plant Breeding with Genomic Selection: Gain per Unit Time and Cost. Crop Sci. 2010, 50, 1681–1690. [Google Scholar] [CrossRef]
- Grinberg, N.F.; Orhobor, O.I.; King, R.D. An Evaluation of Machine-learning for Predicting Phenotype: Studies in Yeast, Rice, and Wheat. Mach. Learn. 2020, 109, 251–277. [Google Scholar] [CrossRef] [Green Version]
- González-Camacho, J.M.; Ornella, L.; Pérez-Rodríguez, P.; Gianola, D.; Dreisigacker, S.; Crossa, J. Applications of Machine Learning Methods to Genomic Selection in Breeding Wheat for Rust Resistance. Plant Genome 2018, 11, 1–15. [Google Scholar]
- Citri, A.; Malenka, R.C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacol. Rev. 2008, 33, 18–41. [Google Scholar] [CrossRef] [Green Version]
- Frank, M.G. The Role of Glia in Sleep-Wake Regulation and Function. In Handbook of Behavioral Neuroscience; Elsevier: Amsterdam, The Netherlands, 2019; Volume 30, pp. 195–204. [Google Scholar]
- Wu, B.; Hangxiao, Z.; Lin, L.; Huiyuan, W.; Gao, Y.; Zhao, L.; Chen, Y.P.P.; Chen, R.; Gu, L. A Similarity Searching System for Biological Phenotype Images Using Deep Convolutional Encoder-decoder Architecture. Curr. Bioinform. 2019, 14, 628–639. [Google Scholar] [CrossRef]
- Zhou, J.; Theesfeld, C.L.; Yao, K.; Chen, K.M.; Wong, A.K.; Troyanskaya, O.G. Deep Learning Sequence-based ab initio Prediction of Variant Effects on Expression and Disease Risk. Nat. Genet. 2018, 50, 1171–1179. [Google Scholar]
- Wang, H.; Cimen, E.; Singh, N.; Buckler, E. Deep Learning for Plant Genomics and Crop Improvement. Curr. Opin. Plant Biol. 2020, 54, 34–41. [Google Scholar] [CrossRef]
- Singh, A.K.; Ganapathysubramanian, B.; Sarkar, S.; Singh, A. Deep Learning for Plant Stress Phenotyping: Trends and Future Perspectives. Trends Plant Sci. 2018, 23, 883–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DeChant, C.; Wiesner-Hanks, T.; Chen, S.; Stewart, E.L.; Yosinski, J.; Gore, M.A.; Nelson, R.J.; Lipson, H. Automated Identification of Northern Leaf Blight-infected Maize Plants from Field Imagery Using Deep Learning. Phytopathology 2017, 107, 1426–1432. [Google Scholar]
- Voss-Fels, K.P.; Stahl, A.; Wittkop, B.; Lichthardt, C.; Nagler, S.; Rose, T.; Chen, T.W.; Zetzsche, H.; Seddig, S.; Baig, M.M.; et al. Breeding Improves Wheat Productivity under Contrasting Agrochemical Input Levels. Nat. Plants 2019, 5, 706–714. [Google Scholar] [CrossRef]
- Kanja, C.; Hammond-Kosack, K.E. Proteinaceous Effector Discovery and Characterization in Filamentous Plant Pathogens. Mol. Plant Pathol. 2020, 21, 1353–1376. [Google Scholar] [PubMed]
- Champouret, N.; Bouwmeester, K.; Rietman, H.; van der Lee, T.; Maliepaard, C.; Heupink, A.; van de Vondervoort, P.J.I.; Jacobsen, E.; Visser, R.G.F.; van der Vossen, E.A.G.; et al. Phytophthora Infestans Isolates Lacking Class I ipiO Variants are Virulent on Rpi-blb1 Potato. Mol. Plant Microbe Interact. 2009, 22, 1535–1545. [Google Scholar] [PubMed] [Green Version]
- Oh, S.K.; Young, C.; Lee, M.; Oliva, R.; Bozkurt, T.O.; Cano, L.M.; Win, J.; Bos, J.I.B.; Liu, H.Y.; van Damme, M.; et al. In Planta Expression Screens of Phytophthora Infestans RXLR Effectors Reveal Diverse Phenotypes, Including Activation of the Solanum bulbocastanum Disease Resistance Protein Rpi-blb2. Plant Cell 2009, 21, 2928–2947. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Halterman, D.A. Phytophthora Infestans Effectors IPI-O1 and IPI-O4 Each Contribute to Pathogen Virulence. Phytopathology 2017, 107, 600–606. [Google Scholar] [PubMed] [Green Version]
- Chen, Y.; Halterman, D.A. Determination of Virulence Contribution from Phytophthora Infestans Effector IPI-O4 in a Resistant Potato Host Containing the RB Gene. Physiol. Mol. Plant Pathol. 2017, 100, 30–34. [Google Scholar]
- Roman, M.L.; Izarra, M.; Lindqvist-Kreuze, H.; Rivera, C.; Gamboa, S.; Tovar, J.C.; Forbes, G.; Kreuze, J.F.; Ghislain, M. R/Avr Gene Expression Study of Rpi-vnt1.1 Transgenic Potato Resistant to the Phytophthora infestans Clonal Lineage EC-1. Plant Cell Tissue Organ Cult. 2017, 131, 259–268. [Google Scholar]
- Stefanczyk, E.; Sobkowiak, S.; Brylinska, M.; Sliwka, J. Expression of the Potato Late Blight Resistance Gene Rpi-phu1 and Phytophthora infestans Effectors in the Compatible and Incompatible Interactions in Potato. Phytopathology 2017, 107, 740–748. [Google Scholar]
- Lin, X.; Wang, S.; de Rond, L.; Bertolin, N.; Wouters, R.H.M.; Wouters, D.; Domazakis, E.; Bitew, M.K.; Win, J.; Dong, S.; et al. Divergent Evolution of PcF/SCR74 Effectors in Oomycetes is Associated with Distinct Recognition Patterns in Solanaceous Plants. mBio 2020, 11, e00947-20. [Google Scholar]
- Ramachandran, S.R.; Yin, C.; Kud, J.; Tannaka, K.; Mahoney, A.K.; Xiao, F.; Hlbert, S.H. Effectors from Wheat Rust Fungi Suppress Multiple Plant Defense Responses. Phytopathology 2017, 107, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Barsoum, M.; Sabelleck, B.; Spanu, P.D.; Panstruga, R. Rumble in the Effector Jungle: Candidate Effector Proteins in Interactions of Plants with Powdery Mildew and Rust Fungi. CRC Crit. Rev. Plant Sci. 2019, 38, 255–279. [Google Scholar]
- Hewitt, T.; Muller, M.C.; Molnar, I.; Mascher, M.; Holusova, K.; Simkova, H.; Kunz, L.; Zhang, J.; Li, J.; Bhatt, D.; et al. A Highly Differentiated Region of Wheat Chromosome 7ALencodes a Pm1a Immune Receptor That Recognizes Its Corresponding AvrPm1a Effector from Blumeria graminis. New Phytol. 2021, 229, 2812–2826. [Google Scholar] [CrossRef]
- Fabre, F.; Vignassa, M.; Urbach, S.; Langin, T.; Bonhomme, L. Time-resolved Dissection of the Molecular Crosstalk Driving Fusarium Head Blight in Wheat Provides New Insights into Host Susceptibility Determinism. Plant Cell Environ. 2019, 42, 2291–2308. [Google Scholar]
- Gorash, A.; Armonienė, R.; Kazan, K. Can Effectoromics and Loss-of-susceptibility be Exploited for Improving Fusarium Head Blight Resistance in Wheat? Crop J. 2021, 9, 1–16. [Google Scholar]
- Pedersen, C.; Ver Loren van Themaat, E.; McGuffin, L.J.; Abbott, J.C.; Burgis, T.A.; Barton, G.; Bindschedler, L.V.; Lu, X.; Maekawa, T.; Wessling, R.; et al. Structure and Evolution of Barley Powdery Mildew Effector Candidates. BMC Genom. 2012, 13, 694. [Google Scholar]
- Urban, M.; Cuzick, A.; Seager, J.; Wood, V.; Rutherford, K.; Venkatesh, S.Y.; De Silva, N.; Martinez, M.C.; Pedro, H.; Yates, A.D.; et al. PHI-base: The Pathogen–host Interactions Database. Nucleic Acids Res. 2020, 48, D613–D620. [Google Scholar] [PubMed]
- Belfanti, E.; Silfverberg-Dilworth, E.; Tartarini, S.; Patocchi, A.; Barbieri, M.; Zhu, J.; Vinatze, B.A.; Gianfranceschi, L.; Gessler, C.; Sansavini, S. The HcrVf2 Gene, from a Wild Apple Confers Scab Resistance to a Transgenic Cultivated Variety. Proc. Natl. Acad. Sci. USA 2004, 101, 886–890. [Google Scholar] [PubMed] [Green Version]
- Szankowski, I.; Waidmann, S.; Degenhardt, J.; Patocchi, A.; Paris, R.; Silfverberg-Dilworth, E.; Broggini, G.; Gessler, C. Highly Scab-resistant Transgenic Apple Lines Achieved by Introgression of HcrVf2 Controlled by Different Native Promoter Lengths. Tree Genet. Genomes 2009, 5, 349–358. [Google Scholar]
- Brunner, S.; Stirnweis, D.; Diaz Quijano, C.; Buesing, G.; Herren, G.; Parlange, F.; Barret, P.; Tassy, C.; Sautter, C.; Winzeler, M.; et al. Transgenic Pm3multilines of Wheat Show Increased Powdery Mildew Resistance in the Field. Plant Biotechnol. J. 2012, 10, 398–409. [Google Scholar] [CrossRef]
- Chandrashekara, K.N.; Chandrashekara, C.; Boopal, K. Transgenics: A Genetic Engineering Approach to Develop Disease Resistance in Plants. In Eco-Friendly Innovative Approaches in Plant Disease Management; Singh, V.K., Singh, Y., Singh, A., Eds.; International Book Distributors: Delhi, India, 2012; Chapter 18; pp. 303–324. [Google Scholar]
- Zhu, S.; Li, Y.; Vossen, J.H.; Visser, R.G.F.; Jacobsen, E. Functional Stacking of Three Resistance Genes against Phytophthora infestans in Potato. Transgenic Res. 2012, 21, 89–99. [Google Scholar] [PubMed] [Green Version]
- Dong, O.X.; Ronald, P.C. Genetic Engineering for Disease Resistance in Plants Recent Progress and Future Perspectives. Plant Physiol. 2019, 180, 26–38. [Google Scholar]
- van Esse, H.P.; Reuber, T.L.; van der Does, D. Genetic Modification to Improve Disease Resistance in Crops. New Phytol. 2020, 225, 70–86. [Google Scholar] [PubMed] [Green Version]
- Luo, M.; Xie, L.; Chakraborty, S.; Wang, A.; Matny, O.; Jugovich, M.; Kolmer, J.A.; Richardson, T.; Bhatt, D.; Hoque, M.; et al. A Five-transgene Cassette Confers Broad-spectrum Resistance to a Fungal Rust Pathogen in Wheat. Nat. Biotechnol. 2021, 39, 561–566. [Google Scholar]
- Limera, C.; Sabbadini, S.; Sweet, J.B.; Mezzetti, B. New Biotechnological Tools for the Genetic Improvement of Major Woody Fruit Species. Front. Plant Sci. 2017, 8, 1418. [Google Scholar] [PubMed]
- Schouten, H.J.; Krens, F.A.; Jacobsen, E. Cisgenic Plants are Similar to Traditionally Bred Plants: International Regulations for Genetically Modified Organisms Should be Altered to Exempt Cisgenesis. EMBO Rep. 2006, 7, 750–753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Espinoza, C.; Schlechter, R.; Herrera, D.; Torres, E.; Serrano, A.; Medina, C.; Arce-Johnson, P. Cisgenesis and Intragenesis: New Tools for Improving Crops. Biol. Res. 2013, 46, 323–331. [Google Scholar]
- Holme, I.B.; Wendt, T.; Holme, P.B. Intragenesis and Cisgenesis as Alternatives to Transgenic Crop Development. Plant Biotechnol. J. 2013, 11, 395–407. [Google Scholar]
- Maltseva, E.; Ismagul, A.; Iskakova, G.; Chirkin, A.; Skiba, Y.; Ismagulova, G.; Eliby, S.; Aitkhozhinaet, N. Wheat Cisgenic Transformation with Class I Chitinase Gene. J. Biotechnol. 2014, 185, S116–S117. [Google Scholar]
- Singh, V.; Singh, S.; Shikha, K.; Kumar, A. Cisgenesis a Sustainable Approach of Gene Introgression and Its Utilization in Horticultural Crops: A Review. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 5002–5009. [Google Scholar]
- Haverkort, A.J.; Boonekamp, P.M.; Hutten, R.; Jacobsen, E.; Lotz, L.A.P.; Kessel, G.J.T.; Vossen, J.H.; Visser, R.G.F. Durable Late Blight Resistance in Potato through Dynamic Varieties Obtained by Cisgenesis: Scientific and Societal Advances in the DuRPh Project. Potato Res. 2016, 59, 35–66. [Google Scholar]
- Haverkort, A.J.; Struik, P.C.; Visser, R.G.F.; Jacobsen, E. Applied Biotechnology to Combat Late Blight in Potato Caused by Phytophthora infestans. Potato Res. 2009, 52, 249–264. [Google Scholar] [CrossRef]
- Jo, K.R.; Kim, C.J.; Kim, S.J.; Kim, T.Y.; Bergervoet, M.; Jongsma, M.A.; Visser, R.G.F.; Evert Jacobsen, E.; Vossen, J.H. Development of Late Blight Resistant Potatoes by Cisgene Stacking. BMC Biotechnol. 2014, 14, 50. [Google Scholar]
- Benjamin, I.; Kenigsbuch, D.; Galperin, M.; Abrameto, J.A.; Cohen, Y. Cisgenic Melons over Expressing Glyoxylate-aminotransferase are Resistant to Downy Mildew. Eur. J. Plant Pathol. 2009, 125, 355–365. [Google Scholar]
- Schaart, J.G.; Mehli, L.; Schouten, H.J. Quantification of Allele-specific Expression of a Gene Encoding Strawberry Polygalacturonase-inhibiting Protein (PGIP) Using PyrosequencingTM. Plant J. 2005, 41, 493–500. [Google Scholar] [CrossRef]
- Joshi, S.G.; Schaart, J.G.; Groenwold, R.; Jacobsen, E.; Schouten, H.J.; Krens, F.A. Functional analysis and Expression Profiling of HcrVf1 and HcrVf2 for Development of Scab Resistant Cisgenic and Intragenic Apples. Plant Mol. Biol. 2011, 75, 579–591. [Google Scholar] [PubMed] [Green Version]
- Vanblaere, T.; Szankowski, I.; Schaart, J.; Schouten, H.; Flachowsky, H.; Broggini, G.A.; Gessler, C. The Development of a Cisgenic Apple Plant. J. Biotechnol. 2011, 154, 304–311. [Google Scholar]
- Vanblaere, T.; Flachowsky, H.; Gessler, C.; Broggini, G.A. Molecular Characterization of Cisgenic Lines of Apple ‘Gala’ Carrying the Rvi6 Scab Resistance Gene. Plant Biotechnol. J. 2014, 12, 2–9. [Google Scholar] [PubMed]
- Gessler, C.; Vanblaere, T.; Parravicini, G.; Broggini, G.A.L. Cisgenic ‘Gala’ Containing the Scab Resistance Gene from Malus floribunda 821 and the Fire Blight Resistance Genes from M. ‘Evereste’. Acta Horticult. 2014, 1048, 43–50. [Google Scholar]
- Kost, T.D.; Gessler, C.; Jänsch, M.; Flachowsky, H.; Patocchi, A.; Broggini, G.A. Development of the First Cisgenic Apple with Increased Resistance to Fire Blight. PLoS ONE 2015, 10, e0143980. [Google Scholar]
- Krens, F.A.; Schaart, J.G.; van der Burgh, A.M.; Tinnenbroek-Capel, I.E.M.; Groenwold, R.; Kodde, L.P.; Broggini, G.A.L.; Gessler, C.; Schouten, H.J. Cisgenic Apple Trees; Development, Characterization, and Performance. Front. Plant Sci. 2015, 6, 286. [Google Scholar] [PubMed] [Green Version]
- Würdig, J.; Flachowsky, H.; Sab, A.; Peil, A.; Hanke, M.V. Improving Resistance of Different Apple Cultivars Using the Rvi6 Scab Resistance Gene in a Cisgenic Approach Based on the Flp/FRT Recombinase System. Mol. Breed. 2015, 35, 1–18. [Google Scholar]
- Chizzali, C.; Gusberti, M.; Schouten, H.J.; Gessler, C.; Broggini, G.A. Cisgenic Rvi6 Scab-resistant Apple Lines Show no Differences in Rvi6 Transcription When Compared with Conventionally Bred Cultivars. Planta 2016, 243, 635–644. [Google Scholar]
- Dhekney, S.A.; Li, Z.T.; Gray, D.J. Grapevines Engineered to Express Cisgenic Vitis Vinifera Thaumatin-like Protein Exhibit Fungal Disease Resistance. In Vitro Cell Dev. Biol. Plan. 2011, 47, 458–466. [Google Scholar]
- An, C.; Orbović, V.; Mou, Z. An Efficient Intragenic Vector for Generating Intragenic and Cisgenic Plants in Citrus. Am. J. Plant Sci. 2013, 4, 2131–2137. [Google Scholar]
- Conner, A.; Barrell, P.; Baldwin, S.; Lokerse, A.; Cooper, P.; Erasmuson, A.; Nap, J.-P.; Jacobs, J.E. Intragenic Vectors for Gene Transfer without Foreign DNA. Euphytica 2007, 154, 341–353. [Google Scholar]
- Kamburova, V.S.; Nikitina, E.V.; Shermatov, S.E.; Buriev, Z.T.; Kumpatla, S.P.; Emani, C.; Abdurakhmonov, I.Y. Genome Editing in Plants: An Overview of Tools and Applications. Int. J. Agron. 2017, 2017, 7315351. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Gao, C. Targeted Genome Modification Technologies and Their Applications in Crop Improvements. Plant Cell Rep. 2014, 33, 575–583. [Google Scholar]
- Puchta, H. Applying CRISPR/Cas for Genome Engineering in Plants: The Best is Yet to Come. Curr. Opin. Plant Biol. 2017, 36, 1–8. [Google Scholar]
- Ma, X.; Zhang, Q.; Zhu, Q.; Liu, W.; Chen, Y.; Qiu, R.; Wang, B.; Yang, Z.; Li, H.; Lin, Y.; et al. A robust CRISPR/Cas9 System for Convenient, High-efficiency Multiplex Genome Editing in Monocot and Dicot Plants. Mol. Plant 2015, 8, 1274–1284. [Google Scholar] [PubMed]
- Malzahn, A.; Lowder, L.; Qi, Y. Plant Genome Editing with TALEN and CRISPR. Cell Biosci. 2017, 7, 21. [Google Scholar]
- Nagamangala Kanchiswamy, C.; Sargent, D.J.; Velasco, R.; Maffei, M.E.; Malnoy, M. Looking Forward to Genetically Edited Fruit Crops. Trends Biotechnol. 2015, 33, 62–64. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Liu, T.; Li, C.; Jiao, B.; Li, S.; Hou, Y.; Luo, K. Efficient CRISPR/Cas9-mediated Targeted Mutagenesis in Populus in the First Generation. Sci. Rep. 2015, 5, 12217. [Google Scholar]
- Gosavi, G.; Yan, F.; Ren, B.; Kuang, Y.; Yan, D.; Zhou, X.; Zhou, H. Applications of CRISPR Technology in Studying Plant-pathogen Interactions: Overview and Perspective. Phytopathol. Res. 2020, 2, 21. [Google Scholar]
- Zhang, Y.; Liang, Z.; Zong, Y.; Wang, Y.; Liu, J.; Chen, K.; Qiu, J.L.; Gao, C. Efficient and Transgene-free Genome Editing in Wheat through Transient Expression of CRISPR/Cas9 DNA or RNA. Nat. Commun. 2016, 7, 12617. [Google Scholar] [PubMed] [Green Version]
- Liang, Z.; Chen, K.; Zhang, Y.; Liu, J.; Yin, K.; Qiu, J.L.; Gao, C. Genome Editing of Bread Wheat Using Biolistic Delivery of CRISPR/Cas9 in vitro Transcripts or Ribonucleoproteins. Nat. Protoc. 2018, 13, 413–430. [Google Scholar] [PubMed]
- Ji, X.; Zhang, H.; Zhang, Y.; Wang, Y.; Gao, C. Establishing a CRISPR–Cas-like Immune System Conferring DNA Virus Resistance in Plants. Nat. Plants 2015, 1, 15144. [Google Scholar] [CrossRef]
- Yin, K.; Han, T.; Liu, G.; Chen, T.; Wang, Y.; Yu, A.Y.L.; Liu, Y. A Geminivirus-based Guide RNA Delivery System for CRISPR/Cas9 Mediated Plant Genome Editing. Sci. Rep. 2015, 5, 14926. [Google Scholar] [CrossRef]
- Baltes, N.J.; Hummel, A.W.; Konecna, E.; Cegan, R.; Bruns, A.N.; Bisaro, D.M.; Voytas, D.F. Conferring Resistance to Geminiviruses with the CRISPR–Cas Prokaryotic Immune System. Nat. Plants 2015, 1, 15145. [Google Scholar]
- Ali, Z.; Abulfaraj, A.; Idris, A.; Ali, S.; Tashkandi, M.; Mahfouz, M.M. CRISPR/Cas9-mediated Viral Interference in Plants. Genome Biol. 2015, 16, 238. [Google Scholar] [CrossRef] [Green Version]
- Ali, Z.; Ali, S.; Tashkandi, M.; Shan, S.; Zaidi, A.; Mahfouz, M.M. CRISPR/Cas9-mediated Immunity to Geminiviruses: Differential Interference and Evasion. Sci. Rep. 2016, 6, 26912. [Google Scholar] [CrossRef] [Green Version]
- Fister, A.S.; Landherr, L.; Maximova, S.N.; Guiltinan, M.J. Transient Expression of CRISPR/Cas9 Machinery Targeting TcNPR3 enhances Defense Response in Theobroma cacao. Front. Plant Sci. 2018, 9, 268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aman, R.; Ali, Z.; Butt, H.; Mahas, A.; Aljedaani, F.; Khan, M.Z.; Ding, S.; Mahfouz, M. RNA Virus Interference via CRISPR/Cas13a System in Plants. Genome Biol. 2018, 19, 1. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, L.; Zhao, R.; Yu, W.; Li, R.; Li, Y.; Sheng, J.; Shen, L. Knockout of SlMAPK3 Reduced Disease Resistance to Botrytis cinerea in Tomato Plants. J. Agric. Food Chem. 2018, 66, 8949–8956. [Google Scholar] [PubMed]
- Chandrasekaran, J.; Brumin, M.; Wolf, D.; Leibman, D.; Klap, C.; Pearlsman, M.; Sherman, A.; Arazi, T.; Gal-On, A. Development of Broad Virus Resistance in Non-transgenic Cucumber Using CRISPR/Cas9 Technology. Mol. Plant Pathol. 2016, 17, 1140–1153. [Google Scholar] [CrossRef] [Green Version]
- de Toledo Thomazella, D.P.; Brail, Q.; Dahlbeck, D.; Staskawicz, B. CRISPR-Cas9 Mediated Mutagenesis of a DMR6 Ortholog in Tomato Confers Broad-spectrum Disease Resistance. bioRxiv 2016, 064824. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.; Zhang, Y.; Orbović, V.; Xu, J.; White, F.F.; Jones, J.B.; Wang, N. Genome Editing of the Disease Susceptibility Gene CsLOB1 in Citrus Confers Resistance to Citrus Canker. Plant Biotechnol. J. 2017, 15, 817–823. [Google Scholar]
- Peng, A.; Chen, S.; Lei, T.; Xu, L.; He, Y.; Wu, L.; Yao, L.; Zou, X. Engineering Canker-resistant Plants through CRISPR/Cas9-targeted Editing of the Susceptibility Gene CsLOB1 Promoter in Citrus. Plant Biotechnol. J. 2017, 15, 1509–1519. [Google Scholar]
- Wang, L.; Chen, S.; Peng, A.; Xie, Z.; He, Y.; Zou, X. CRISPR/Cas9-mediated Editing of CsWRKY22 Reduces Susceptibility to Xanthomonas citri subsp. Citri in Wanjincheng Orange (Citrus sinensis (L.) Osbeck). Plant Biotechnol. Rep. 2019, 13, 501–510. [Google Scholar]
- Macovei, A.; Sevilla, N.R.; Cantos, C.; Jonson, G.B.; Slamet-Loedin, I.; Čermák, T.; Voytas, D.F.; Choi, I.R.; Chadha-Mohanty, P. Novel Alleles of Rice eIF4G Generated by CRISPR/Cas9-targeted Mutagenesis Confer Resistance to Rice Tungro Spherical Virus. Plant Biotechnol. J. 2018, 16, 1918–1927. [Google Scholar]
- Li, T.; Liu, B.; Spalding, M.H.; Weeks, D.P.; Yang, B. High Efficiency TALEN-based Gene Editing Produces Disease-resistant Rice. Nat. Biotechnol. 2012, 30, 390–392. [Google Scholar]
- Wang, X.; Tu, M.; Wang, D.; Liu, J.; Li, Y.; Li, Z.; Wang, Y.; Wang, X. CRISPR/Cas9-mediated Efficient Targeted Mutagenesis in Grape in the First Generation. Plant Biotechnol. J. 2018, 16, 844–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tripathi, J.N.; Ntui, V.O.; Ron, M.; Muiruri, S.K.; Britt, A.; Tripathi, L. CRISPR/Cas9 Editing of Endogenous Banana Streak Virus in the B Genome of Musa spp. Overcomes a Major Challenge in Banana Breeding. Commun. Biol. 2019, 2, 46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, K.; Yang, Y. RNA-guided Genome Editing in Plants Using a CRISPR-Cas9 System. Mol. Plant 2013, 6, 1975–1983. [Google Scholar] [CrossRef] [Green Version]
- Malnoy, M.; Viola, R.; Jung, M.H.; Koo, O.J.; Kim, S.; Kim, J.S.; Velasco, R.; Nagamangala Kanchiswamy, C. DNA-free Genetically Edited Grapevine and Apple Protoplast Using CRISPR/Cas9 Ribonucleoproteins. Front. Plant Sci. 2016, 7, 1904. [Google Scholar]
- Kumar, V.; Jain, M. The CRISPR-Cas System for Plant Genome Editing: Advances and Opportunities. J. Exp. Bot. 2015, 66, 47–57. [Google Scholar] [CrossRef] [Green Version]
- Lowder, L.; Malzahn, A.; Qi, Y. Rapid Evolution of Manifold CRISPR Systems for Plant Genome Editing. Front. Plant Sci. 2016, 7, 1683. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.Q.; Qu, X.Q.; Hou, B.H.; Sosso, D.; Osorio, S.; Fernie, A.R.; Frommer, W.B. Sucrose Efflux Mediated by SWEET Proteins as a Key Step for Phloem Transport. Science 2012, 335, 207–211. [Google Scholar] [CrossRef]
- Jiang, W.; Zhou, H.; Bi, H.; Fromm, M.; Yang, B.; Weeks, D.P. Demonstration of CRISPR/sgRNA-mediated Targeted Gene Modification in Arabidopsis, Tobacco, Sorghum and Rice. Nucleic Acids Res. 2013, 41, e188. [Google Scholar] [CrossRef] [PubMed]
- Blanvillain-Baufumé, S.; Reschke, M.; Solé, M.; Auguy, F.; Doucoure, H.; Szurek, B.; Meynard, D.; Portefaix, M.; Cunnac, S.; Guiderdoni, E.; et al. Targeted Promoter Editing for Rice Resistance to Xanthomonas oryzae pv. Oryzae Reveals Differential Activities for SWEET14-inducing TAL Effectors. Plant Biotechnol. J. 2017, 15, 306–317. [Google Scholar] [CrossRef] [Green Version]
- Oliva, R.; Ji, C.; Atienza-Grande, G.; Huguet-Tapia, J.C.; Perez-Quintero, A.; Li, T.; Eom, J.S.; Li, C.; Nguyen, H.; Liu, B.; et al. Broad-spectrum Resistance to Bacterial Blight in Rice Using Genome Editing. Nat. Biotechnol. 2019, 37, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Xu, X.; Gong, Q.; Li, Z.; Li, Y.; Wang, S.; Yang, Y.; Ma, W.; Liu, L.; Zhu, B.; et al. Engineering Broad-spectrum Bacterial Blight Resistance by Simultaneously Disrupting Variable TALE-binding Elements of Multiple Susceptibility Genes in Rice. Mol. Plant 2019, 12, 1434–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Shi, Q.; Duan, Y.; Hall, D.; Gupta, G.; Stover, E. Regulation of Citrus DMR6 via RNA Interference and CRISPR/Cas9-mediated Gene Editing to Improve Huanglongbing Tolerance. In Proceedings of the Biotechnology and Genetic Engineering-Odd, Fort Pierce, FL, USA, 30 July 2018; p. 13. [Google Scholar]
- Ortigosa, A.; Gimenez-Ibanez, S.; Leonhardt, N.; Solano, R. Design of a Bacterial Speck Resistant Tomato by CRISPR/Cas9-mediated Editing of SlJAZ2. Plant Biotechnol. J. 2019, 17, 665–673. [Google Scholar]
- Shan, Q.; Wang, Y.; Li, J. Targeted Genome Modification of Crop Plants Using a CRISPR–Cas System. Nat. Biotechnol. 2013, 31, 686–688. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, X.; Shan, Q.; Zhang, Y.; Liu, J.; Gao, C.; Qiu, J.L. Simultaneous Editing of Three Homoeoalleles in Hexaploid Bread Wheat Confers Heritable Resistance to Powdery Mildew. Nat. Biotechnol. 2014, 32, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Nekrasov, V.; Wang, C.; Win, J.; Lanz, C.; Weigel, D.; Kamoun, S. Rapid Generation of a Transgene-free Powdery Mildew Resistant Tomato by Genome Deletion. Sci. Rep. 2017, 7, 482. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Tyler, B.M. Efficient Disruption and Replacement of an Effector Gene in the Oomycete Phytophthora sojae Using CRISPR/Cas9. Molecular Plant Pathol. 2016, 17, 127–139. [Google Scholar] [CrossRef]
- Mahas, A.; Mahfouz, M. Engineering Virus Resistance via CRISPR-Cas Systems. Curr. Opin. Virol. 2018, 32, 1–8. [Google Scholar] [CrossRef]
- Tashkandi, M.; Ali, Z.; Aljedaani, F.; Shami, A.; Mahfouz, M.M. Engineering Resistance against Tomato Yellow Leaf Curl Virus via the CRISPR/Cas9 System in Tomato. Plant Signal Behav. 2018, 13, e1525996. [Google Scholar] [CrossRef] [Green Version]
- Kis, A.; Hamar, É.; Tholt, G.; Bán, R.; Halveda, Z. Creating Highly Efficient Resistance against Wheat Dwarf Virus in Barley by Employing CRISPR/Cas9 System. Plant Biotechnol. J. 2019, 17, 1004–1006. [Google Scholar] [PubMed]
- Zhang, T.; Zhao, Y.; Ye, J.; Cao, X.; Xu, C.; Chen, B.; An, H.; Jiao, Y.; Zhang, F.; Yang, X.; et al. Establishing CRISPR/Cas13a Immune System Conferring RNA Virus Resistance in Both Dicot and Monocot Plants. Plant Biotechnol. J. 2019, 17, 1185–1187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, T.; Zheng, Q.; Yi, X.; An, H.; Zhao, Y.; Ma, S.; Zhou, G. Establishing RNA Virus Resistance in Plants by Harnessing CRISPR Immune System. Plant Biotechnol. J. 2018, 16, 1415–1423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, M.A.; Lin, Z.D.; Moll, T.; Chauhan, R.D.; Hayden, L.; Renninger, K.; Beyene, G.; Taylor, N.J.; Carrington, J.C.; Staskawicz, B.J.; et al. Simultaneous CRISPR/Cas9-mediated Editing of Cassava eIF4E Isoforms nCBP-1 and nCBP-2 Reduces Cassava Brown Streak Disease Symptom Severity and Incidence. Plant Biotechnol. J. 2019, 17, 421–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Yang, X.; Zhou, G.; Zhang, T. Engineering Plant Virus Resistance: From RNA Silencing to Genome Editing Strategies. Plant Biotechnol. J. 2020, 18, 328–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mores, A.; Borrelli, G.M.; Laidò, G.; Petruzzino, G.; Pecchioni, N.; Amoroso, L.G.M.; Desiderio, F.; Mazzucotelli, E.; Mastrangelo, A.M.; Marone, D. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. Int. J. Mol. Sci. 2021, 22, 5423. https://doi.org/10.3390/ijms22115423
Mores A, Borrelli GM, Laidò G, Petruzzino G, Pecchioni N, Amoroso LGM, Desiderio F, Mazzucotelli E, Mastrangelo AM, Marone D. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. International Journal of Molecular Sciences. 2021; 22(11):5423. https://doi.org/10.3390/ijms22115423
Chicago/Turabian StyleMores, Antonia, Grazia Maria Borrelli, Giovanni Laidò, Giuseppe Petruzzino, Nicola Pecchioni, Luca Giuseppe Maria Amoroso, Francesca Desiderio, Elisabetta Mazzucotelli, Anna Maria Mastrangelo, and Daniela Marone. 2021. "Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies" International Journal of Molecular Sciences 22, no. 11: 5423. https://doi.org/10.3390/ijms22115423
APA StyleMores, A., Borrelli, G. M., Laidò, G., Petruzzino, G., Pecchioni, N., Amoroso, L. G. M., Desiderio, F., Mazzucotelli, E., Mastrangelo, A. M., & Marone, D. (2021). Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. International Journal of Molecular Sciences, 22(11), 5423. https://doi.org/10.3390/ijms22115423