Molecular Imaging and Preclinical Studies of Radiolabeled Long-Term RGD Peptides in U-87 MG Tumor-Bearing Mice
Abstract
:1. Introduction
2. Results
2.1. Radiolabeling with Indium-111
2.2. In Vitro Competitive Binding Assay
2.3. In Vitro Stability Study
2.4. NanoSPECT/CT Imaging
2.5. Biodistribution Studies
2.6. Pharmacokinetic and Excretion Studies
2.7. Dosimetry
3. Discussion
4. Materials and Methods
4.1. Cell Culture and Tumor Model
4.2. Radiolabeling with Indium-111
4.3. In Vitro Competitive Binding Assays
4.4. In Vitro Stability Study
4.5. NanoSPECT/CT Imagings
4.6. Biodistribution, Pharmacokinetic and Excretion Studies
4.7. Dosimetry
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, E.J.; Myint, P.K.; Ito, A.; Appiah, M.G.; Darkwah, S.; Kawamoto, E.; Shimaoka, M. Integrin-Ligand Interactions in Inflammation, Cancer, and Metabolic Disease: Insights Into the Multifaceted Roles of an Emerging Ligand Irisin. Front. Cell Dev. Biol. 2020, 8, 588066. [Google Scholar] [CrossRef] [PubMed]
- Cabodi, S.; Di Stefano, P.; Leal Mdel, P.; Tinnirello, A.; Bisaro, B.; Morello, V.; Damiano, L.; Aramu, S.; Repetto, D.; Tornillo, G.; et al. Integrins and signal transduction. Adv. Exp. Med. Biol. 2010, 674, 43–54. [Google Scholar] [CrossRef]
- Hamidi, H.; Pietila, M.; Ivaska, J. The complexity of integrins in cancer and new scopes for therapeutic targeting. Br. J. Cancer 2016, 115, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Gajbhiye, K.R.; Gajbhiye, V.; Siddiqui, I.A.; Gajbhiye, J.M. cRGD functionalised nanocarriers for targeted delivery of bioactives. J. Drug Target. 2019, 27, 111–124. [Google Scholar] [CrossRef]
- Ahmad, K.; Lee, E.J.; Shaikh, S.; Kumar, A.; Rao, K.M.; Park, S.Y.; Jin, J.O.; Han, S.S.; Choi, I. Targeting integrins for cancer management using nanotherapeutic approaches: Recent advances and challenges. Semin. Cancer Biol. 2019. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.H.; Opadele, A.E.; Onodera, Y.; Nam, J.M. Targeting Integrins in Cancer Nanomedicine: Applications in Cancer Diagnosis and Therapy. Cancers 2019, 11, 1783. [Google Scholar] [CrossRef] [Green Version]
- Hamidi, H.; Ivaska, J. Every step of the way: Integrins in cancer progression and metastasis. Nat. Rev. Cancer 2018, 18, 533–548. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahabeleshwar, G.H.; Feng, W.; Reddy, K.; Plow, E.F.; Byzova, T.V. Mechanisms of integrin-vascular endothelial growth factor receptor cross-activation in angiogenesis. Circ. Res. 2007, 101, 570–580. [Google Scholar] [CrossRef] [Green Version]
- Jin, H.; Varner, J. Integrins: Roles in cancer development and as treatment targets. Br. J. Cancer 2004, 90, 561–565. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Chen, X. Why integrin as a primary target for imaging and therapy. Theranostics 2011, 1, 30–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isal, S.; Pierson, J.; Imbert, L.; Clement, A.; Collet, C.; Pinel, S.; Veran, N.; Reinhard, A.; Poussier, S.; Gauchotte, G.; et al. PET imaging of 68Ga-NODAGA-RGD, as compared with (18)F-fluorodeoxyglucose, in experimental rodent models of engrafted glioblastoma. EJNMMI Res. 2018, 8, 51. [Google Scholar] [CrossRef]
- Nieberler, M.; Reuning, U.; Reichart, F.; Notni, J.; Wester, H.J.; Schwaiger, M.; Weinmuller, M.; Rader, A.; Steiger, K.; Kessler, H. Exploring the Role of RGD-Recognizing Integrins in Cancer. Cancers 2017, 9, 116. [Google Scholar] [CrossRef] [PubMed]
- Garrigues, H.J.; Rubinchikova, Y.E.; Dipersio, C.M.; Rose, T.M. Integrin αvβ3 Binds to the RGD motif of glycoprotein B of Kaposi’s sarcoma-associated herpesvirus and functions as an RGD-dependent entry receptor. J. Virol. 2008, 82, 1570–1580. [Google Scholar] [CrossRef] [Green Version]
- Pierschbacher, M.D.; Ruoslahti, E. Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 1984, 309, 30–33. [Google Scholar] [CrossRef]
- Boohaker, R.J.; Lee, M.W.; Vishnubhotla, P.; Perez, J.M.; Khaled, A.R. The use of therapeutic peptides to target and to kill cancer cells. Curr. Med. Chem. 2012, 19, 3794–3804. [Google Scholar] [CrossRef] [PubMed]
- Dijkgraaf, I.; Beer, A.J.; Wester, H.J. Application of RGD-containing peptides as imaging probes for αvβ3 expression. Front. Biosci. 2009, 14, 887–899. [Google Scholar] [CrossRef] [Green Version]
- Pike, D.B.; Ghandehari, H. HPMA copolymer-cyclic RGD conjugates for tumor targeting. Adv. Drug Deliv. Rev. 2010, 62, 167–183. [Google Scholar] [CrossRef]
- Verrier, S.; Pallu, S.; Bareille, R.; Jonczyk, A.; Meyer, J.; Dard, M.; Amedee, J. Function of linear and cyclic RGD-containing peptides in osteoprogenitor cells adhesion process. Biomaterials 2002, 23, 585–596. [Google Scholar] [CrossRef]
- Frochot, C.; Di Stasio, B.; Vanderesse, R.; Belgy, M.J.; Dodeller, M.; Guillemin, F.; Viriot, M.L.; Barberi-Heyob, M. Interest of RGD-containing linear or cyclic peptide targeted tetraphenylchlorin as novel photosensitizers for selective photodynamic activity. Bioorg. Chem. 2007, 35, 205–220. [Google Scholar] [CrossRef]
- Haubner, R.; Wester, H.J.; Weber, W.A.; Mang, C.; Ziegler, S.I.; Goodman, S.L.; Senekowitsch-Schmidtke, R.; Kessler, H.; Schwaiger, M. Noninvasive imaging of αvβ3 integrin expression using 18F-labeled RGD-containing glycopeptide and positron emission tomography. Cancer Res. 2001, 61, 1781–1785. [Google Scholar]
- Lu, F.M.; Yuan, Z. PET/SPECT molecular imaging in clinical neuroscience: Recent advances in the investigation of CNS diseases. Quant. Imaging Med. Surg. 2015, 5, 433–447. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, K. Development of Diagnostic and Therapeutic Probes with Controlled Pharmacokinetics for Use in Radiotheranostics. Chem. Pharm. Bull. 2019, 67, 897–903. [Google Scholar] [CrossRef]
- Beer, A.J.; Grosu, A.L.; Carlsen, J.; Kolk, A.; Sarbia, M.; Stangier, I.; Watzlowik, P.; Wester, H.J.; Haubner, R.; Schwaiger, M. 18F-galacto-RGD positron emission tomography for imaging of αvβ3 expression on the neovasculature in patients with squamous cell carcinoma of the head and neck. Clin. Cancer Res. 2007, 13, 6610–6616. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Jacobson, O.; Niu, G.; Weiss, I.D.; Kiesewetter, D.O.; Liu, Y.; Ma, Y.; Wu, H.; Chen, X. Novel “Add-On” Molecule Based on Evans Blue Confers Superior Pharmacokinetics and Transforms Drugs to Theranostic Agents. J. Nucl. Med. 2017, 58, 590–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Zhao, L.; Fu, K.; Lin, Q.; Wen, X.; Jacobson, O.; Sun, L.; Wu, H.; Zhang, X.; Guo, Z.; et al. Integrin αvβ3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy. Theranostics 2019, 9, 7948–7960. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, H.; Guo, Z.; Fu, K.; Yao, L.; Fu, L.; Guo, W.; Wen, X.; Jacobson, O.; Zhang, X.; et al. Targeted Radionuclide Therapy in Patient-Derived Xenografts Using 177Lu-EB-RGD. Mol. Cancer Ther. 2020, 19, 2034–2043. [Google Scholar] [CrossRef]
- Dash, A.; Chakraborty, S.; Pillai, M.R.; Knapp, F.F., Jr. Peptide receptor radionuclide therapy: An overview. Cancer Biother. Radiopharm. 2015, 30, 47–71. [Google Scholar] [CrossRef]
- Hindie, E.; Morgat, C.; Zanotti-Fregonara, P.; Haissaguerre, M.; Bordenave, L.; Tabarin, A. Advantages and Limits of Targeted Radionuclide Therapy with Somatostatin Antagonists. J. Nucl. Med. 2018, 59, 546–547. [Google Scholar] [CrossRef]
- Kulhari, H.; Pooja, D.; Shrivastava, S.; Telukutala, S.R.; Barui, A.K.; Patra, C.R.; Naidu Vegi, G.M.; Adams, D.J.; Sistla, R. Cyclic-RGDfK peptide conjugated succinoyl-TPGS nanomicelles for targeted delivery of docetaxel to integrin receptor over-expressing angiogenic tumours. Nanomed. Nanotechnol. Biol. Med. 2015, 11, 1511–1520. [Google Scholar] [CrossRef]
- Dennis, M.S.; Zhang, M.; Meng, Y.G.; Kadkhodayan, M.; Kirchhofer, D.; Combs, D.; Damico, L.A. Albumin binding as a general strategy for improving the pharmacokinetics of proteins. J. Biol. Chem. 2002, 277, 35035–35043. [Google Scholar] [CrossRef] [Green Version]
- Shan, L. 111In-Labeled multifunctional single-attachment-point reagent-c[RGDfK]. In Molecular Imaging and Contrast Agent Database (MICAD); National Center for Biotechnology Information: Bethesda, MD, USA, 2004–2013. [Google Scholar]
- Yu, Q.; Wang, L.; Ding, J.; Yang, Z.; Shou, C.; Zhao, C.; Zhu, H. Evaluation of 111In-DOTA-F56 peptide targeting VEGFR1 for potential non-invasive gastric cancer xenografted tumor mice Micro-SPECT imaging. Bioorg. Med. Chem. Lett. 2020, 30, 127248. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhou, Y.; Chakraborty, S.; Kim, Y.S.; Jia, B.; Wang, F.; Liu, S. Evaluation of In-Labeled Cyclic RGD Peptides: Effects of Peptide and Linker Multiplicity on Their Tumor Uptake, Excretion Kinetics and Metabolic Stability. Theranostics 2011, 1, 322–340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, L.; Xue, X.; Yu, P.; Ni, Y.; Chen, F. Evans Blue Dye: A Revisit of Its Applications in Biomedicine. Contrast Media Mol. Imaging 2018, 2018, 7628037. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Li, D.; Niu, G.; Baum, R.; Zhu, Z.; Chen, X. First-in-Human Study of a 64Cu-Labeled Long-acting Integrin αvβ3 Targeting Molecule 64Cu-NOTA-EB-RGD in Healthy Volunteers and GBM Patients. J. Nucl. Med. 2020, 61, 349. [Google Scholar]
- Bentel, G.C.; Nelson, C.E.; Noell, K.T. Treatment Planning and Dose Calculation in Radiation Oncology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 1982. [Google Scholar]
- Li, Z.B.; Chen, K.; Chen, X. 68Ga-labeled multimeric RGD peptides for microPET imaging of integrin αvβ3 expression. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1100–1108. [Google Scholar] [CrossRef] [PubMed]
- Oxboel, J.; Brandt-Larsen, M.; Schjoeth-Eskesen, C.; Myschetzky, R.; El-Ali, H.H.; Madsen, J.; Kjaer, A. Comparison of two new angiogenesis PET tracers 68Ga-NODAGA-E[c(RGDyK)]2 and 64Cu-NODAGA-E[c(RGDyK)]2; in vivo imaging studies in human xenograft tumors. Nucl. Med. Biol. 2014, 41, 259–267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knetsch, P.A.; Zhai, C.; Rangger, C.; Blatzer, M.; Haas, H.; Kaeopookum, P.; Haubner, R.; Decristoforo, C. 68Ga-FSC-(RGD)3 a trimeric RGD peptide for imaging αvβ3 integrin expression based on a novel siderophore derived chelating scaffold-synthesis and evaluation. Nucl. Med. Biol. 2015, 42, 115–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanaoka, K.; Watabe, T.; Naka, S.; Kanai, Y.; Ikeda, H.; Horitsugi, G.; Kato, H.; Isohashi, K.; Shimosegawa, E.; Hatazawa, J. FBPA PET in boron neutron capture therapy for cancer: Prediction of 10B concentration in the tumor and normal tissue in a rat xenograft model. EJNMMI Res. 2014, 4, 70. [Google Scholar] [CrossRef] [Green Version]
- Belykh, E.; Shaffer, K.V.; Lin, C.; Byvaltsev, V.A.; Preul, M.C.; Chen, L. Blood-Brain Barrier, Blood-Brain Tumor Barrier, and Fluorescence-Guided Neurosurgical Oncology: Delivering Optical Labels to Brain Tumors. Front. Oncol. 2020, 10, 739. [Google Scholar] [CrossRef]
- Schneider, S.W.; Ludwig, T.; Tatenhorst, L.; Braune, S.; Oberleithner, H.; Senner, V.; Paulus, W. Glioblastoma cells release factors that disrupt blood-brain barrier features. Acta Neuropathol. 2004, 107, 272–276. [Google Scholar] [CrossRef]
- Lo, W.L.; Liang, C.H.; Chen, L.C.; Lee, S.Y.; Lo, S.N.; Chen, M.W.; Lu, R.M.; Liu, I.J.; Wu, H.C.; Chang, C.H. Imaging and biodistribution of radiolabeled SP90 peptide in BT-483 tumor bearing mice. Appl. Radiat. Isot. 2020, 161, 109162. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.H.; Stabin, M.G.; Chang, Y.J.; Chen, L.C.; Chen, M.H.; Chang, T.J.; Lee, T.W.; Ting, G. Comparative dosimetric evaluation of nanotargeted 188Re-(DXR)-liposome for internal radiotherapy. Cancer Biother. Radiopharm. 2008, 23, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.J.; Ho, C.L.; Cheng, K.H.; Kuo, W.I.; Lee, W.C.; Lan, K.L.; Chang, C.H. Biodistribution, pharmacokinetics and radioimmunotherapy of 188Re-cetuximab in NCI-H292 human lung tumor-bearing nude mice. Investig. New Drugs 2019, 37, 961–972. [Google Scholar] [CrossRef] [PubMed]
Incubation Time (h) | Rat Plasma (%) | Normal Saline (%) |
---|---|---|
0 | 96.8 ± 1.8 | 96.2 ± 2.2 |
2 | 95.7 ± 2.1 | 96.3 ± 1.7 |
4 | 96.3 ± 1.9 | 95.9 ± 1.8 |
24 | 95.8 ± 1.3 | 95.6 ± 1.8 |
48 | 96.2 ± 1.3 | 95.9 ± 0.8 |
96 | 96.3 ± 2.0 | 96.1 ± 1.0 |
Organ | 2 h | 24 h | 48 h | 72 h | 96 h |
---|---|---|---|---|---|
Blood | 13.46 ± 0.92 | 1.90 ± 0.16 | 1.44 ± 0.19 | 1.12 ± 0.38 | 0.88 ± 0.05 |
Skin | 6.03 ± 0.7 | 5.80 ± 0.79 | 5.52 ± 0.84 | 5.56 ± 0.70 | 5.01 ± 1.03 |
Muscle | 2.18 ± 0.27 | 1.19 ± 0.11 | 1.19 ± 0.14 | 1.26 ± 0.23 | 1.02 ± 0.14 |
Bone | 1.95 ± 0.37 | 1.69 ± 0.56 | 1.38 ± 0.48 | 1.33 ± 0.70 | 0.96 ± 0.16 |
Brain | 0.46 ± 0.09 | 0.32 ± 0.03 | 0.32 ± 0.08 | 0.30 ± 0.12 | 0.27 ± 0.03 |
Bladder | 9.1 ± 1.55 | 7.86 ± 1.16 | 7.05 ± 1.50 | 6.53 ± 0.86 | 6.43 ± 2.03 |
Pancreas | 2.42 ± 0.14 | 1.46 ± 0.13 | 1.38 ± 0.27 | 1.48 ± 0.20 | 1.25 ± 0.18 |
Spleen | 9.73 ± 2.1 | 12.10 ± 1.84 | 12.88 ± 2.78 | 11.06 ± 2.85 | 8.83 ± 3.11 |
Stomach | 5.72 ± 0.93 | 4.57 ± 0.63 | 4.14 ± 0.66 | 3.53 ± 0.70 | 2.17 ± 0.12 |
Small intestine | 10.03 ± 1.05 | 7.01 ± 2.88 | 6.13 ± 2.4 | 6.91 ± 1.31 | 4.20 ± 2.13 |
Large intestine | 4.91 ± 0.39 | 3.38 ± 0.58 | 2.75 ± 0.54 | 3.14 ± 1.01 | 1.67 ± 0.25 |
Bile | 5.65 ± 6.39 | 2.32 ± 1.25 | 0.67 ± 0.51 | 3.49 ± 3.05 | 0.23 ± 0.13 |
Liver | 7.79 ± 1.26 | 5.79 ± 0.37 | 6.15 ± 0.95 | 7.15 ± 2.51 | 5.70 ± 0.29 |
Kidney | 13.34 ± 1.08 | 14.42 ± 0.38 | 13.41 ± 2.06 | 13.70 ± 2.73 | 11.01 ± 0.50 |
Heart | 4.65 ± 0.27 | 2.79 ± 0.06 | 2.75 ± 0.55 | 2.62 ± 0.59 | 2.09 ± 0.21 |
Lung | 7.11 ± 0.69 | 3.11 ± 0.28 | 3.92 ± 2.29 | 2.91 ± 0.31 | 2.92 ± 0.92 |
Tumor | 19.44 ± 2.20 | 27.12 ± 2.70 | 26.53 ± 3.92 | 26.44 ± 6.16 | 18.55 ± 2.01 |
T/M ratio | 8.92 | 22.79 | 22.29 | 20.98 | 18.19 |
T/B ratio | 1.44 | 14.27 | 18.42 | 23.61 | 21.08 |
Parameter | Unit | 111In-DOTA-EB-cRGDfK | 111In-DOTA-cRGDfK |
---|---|---|---|
T1/2λz | h | 77.3 | 17.2 |
Cmax | % ID/mL | 13.1 | 3.74 |
Cl | mL/h | 0.426 | 12.9 |
AUC(0→∞) | % ID/mL × h | 242 | 4.02 |
MRT(0→∞) | h | 77.2 | 10.3 |
Organ | Estimated Dose (mSv/MBq) |
---|---|
Brain | 0.026 |
Breasts | 0.051 |
Gallbladder Wall | 0.150 |
LLI Wall | 0.622 |
Small Intestine | 0.207 |
Stomach Wall | 0.110 |
ULI Wall | 0.376 |
Heart Wall | 0.102 |
Kidneys | 0.214 |
Liver | 0.187 |
Lungs | 0.096 |
Muscle | 0.076 |
Ovaries | 0.202 |
Pancreas | 0.117 |
Red Marrow | 0.080 |
Osteogenic Cells | 0.176 |
Skin | 0.043 |
Spleen | 0.186 |
Thymus | 0.070 |
Thyroid | 0.057 |
Urinary Bladder Wall | 0.195 |
Uterus | 0.139 |
Total Body | 0.086 |
Effective Dose | 0.201 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lo, W.-L.; Lo, S.-W.; Chen, S.-J.; Chen, M.-W.; Huang, Y.-R.; Chen, L.-C.; Chang, C.-H.; Li, M.-H. Molecular Imaging and Preclinical Studies of Radiolabeled Long-Term RGD Peptides in U-87 MG Tumor-Bearing Mice. Int. J. Mol. Sci. 2021, 22, 5459. https://doi.org/10.3390/ijms22115459
Lo W-L, Lo S-W, Chen S-J, Chen M-W, Huang Y-R, Chen L-C, Chang C-H, Li M-H. Molecular Imaging and Preclinical Studies of Radiolabeled Long-Term RGD Peptides in U-87 MG Tumor-Bearing Mice. International Journal of Molecular Sciences. 2021; 22(11):5459. https://doi.org/10.3390/ijms22115459
Chicago/Turabian StyleLo, Wei-Lin, Shih-Wei Lo, Su-Jung Chen, Ming-Wei Chen, Yuan-Ruei Huang, Liang-Cheng Chen, Chih-Hsien Chang, and Ming-Hsin Li. 2021. "Molecular Imaging and Preclinical Studies of Radiolabeled Long-Term RGD Peptides in U-87 MG Tumor-Bearing Mice" International Journal of Molecular Sciences 22, no. 11: 5459. https://doi.org/10.3390/ijms22115459
APA StyleLo, W. -L., Lo, S. -W., Chen, S. -J., Chen, M. -W., Huang, Y. -R., Chen, L. -C., Chang, C. -H., & Li, M. -H. (2021). Molecular Imaging and Preclinical Studies of Radiolabeled Long-Term RGD Peptides in U-87 MG Tumor-Bearing Mice. International Journal of Molecular Sciences, 22(11), 5459. https://doi.org/10.3390/ijms22115459