DArTseq-Based High-Throughput SilicoDArT and SNP Markers Applied for Association Mapping of Genes Related to Maize Morphology
Abstract
:1. Introduction
2. Results
2.1. Phenotyping
2.2. Genotyping Data (SilicoDArT and SNP)
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Phenotyping
4.3. Climatic Conditions
4.4. Genotyping and SilicoDArT and SNP Data Processing
4.5. Statistical Analysis and Association Mapping
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACA | anthocyanin coloration of anthers, |
ACGC | anthocyanin coloration of cob glumes, |
ACI | anthocyanin coloration of internodes, |
ACSh | anthocyanin coloration of sheath, |
ACSi | anthocyanin coloration of silks, |
HFC | height of the first cob, |
NDSA | number of days from sowing to anthesis, |
NDSSE | number of days from sowing to silk emergence, |
PH | plant height, |
TACG | tassel: anthocyanin coloration at the base of the glume, |
TAMALB | tassel: angle between the axis and lateral branches, |
TCLB | tassel: curvature of lateral branches, |
TLMAHLB | tassel: length of the main axis above the highest lateral branch, |
TNPLB | tassel: number of primary lateral branches. |
References
- Boakyewaa Adu, G.; Badu-Apraku, B.; Akromah, R.; Garcia-Oliveira, A.L.; Awuku, F.J.; Gedil, M. Genetic diversity and population structure of early-maturing tropical maize inbred lines using SNP markers. PLoS ONE 2019, 14, e0214810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtolo, M.; Cristofani-Yaly, M.; Gazaffi, R.; Takita, M.A.; Figueira, A.; Machado, M.A. QTL mapping for fruit quality in Citrus using DArTseq markers. BMC Genom. 2017, 18, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bocianowski, J.; Nowosad, K.; Wróbel, B.; Szulc, P. Identification of Associations between SSR Markers and Quantitative Traits of Maize (Zea mays L.). Agronomy 2021, 11, 182. [Google Scholar] [CrossRef]
- Rakoczy-Trojanowska, M.; Krajewski, P.; Bocianowski, J.; Schollenberger, M.; Wakuliński, W.; Milczarski, P.; Masojć, P.; Targońska-Karasek, M.; Banaszak, Z.; Banaszak, K.; et al. Identification of Single Nucleotide Polymorphisms Associated with Brown Rust Resistance, α-Amylase Activity and Pre-harvest Sprouting in Rye (Secale cereale L.). Plant Mol. Biol. Rep. 2017, 35, 366–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakoczy-Trojanowska, M.; Orczyk, W.; Krajewski, P.; Bocianowski, J.; Stochmal, A.; Kowalczyk, M. ScBx gene based association analysis of hydroxamate content in rye (Secale cereale L.). J. Appl. Genet. 2017, 58, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gage, J.L.; Monier, B.; Giri, A.; Buckler, E.S. Ten Years of the Maize Nested Association Mapping Population: Impact, Limitations, and Future Directions. Plant Cell 2020, 32, 2083–2093. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, H.; Wu, L.; Warburton, M.; Yan, J. Genome-wide Association Studies in Maize: Praise and Stargaze. Mol. Plant 2017, 10, 359–374. [Google Scholar] [CrossRef] [Green Version]
- Bar-Hen, A.; Charcosset, A.; Bourgoin, M.; Guiard, J. Relationship between genetic markers and morphological traits in a maize inbred lines collection. Euphytica 1995, 84, 145–154. [Google Scholar] [CrossRef]
- Akbari, M.; Wenzl, P.; Caig, V.; Carling, J.; Xia, L.; Yang, S.; Uszynski, G.; Mohler, V.; Lehmensiek, A.; Kuchel, H.; et al. Diversity arrays technology (DArT) for high-throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 2006, 113, 1409–1420. [Google Scholar] [CrossRef]
- Courtois, B.; Audebert, A.; Dardou, A.; Roques, S.; Ghneim- Herrera, T.; Droc, G.; Frouin, J.; Rouan, L.; Gozé, E.; Kilian, A.; et al. Genome-Wide Association Mapping of Root Traits in a Japonica Rice Panel. PLoS ONE 2013, 8, e78037. [Google Scholar] [CrossRef] [Green Version]
- Cruz, V.M.V.; Kilian, A.; Dierig, D.A. Development of DArT Marker Platforms and Genetic Diversity Assessment of the U.S. Collection of the New Oilseed Crop Lesquerella and Related Species. PLoS ONE 2013, 8, e64062. [Google Scholar] [CrossRef] [Green Version]
- Sansaloni, C.; Petroli, C.; Jaccoud, D.; Carling, J.; Detering, F.; Grattapaglia, D.; Kilian, A. Diversity Arrays Technology (DArT) and next-generation sequencing combined: Genome-wide, high throughput, highly informative genotyping for molecular breeding of Eucalyptus. BMC Proc. 2011, 5, P54. [Google Scholar] [CrossRef] [Green Version]
- Messing, J.; Bharti, A.K.; Karlowski, W.M.; Gundlach, H.; Kim, H.R.; Yu, Y.; Wei, F.; Fuks, G.; Soderlund, C.A.; Mayer, K.F.X.; et al. Sequence composition and genome organization of maize. Proc. Natl. Acad. Sci. USA 2004, 101, 14349–14354. [Google Scholar] [CrossRef] [Green Version]
- Bódi, Z.; Pepó, P.; Kovács, A. Morphology of tassel components and their relationship to some quantitative features in maize. Cereal Res. Commun. 2008, 36, 353–360. [Google Scholar] [CrossRef]
- Szulc, P.; Jagła, M.; Nowosad, K.; Bocianowski, J.; Olejarski, P. Path analysis in assessment of cause and effect dependencies of yield structure components in maize cultivars differing in genetic profiles. Fresenius Environ. Bull. 2017, 26, 7309–7318. [Google Scholar]
- Fonseca, A.E.; Westgate, M.E.; Grass, L.; Dornbos, D.L. Tassel Morphology as an Indicator of Potential Pollen Production in Maize. Crop Manag. 2003, 2, 1–15. [Google Scholar] [CrossRef]
- Szulc, P.; Bocianowski, J.; Rybus-Zając, M. Accumulation of N, P, K and Mg nutrient elements and nutrient remobilization indices in the biomass of two contrasting maize (Zea mays L.) hybrids. Fresenius Environ. Bull. 2012, 21, 2062–2071. [Google Scholar]
- Szulc, P.; Bocianowski, J.; Nowosad, K.; Rybus-Zając, M.; Waligóra, H.; Michalski, T. The dynamics of a dry matter accumulation in the initial period of growth of four varieties of the “stay-green” type of maize (Zea mays L.). Pakistan J. Bot. 2017, 49, 1017–1022. [Google Scholar]
- Bocianowski, J.; Nowosad, K.; Szulc, P.; Tratwal, A.; Bakinowska, E.; Piesik, D. Genetic parameters and selection of maize cultivars using Bayesian inference in a multi-trait linear model. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 465–478. [Google Scholar] [CrossRef]
- Sibov, S.T.; De Souza JR, C.L.; Garcia, A.A.F.; Silva, A.R.; Garcia, A.F.; Mangolin, C.A.; Benchimol, L.L.; DE Souza, A.P. Molecular mapping in tropical maize (Zea mays L.) using microsatellite markers. 2. Quantitative trait loci (QTL) for grain yield, plant heigth, ear height and grain moisture. Hereditas 2004, 139, 107–115. [Google Scholar] [CrossRef]
- Flint-Garcia, S.A.; Jampatong, C.; Darrah, L.L.; McMullen, M.D. Quantitative Trait Locus Analysis of Stalk Strength in Four Maize Populations. Crop. Sci. 2003, 43, 13. [Google Scholar] [CrossRef] [Green Version]
- Mickelson, S.M.; Stuber, C.S.; Senior, L.; Kaeppler, S.M. Quantitative Trait Loci Controlling Leaf and Tassel Traits in a B73 × Mo17 Population of Maize. Crop. Sci. 2002, 42, 1902–1909. [Google Scholar] [CrossRef]
- Andrade, J.A.d.C.; Filho, J.B.d.M. Quantitative variation in the tropical maize population, ESALQ-PB1. Sci. Agric. 2008, 65, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Carena, M.J.; Hallauer, A.R.; Miranda Filho, J.B. Quantitative Genetics in Maize Breeding; Springer: New York, NY, USA, 2010; ISBN 978-1-4419-0765-3. [Google Scholar]
- Grotewold, E. Plant metabolic diversity: A regulatory perspective. Trends Plant Sci. 2005, 10, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Grotewold, E.; Peterson, T. Isolation and characterization of a maize gene encoding chalcone flavonone isomerase. Mol. Gen. Genet. 1994, 242, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Deschamps, S.; Llaca, V.; May, G.D. Genotyping-by-Sequencing in Plants. Biology 2012, 1, 460–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [Green Version]
- Tyrka, M.; Drzazga, T.; Kud, J.; Miechurska, V.; Broda, M.; Kopala, M. Association mapping of effective leaf rust resistance genes in collection of winter wheat. Folia Pomeranae Univ. Technol. Stetin. Agric. Aliment. Piscaria Zootech. 2017, 332, 93–106. [Google Scholar] [CrossRef]
- Elshire, R.J.; Glaubitz, J.C.; Sun, Q.; Poland, J.A.; Kawamoto, K.; Buckler, E.S.; Mitchell, S.E. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species. PLoS ONE 2011, 6, e19379. [Google Scholar] [CrossRef] [Green Version]
- Carling, J.; Heller-Uszyńska, K.; Jaccoud, D.; Machado, A.; Hopper, C.; Xia, L.; Vippin, C.; Caig, V.; Uszyński, G.; Kilian, A. DArTTM and DArTseqTM genome profiling for breeding, pre-breeding and population genetics applications. In Proceedings of the Contribution P0052, XXIII Plant and Animal Genome, San Diego, CA, USA, 10–14 January 2015; pp. 10–14. [Google Scholar]
- Li, H.; Vikram, P.; Singh, R.P.; Kilian, A.; Carling, J.; Song, J.; Burgueno-Ferreira, J.A.; Bhavani, S.; Huerta-Espino, J.; Payne, T.; et al. A high density GBS map of bread wheat and its application for dissecting complex disease resistance traits. BMC Genom. 2015, 16, 216. [Google Scholar] [CrossRef] [Green Version]
- Kilian, B.; Graner, A. NGS technologies for analyzing germplasm diversity in genebanks. Brief. Funct. Genom. 2012, 11, 38–50. [Google Scholar] [CrossRef] [Green Version]
- Juliana, P.; Singh, R.P.; Singh, P.K.; Poland, J.A.; Bergstrom, G.C.; Huerta-Espino, J.; Bhavani, S.; Crossa, J.; Sorrells, M.E. Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor. Appl. Genet. 2018, 131, 1405–1422. [Google Scholar] [CrossRef] [Green Version]
- Rafalski, J.A. Association genetics in crop improvement. Curr. Opin. Plant Biol. 2010, 13, 174–180. [Google Scholar] [CrossRef]
- Li, G.; Xu, X.; Bai, G.; Carver, B.F.; Hunger, R.; Bonman, J.M.; Kolmer, J.; Dong, H. Genome-Wide Association Mapping Reveals Novel QTL for Seedling Leaf Rust Resistance in a Worldwide Collection of Winter Wheat. Plant Genome 2016, 9. [Google Scholar] [CrossRef] [Green Version]
- Maccaferri, M.; Zhang, J.; Bulli, P.; Abate, Z.; Chao, S.; Cantu, D.; Bossolini, E.; Chen, X.; Pumphrey, M.; Dubcovsky, J. A Genome-Wide Association Study of Resistance to Stripe Rust (Puccinia striiformis f. sp. tritici) in a Worldwide Collection of Hexaploid Spring Wheat (Triticum aestivum L.). G3 Genes Genomes Genet. 2015, 5, 449–465. [Google Scholar] [CrossRef] [Green Version]
- Tomkowiak, A.; Bocianowski, J.; Radzikowska, D.; Kowalczewski, P.Ł. Selection of Parental Material to Maximize Heterosis Using SNP and SilicoDarT Markers in Maize. Plants 2019, 8, 349. [Google Scholar] [CrossRef] [Green Version]
- Zsubori, Z.; Gyenes-Hegyi, Z.; Illés, O.; Pók, I.; Rácz, F.; Szőke, C. Inheritance of Plant and Ear Height in Maize (Zea Mays L.). Acta Agrar. Debreceniensis 2002, 34–38. [Google Scholar] [CrossRef]
- Dell’Acqua, M.; Gatti, D.M.; Pea, G.; Cattonaro, F.; Coppens, F.; Magris, G.; Hlaing, A.L.; Aung, H.H.; Nelissen, H.; Baute, J.; et al. Genetic properties of the MAGIC maize population: A new platform for high definition QTL mapping in Zea mays. Genome Biol. 2015, 16, 167. [Google Scholar] [CrossRef] [Green Version]
- Duvick, D.N. Genetic progress in yield of United States maize (Zea mays L.). Maydica 2005, 50, 193–202. [Google Scholar]
- Fischer, R.A.T.; Edmeades, G.O. Breeding and Cereal Yield Progress. Crop Sci. 2010, 50, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Mehrpouyan, S.; Menon, U.; Tetlow, I.J.; Emes, M.J. Protein phosphorylation regulates maize endosperm starch synthase IIa activity and protein−protein interactions. Plant J. 2021, 105, 1098–1112. [Google Scholar] [CrossRef]
- Bai, F.; Reinheimer, R.; Durantini, D.; Kellogg, E.A.; Schmidt, R.J. TCP transcription factor, BRANCH ANGLE DEFECTIVE 1 (BAD1), is required for normal tassel branch angle formation in maize. Proc. Natl. Acad. Sci. USA 2012, 109, 12225–12230. [Google Scholar] [CrossRef] [Green Version]
- Qin, X.; Tian, S.; Zhang, W.; Dong, X.; Ma, C.; Wang, Y.; Yan, J.; Yue, B. QDtbn1, an F-box gene affecting maize tassel branch number by a dominant model. Plant Biotechnol. J. 2021. [Google Scholar] [CrossRef]
- Casati, P.; Walbot, V. Gene Expression Profiling in Response to Ultraviolet Radiation in Maize Genotypes with Varying Flavonoid Content. Plant Physiol. 2003, 132, 1739–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, J.M.; Heine, G.F.; Irani, N.G.; Feller, A.; Kim, M.-G.; Matulnik, T.; Chandler, V.L.; Grotewold, E. Different Mechanisms Participate in the R-dependent Activity of the R2R3 MYB Transcription Factor C1. J. Biol. Chem. 2004, 279, 48205–48213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dooner, H.K.; He, L. Maize Genome Structure Variation: Interplay between Retrotransposon Polymorphisms and Genic Recombination. Plant Cell 2008, 20, 249–258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nei, M.; Li, W.H. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 1979, 76, 5269–5273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malosetti, M.; Ribaut, J.-M.; van Eeuwijk, F.A. The statistical analysis of multi-environment data: Modeling genotype-by-environment interaction and its genetic basis. Front. Physiol. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- van Eeuwijk, F.A.; Bink, M.C.; Chenu, K.; Chapman, S.C. Detection and use of QTL for complex traits in multiple environments. Curr. Opin. Plant Biol. 2010, 13, 193–205. [Google Scholar] [CrossRef]
Trait | No of Significant Mmarkers | LOD Min | LOD Max | Effect Min | Effect Max | Effect Mean | Total Effect | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Silico | SNP | Total | Silico | SNP | Total | Silico | SNP | Total | Silico | SNP | Total | Silico | SNP | Total | Silico | SNP | Total | Silico | SNP | Total | |
ACGC | 27 | 4 | 31 | 2.52 | 2.58 | 2.52 | 4.12 | 3.63 | 4.12 | −0.98 | −0.91 | −0.98 | 0.94 | 0.67 | 0.94 | 0.02 | −0.12 | 0.00 | 0.64 | −0.49 | 0.15 |
NDSA | 52 | 14 | 66 | 2.50 | 2.55 | 2.50 | 3.80 | 3.74 | 3.80 | −2.85 | −2.75 | −2.85 | 3.01 | 2.54 | 3.01 | 1.26 | 0.01 | 0.99 | 65.31 | 0.12 | 65.43 |
NDSSE | 62 | 15 | 77 | 2.50 | 2.56 | 2.50 | 5.05 | 4.24 | 5.05 | −3.04 | −2.67 | −3.04 | 3.49 | 3.03 | 3.49 | 0.19 | −0.27 | 0.10 | 11.85 | −4.07 | 7.77 |
ACSi | 9 | 1 | 10 | 2.58 | 2.68 | 2.58 | 4.11 | 2.68 | 4.11 | −0.91 | −0.57 | −0.91 | 0.67 | −0.57 | 0.67 | −0.11 | −0.57 | −0.16 | −1.01 | −0.57 | −1.58 |
ACA | 14 | 3 | 17 | 2.54 | 2.54 | 2.54 | 3.66 | 3.27 | 3.66 | −1.02 | 0.76 | −1.02 | 0.77 | 0.80 | 0.80 | −0.24 | 0.78 | −0.06 | −3.43 | 2.33 | −1.09 |
TACG | 13 | 9 | 22 | 2.53 | 2.52 | 2.52 | 3.25 | 3.32 | 3.32 | −0.80 | −0.86 | −0.86 | 1.06 | 0.82 | 1.06 | 0.35 | 0.25 | 0.31 | 4.56 | 2.23 | 6.78 |
TAMALB | 22 | 5 | 27 | 2.54 | 2.55 | 2.54 | 5.28 | 4.09 | 5.28 | −0.84 | 0.58 | −0.84 | 0.85 | 0.87 | 0.87 | −0.38 | 0.66 | −0.19 | −8.32 | 3.29 | −5.03 |
TCLB | 28 | 8 | 36 | 2.50 | 2.51 | 2.50 | 3.92 | 4.10 | 4.10 | −0.62 | −0.62 | −0.62 | 0.67 | 0.46 | 0.67 | 0.12 | −0.43 | 0.00 | 3.29 | −3.42 | −0.13 |
TLMAHLB | 43 | 8 | 51 | 2.50 | 2.51 | 2.50 | 4.41 | 3.61 | 4.41 | −0.77 | −0.62 | −0.77 | 0.71 | 0.68 | 0.71 | 0.10 | −0.12 | 0.07 | 4.45 | −0.96 | 3.48 |
TNPLB | 26 | 3 | 29 | 2.51 | 2.77 | 2.51 | 3.55 | 3.82 | 3.82 | −0.52 | 0.45 | −0.52 | 0.46 | 0.46 | 0.46 | −0.04 | 0.46 | 0.01 | −0.98 | 1.37 | 0.39 |
ACSh | 23 | 8 | 31 | 2.52 | 2.55 | 2.52 | 4.00 | 3.89 | 4.00 | −0.62 | −0.62 | −0.62 | 0.67 | 0.53 | 0.67 | 0.26 | −0.13 | 0.16 | 6.01 | −1.07 | 4.94 |
ACI | 37 | 17 | 54 | 2.52 | 2.51 | 2.51 | 4.51 | 3.65 | 4.51 | −1.14 | −0.71 | −1.14 | 0.94 | 0.81 | 0.94 | −0.07 | 0.23 | 0.02 | −2.70 | 3.91 | 1.21 |
PH | 7 | 4 | 11 | 2.52 | 2.52 | 2.52 | 3.17 | 3.61 | 3.61 | −10.92 | −11.32 | −11.32 | 15.78 | 11.35 | 15.78 | 5.72 | 5.22 | 5.54 | 40.04 | 20.90 | 60.94 |
HFC | 14 | 5 | 19 | 2.51 | 2.56 | 2.51 | 3.63 | 5.56 | 5.56 | −5.21 | −4.73 | −5.21 | 6.59 | 7.84 | 7.84 | 3.46 | 3.37 | 3.44 | 48.49 | 16.86 | 65.36 |
Total | 377 | 104 | 481 |
Origin Groups of the Lines | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dent | Flint | Semident | ||||||||||||
ID | BSSS | ID/BSSS | Lancaster | ID/Lancaster | F2 | F2/EP1 | F2/CM7 | Flint/BSSS | Flint/ID | Flint/Lancaster | German Flint/F2 | Origin Unknown | BSS | Origin Unknown |
5,7,8,9, 20,22,23, 33,43,44, 56,58,59, 61,62,64, 65,72,76, 79,80,83, 85,88,89, 90,94. | 47, 49, 70, 87. | 1,3,4,10, 13,14,17, 19,45,46, 54,57,63, 66,67,75, 77,78,81, 84,86,91, 92. | 55 | 50 | 74 | 2,6,15, 18,21, 24,35, 39,41, 51,53. | 73 | 38 | 40 | 16, 60, 68. | 11, 69, 82, 93. | 12, 36, 42, 52. | 30, 31, 32, 71. | 25, 26, 27, 28, 29, 37, 34, 48. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomkowiak, A.; Bocianowski, J.; Spychała, J.; Grynia, J.; Sobiech, A.; Kowalczewski, P.Ł. DArTseq-Based High-Throughput SilicoDArT and SNP Markers Applied for Association Mapping of Genes Related to Maize Morphology. Int. J. Mol. Sci. 2021, 22, 5840. https://doi.org/10.3390/ijms22115840
Tomkowiak A, Bocianowski J, Spychała J, Grynia J, Sobiech A, Kowalczewski PŁ. DArTseq-Based High-Throughput SilicoDArT and SNP Markers Applied for Association Mapping of Genes Related to Maize Morphology. International Journal of Molecular Sciences. 2021; 22(11):5840. https://doi.org/10.3390/ijms22115840
Chicago/Turabian StyleTomkowiak, Agnieszka, Jan Bocianowski, Julia Spychała, Joanna Grynia, Aleksandra Sobiech, and Przemysław Łukasz Kowalczewski. 2021. "DArTseq-Based High-Throughput SilicoDArT and SNP Markers Applied for Association Mapping of Genes Related to Maize Morphology" International Journal of Molecular Sciences 22, no. 11: 5840. https://doi.org/10.3390/ijms22115840
APA StyleTomkowiak, A., Bocianowski, J., Spychała, J., Grynia, J., Sobiech, A., & Kowalczewski, P. Ł. (2021). DArTseq-Based High-Throughput SilicoDArT and SNP Markers Applied for Association Mapping of Genes Related to Maize Morphology. International Journal of Molecular Sciences, 22(11), 5840. https://doi.org/10.3390/ijms22115840