Breast Cancer: Targeting of Steroid Hormones in Cancerogenesis and Diagnostics
Abstract
:1. Introduction
2. Steroid Hormones in Etiology of Breast Cancer
3. Steroid Metabolomics in Breast Cancer
4. Analytical Tools of Steroidomics
5. Perspective of Metabolomics in Clinical Application
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012: Global Cancer Statistics, 2012. CA Cancer J. Clin. 2015, 65, 87–108. [Google Scholar] [CrossRef] [Green Version]
- Kamińska, M.; Ciszewski, T.; Łopacka-Szatan, K.; Miotła, P.; Starosławska, E. Breast cancer risk factors. Menopausal Rev. 2015, 3, 196–202. [Google Scholar] [CrossRef] [Green Version]
- Vasiliou, S.K.; Diamandis, E. Androgen receptor: A promising therapeutic target in breast cancer. Crit. Rev. Clin. Lab. Sci. 2019, 56, 200–223. [Google Scholar] [CrossRef]
- Prat, A.; Pineda, E.; Adamo, B.; Galván, P.; Fernández, A.; Gaba, L.; Díez, M.; Viladot, M.; Arance, A.; Muñoz, M. Clinical implications of the intrinsic molecular subtypes of breast cancer. Breast 2015, 24, S26–S35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christopoulos, P.F.; Vlachogiannis, N.; Vogkou, C.T.; Koutsilieris, M. The Role of the Androgen Receptor Signaling in Breast Malignancies. Anticancer. Res. 2017, 37, 6533–6540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chia, K.M.; O’Brien, M.; Brown, M.; Lim, E. Targeting the Androgen Receptor in Breast Cancer. Curr. Oncol. Rep. 2015, 17, 4. [Google Scholar] [CrossRef]
- Africander, D.; Storbeck, K.-H. Steroid metabolism in breast cancer: Where are we and what are we missing? Mol. Cell. Endocrinol. 2018, 466, 86–97. [Google Scholar] [CrossRef]
- Imai, Y.; Youn, M.-Y.; Kondoh, S.; Nakamura, T.; Kouzmenko, A.; Matsumoto, T.; Takada, I.; Takaoka, K.; Kato, S. Estrogens Maintain Bone Mass by Regulating Expression of Genes Controlling Function and Life Span in Mature Osteoclasts. Ann. N. Y. Acad. Sci. 2009, 1173, E31–E39. [Google Scholar] [CrossRef]
- Babiker, F.A.; De Windt, L.J.; Van Eickels, M.; Grohe, C.; Meyer, R.; Doevendans, P.A. Estrogenic hormone action in the heart: Regulatory network and function. Cardiovasc. Res. 2002, 53, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Hayes, D.F. Prognostic and Predictive Factors for Breast Cancer: Translating Technology to Oncology. J. Clin. Oncol. 2005, 23, 1596–1597. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.E.; Kang, S.H.; Lee, S.J.; Bae, Y.K. Androgen Receptor Expression Predicts Decreased Survival in Early Stage Triple-Negative Breast Cancer. Ann. Surg. Oncol. 2014, 22, 82–89. [Google Scholar] [CrossRef]
- Bianchini, G.; Bianchini, G.M.; Balko, J.; Mayer, A.I.; Sanders, E.M.; Gianni, L. TNBC: Challenges and Oppotunities of a Heterogenous Disease. Nat. Rev. Clin. Oncol. 2016, 13, 674–690. [Google Scholar] [CrossRef]
- Giovannelli, P.; Di Donato, M.; Galasso, G.; Di Zazzo, E.; Bilancio, A.; Migliaccio, A. The Androgen Receptor in Breast Cancer. Front. Endocrinol. 2018, 9, 492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNamara, K.; Yoda, T.; Takagi, K.; Miki, Y.; Suzuki, T.; Sasano, H. Androgen receptor in triple negative breast cancer. J. Steroid Biochem. Mol. Biol. 2013, 133, 66–76. [Google Scholar] [CrossRef]
- Caceres, S.; Peña, L.; Silvan, G.; Illera, M.J.; Woodward, W.A.; Reuben, J.M.; Illera, J.C. Steroid Tumor Environment in Male and Female Mice Model of Canine and Human Inflammatory Breast Cancer. BioMed Res. Int. 2016, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takagi, K.; Miki, Y.; Nagasaki, S.; Hirakawa, H.; Onodera, Y.; Akahira, J.-I.; Ishida, T.; Watanabe, M.; Kimijima, I.; Hayashi, S.-I.; et al. Increased intratumoral androgens in human breast carcinoma following aromatase inhibitor exemestane treatment. Endocr. Relat. Cancer 2010, 17, 415–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T.; Miki, Y.; Moriya, T.; Akahira, J.-I.; Hirakawa, H.; Ohuchi, N.; Sasano, H. In situ production of sex steroids in human breast carcinoma. Med. Mol. Morphol. 2007, 40, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, Y.M.; Ando, A.A.; Shiba, E.S.; Taguchi, T.T.; Tamaki, Y.T.; Noguchi, S.N. Involvement of Up-Regulation of 17beta-Hydroxysteroid Dehydrogenase Type 1 in Maintenance of Intratumoral High Estradiol Levels in Postmenopausal Breast Cancers. Int. J. Cancer 2001, 94, 685–689. [Google Scholar] [CrossRef]
- Kristensen, V.N.; Sørlie, T.; Geißler, J.; Yoshimura, N.; Linegjærde, O.-C.; Glad, I.; Frigessi, A.; Harada, N.; Lønning, P.E.; Børresen-Dale, A.-L. Effects of anastrozole on the intratumoral gene expression in locally advanced breast cancer. J. Steroid Biochem. Mol. Biol. 2005, 95, 105–111. [Google Scholar] [CrossRef]
- Snell, C.E.; Gough, M.; Liu, C.; Middleton, K.; Pyke, C.; Shannon, C.; Woodward, N.; Hickey, T.E.; Armes, J.E.; Tilley, W.D. Improved relapse-free survival on aromatase inhibitors in breast cancer is associated with interaction between oestrogen receptor-α and progesterone receptor-b. Br. J. Cancer 2018, 119, 1316–1325. [Google Scholar] [CrossRef] [Green Version]
- Miller, W.R.A.; Hawkins, R.; Forrest, A.P. Significance of aromatase activity in human breast cancer. Cancer Res. 1982, 42, 3365–3369. [Google Scholar]
- Capper, C.P.; Rae, J.M.; Auchus, R.J. The Metabolism, Analysis, and Targeting of Steroid Hormones in Breast and Prostate Cancer. Horm. Cancer 2016, 7, 149–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oren, I.; Fleishman, S.J.; Kessel, A.; Ben-Tal, N. Free Diffusion of Steroid Hormones Across Biomembranes: A Simplex Search with Implicit Solvent Model Calculations. Biophys. J. 2004, 87, 768–779. [Google Scholar] [CrossRef] [Green Version]
- Chetrite, G.; Cortes-Prieto, J.; Philippe, J.; Wright, F.; Pasqualini, J. Comparison of estrogen concentrations, estrone sulfatase and aromatase activities in normal, and in cancerous, human breast tissues. J. Steroid Biochem. Mol. Biol. 2000, 72, 23–27. [Google Scholar] [CrossRef]
- Russo, J.; Russo, I.H. The role of estrogen in the initiation of breast cancer. J. Steroid Biochem. Mol. Biol. 2006, 102, 89–96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickey, T.E.; Robinson, J.L.L.; Carroll, J.; Tilley, W.D. Minireview: The Androgen Receptor in Breast Tissues: Growth Inhibitor, Tumor Suppressor, Oncogene? Mol. Endocrinol. 2012, 26, 1252–1267. [Google Scholar] [CrossRef]
- Hammes, S.R.; Levin, E.R.; Hammes, S.R.; Levin, E.R. Impact of Estrogens in Males and Androgens in Females Find the Latest Version: Impact of Estrogens in Males and Androgens in Females. J. Clin. Investig. 2019, 129, 1818–1826. [Google Scholar] [CrossRef] [Green Version]
- McNamara, K.M.; Moore, N.L.; Hickey, T.E.; Sasano, H.; Tilley, W.D. Complexities of androgen receptor signalling in breast cancer. Endocr. Relat. Cancer 2014, 21, T161–T181. [Google Scholar] [CrossRef]
- Higgins, M.J.; Wolff, A.C. The androgen receptor in breast cancer: Learning from the past. Breast Cancer Res. Treat. 2010, 124, 619–621. [Google Scholar] [CrossRef]
- Castellano, I.; Allia, E.; Accortanzo, V.; Vandone, A.M.; Chiusa, L.; Arisio, R.; Durando, A.; Donadio, M.; Bussolati, G.; Coates, A.S.; et al. Androgen receptor expression is a significant prognostic factor in estrogen receptor positive breast cancers. Breast Cancer Res. Treat. 2010, 124, 607–617. [Google Scholar] [CrossRef] [Green Version]
- Ni, M.; Chen, Y.; Lim, E.; Wimberly, H.; Bailey, S.T.; Imai, Y.; Rimm, D.L.; Liu, X.S.; Brown, M. Targeting Androgen Receptor in Estrogen Receptor-Negative Breast Cancer. Cancer Cell 2011, 20, 119–131. [Google Scholar] [CrossRef] [Green Version]
- Valko-Rokytovská, M.; Očenáš, P.; Salayová, A.; Titková, R.; Kostecká, Z. Specific Urinary Metabolites in Canine Mammary Gland Tumors. J. Vet. Sci. 2020, 21, e23. [Google Scholar] [CrossRef] [PubMed]
- Jafari, S.H.; Saadatpour, Z.; Salmaninejad, A.; Momeni, F.; Mokhtari, M.; Nahand, J.S.; Rahmati, M.; Mirzaei, H.; Kianmehr, M. Breast cancer diagnosis: Imaging techniques and biochemical markers. J. Cell. Physiol. 2018, 233, 5200–5213. [Google Scholar] [CrossRef]
- Tan, B.; Zhang, Y.; Zhang, T.; He, J.; Luo, X.; Bian, X.; Wu, J.; Zou, C.; Wang, Y.; Fu, L. Identifying potential serum biomarkers of breast cancer through targeted free fatty acid profiles screening based on a GC–MS platform. Biomed. Chromatogr. 2020, 34, e4922. [Google Scholar] [CrossRef]
- Boccard, J.; Badoud, F.; Grata, E.; Ouertani, S.; Hanafi, M.; Mazerolles, G.; Lantéri, P.; Veuthey, J.-L.; Saugy, M.; Rudaz, S. A steroidomic approach for biomarkers discovery in doping control. Forensic Sci. Int. 2011, 213, 85–94. [Google Scholar] [CrossRef]
- Jeanneret, F.; Tonoli, D.; Rossier, M.F.; Saugy, M.; Boccard, J.; Rudaz, S. Evaluation of steroidomics by liquid chromatography hyphenated to mass spectrometry as a powerful analytical strategy for measuring human steroid perturbations. J. Chromatogr. A 2016, 1430, 97–112. [Google Scholar] [CrossRef]
- Eisenhofer, G.; Durán, C.; Chavakis, T.; Cannistraci, C.V. Steroid metabolomics: Machine learning and multidimensional diagnostics for adrenal cortical tumors, hyperplasias, and related disorders. Curr. Opin. Endocr. Metab. Res. 2019, 8, 40–49. [Google Scholar] [CrossRef]
- Anh, N.H.; Long, N.P.; Kim, S.J.; Min, J.E.; Yoon, S.J.; Kim, H.M.; Yang, E.; Hwang, E.S.; Park, J.H.; Hong, S.-S.; et al. Steroidomics for the Prevention, Assessment, and Management of Cancers: A Systematic Review and Functional Analysis. Metab. 2019, 9, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yager, J.D.; Davidson, N.E. Estrogen Carcinogenesis in Breast Cancer. N. Engl. J. Med. 2006, 354, 270–282. [Google Scholar] [CrossRef] [Green Version]
- Chang, M.-S. Dual roles of estrogen metabolism in mammary carcinogenesis. BMB Rep. 2011, 44, 423–434. [Google Scholar] [CrossRef]
- Santen, R.J.; Yue, W.; Wang, J.-P. Estrogen metabolites and breast cancer. Steroids 2015, 99, 61–66. [Google Scholar] [CrossRef]
- Florescu, A.; Amir, E.; Bouganim, N.; Clemons, M. Immune Therapy for Breast Cancer in 2010-Hype or Hope? Curr. Oncol. 2011, 18, 9–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khedr, A.; Alahdal, A.M. Liquid chromatography–tandem mass spectrometric analysis of ten estrogen metabolites at sub-picogram levels in breast cancer women. J. Chromatogr. B 2016, 1031, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Sampson, J.N.; Falk, R.T.; Schairer, C.; Moore, S.C.; Fuhrman, B.J.; Dallal, C.M.; Bauer, D.C.; Dorgan, J.F.; Shu, X.-O.; Zheng, W.; et al. Association of Estrogen Metabolism with Breast Cancer Risk in Different Cohorts of Postmenopausal Women. Cancer Res. 2017, 77, 918–925. [Google Scholar] [CrossRef] [Green Version]
- Brinton, L.A.; Trabert, B.; Anderson, G.L.; Falk, R.T.; Felix, A.S.; Fuhrman, B.J.; Gass, M.L.; Kuller, L.H.; Pfeiffer, R.M.; Rohan, T.E.; et al. Serum Estrogens and Estrogen Metabolites and Endometrial Cancer Risk among Postmenopausal Women. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1081–1089. [Google Scholar] [CrossRef] [Green Version]
- Petrick, J.L.; Hyland, P.L.; Caron, P.; Falk, R.T.; Pfeiffer, R.M.; Dawsey, S.M.; Abnet, C.C.; Taylor, P.R.; Weinstein, S.J.; Albanes, D.; et al. Associations Between Prediagnostic Concentrations of Circulating Sex Steroid Hormones and Esophageal/Gastric Cardia Adenocarcinoma Among Men. J. Natl. Cancer Inst. 2018, 111, 34–41. [Google Scholar] [CrossRef] [Green Version]
- Kaaks, R.; Berrino, F.; Key, T.; Rinaldi, S.; Dossus, L.; Biessy, C.; Secreto, G.; Amiano, P.; Bingham, S.; Boeing, H.; et al. Serum Sex Steroids in Premenopausal Women and Breast Cancer Risk Within the European Prospective Investigation into Cancer and Nutrition (EPIC). J. Natl. Cancer Inst. 2005, 97, 755–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasanisi, P.; Berrino, F.; De Petris, M.; Venturelli, E.; Mastroianni, A.; Panico, S. Metabolic syndrome as a prognostic factor for breast cancer recurrences. Int. J. Cancer 2006, 119, 236–238. [Google Scholar] [CrossRef]
- Cummings, S.R.; Lee, J.S.; Lui, L.; Stone, K.; Ljung, B.M.; Cauleys, J.A.; Fractures, O. Sex Hormones, Risk Factors, and Risk of Estrogen Receptor–Positive Breast Cancer in Older Women: A Long-Term Prospective Study. Cancer Epidemiol. Biomark. Prev. 2005, 14, 1047–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makin, H.L.J.; Honour, J.W.; Shackleton, C.H.L.; Griffiths, W.J. General Methods for the Extraction, Purification, and Measurement of Steroids by Chromatography and Mass Spectrometry. Steroid Anal. 2010, 163–282. [Google Scholar] [CrossRef]
- Guo, N.; Liu, P.; Ding, J.; Zheng, S.-J.; Yuan, B.-F.; Feng, Y.-Q. Stable isotope labeling–Liquid chromatography/mass spectrometry for quantitative analysis of androgenic and progestagenic steroids. Anal. Chim. Acta 2016, 905, 106–114. [Google Scholar] [CrossRef]
- Handelsman, D.J. Mass spectrometry, immunoassay and valid steroid measurements in reproductive medicine and science. Hum. Reprod. 2017, 32, 1147–1150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yalow, R.S.; Berson, S.A. Assay of Plasma Insulin in Human Subjects by Immunological Methods. Nat. Cell Biol. 1959, 184, 1648–1649. [Google Scholar] [CrossRef]
- Sun, M.; Manolopoulou, J.; Spyroglou, A.; Beuschlein, F.; Hantel, C.; Wu, Z.; Bielohuby, M.; Hoeflich, A.; Liu, C.; Bidlingmaier, M. A microsphere-based duplex competitive immunoassay for the simultaneous measurements of aldosterone and testosterone in small sample volumes: Validation in human and mouse plasma. Steroids 2010, 75, 1089–1096. [Google Scholar] [CrossRef]
- Wang, S.; Paris, F.; Sultan, C.S.; Song, R.X.-D.; Demers, L.M.; Sundaram, B.; Settlage, J.; Ohorodnik, S.; Santen, R.J. Recombinant Cell Ultrasensitive Bioassay for Measurement of Estrogens in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2005, 90, 1407–1413. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Ettinger, B.; Stanczyk, F.Z.; Vittinghoff, E.; Hanes, V.; Cauley, J.A.; Chandler, W.; Settlage, J.; Beattie, M.S.; Folkerd, E.; et al. Comparison of Methods to Measure Low Serum Estradiol Levels in Postmenopausal Women. J. Clin. Endocrinol. Metab. 2006, 91, 3791–3797. [Google Scholar] [CrossRef] [Green Version]
- Middle, J.G. Original Article Dehydroepiandrostenedione Sulphate Interferes in Many Direct Immunoassays for Testosterone. Ann. Clin. Biochem. 2007, 44, 173–177. [Google Scholar] [CrossRef]
- Shackleton, C. Clinical steroid mass spectrometry: A 45-year history culminating in HPLC–MS/MS becoming an essential tool for patient diagnosis. J. Steroid Biochem. Mol. Biol. 2010, 121, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Sun, J.; Chen, Y.; Song, Y.; Dong, L.; Zhan, Q.; Zhang, R.; Abliz, Z. Analysis of multiplex endogenous estrogen metabolites in human urine using ultra-fast liquid chromatography–tandem mass spectrometry: A case study for breast cancer. Anal. Chim. Acta 2012, 711, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Solheim, S.; Hutchinson, S.A.; Lundanes, E.; Wilson, S.R.; Thorne, J.L.; Roberg-Larsen, H. Fast liquid chromatography-mass spectrometry reveals side chain oxysterol heterogeneity in breast cancer tumour samples. J. Steroid Biochem. Mol. Biol. 2019, 192, 105309. [Google Scholar] [CrossRef] [PubMed]
- Laforest, S.; Pelletier, M.; Denver, N.; Poirier, B.; Nguyen, S.; Walker, B.R.; Durocher, F.; Homer, N.; Diorio, C.; Tchernof, A.; et al. Simultaneous quantification of estrogens and glucocorticoids in human adipose tissue by liquid-chromatography-tandem mass spectrometry. J. Steroid Biochem. Mol. Biol. 2019, 195, 105476. [Google Scholar] [CrossRef]
- Poschner, S.; Zehl, M.; Maier-Salamon, A.; Jäger, W. Simultaneous quantification of estrogens, their precursors and conjugated metabolites in human breast cancer cells by LC–HRMS without derivatization. J. Pharm. Biomed. Anal. 2017, 138, 344–350. [Google Scholar] [CrossRef]
- Yang, W.-C.; Regnier, F.E.; Sliva, D.; Adamec, J. Stable isotope-coded quaternization for comparative quantification of estrogen metabolites by high-performance liquid chromatography–electrospray ionization mass spectrometry. J. Chromatogr. B 2008, 870, 233–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, J.-Y.; McNamara, K.M.; Lee, J.-J.; Chung, B.C.; Sasano, H.; Choi, M.H. Improved detectability of sex steroids from frozen sections of breast cancer tissue using GC-triple quadrupole-MS. J. Steroid Biochem. Mol. Biol. 2018, 178, 185–192. [Google Scholar] [CrossRef]
- Caron, P.; Turcotte, V.; Guillemette, C. A chromatography/tandem mass spectrometry method for the simultaneous profiling of ten endogenous steroids, including progesterone, adrenal precursors, androgens and estrogens, using low serum volume. Steroids 2015, 104, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Falk, R.T.; Gentzschein, E.; Stanczyk, F.Z.; Brinton, L.A.; Garcia-Closas, M.; Ioffe, O.B.; Sherman, M.E. Measurement of Sex Steroid Hormones in Breast Adipocytes: Methods and Implications. Cancer Epidemiol. Biomark. Prev. 2008, 17, 1891–1895. [Google Scholar] [CrossRef] [Green Version]
- Sweeley, C.C.; Horning, E.C. Microanalytical Separation of Steroids by Gas Chromatography. Nat. Cell Biol. 1960, 187, 144–145. [Google Scholar] [CrossRef] [PubMed]
- Kushnir, M.M.; Rockwood, A.L.; Roberts, W.L.; Yue, B.; Bergquist, J.; Meikle, A.W. Liquid chromatography tandem mass spectrometry for analysis of steroids in clinical laboratories. Clin. Biochem. 2011, 44, 77–88. [Google Scholar] [CrossRef]
- He, S.; Wang, R.; Wei, W.; Liu, H.; Ma, Y. Simultaneous determination of 22 residual steroid hormones in milk by liquid chromatography–tandem mass spectrometry. Int. J. Dairy Technol. 2020, 73, 357–365. [Google Scholar] [CrossRef]
- Nakagomi, M.; Suzuki, E. Quantitation of catechol estrogens and their N-acetylcysteine conjugates in urine of rats and hamsters. Chem. Res. Toxicol. 2000, 13, 1208–1213. [Google Scholar] [CrossRef] [PubMed]
- Rogan, E.G.; Badawi, A.F.; Devanesan, P.D.; Meza, J.L.; Edney, J.A.; West, W.W.; Higginbotham, S.M.; Cavalieri, E.L. Relative imbalances in estrogen metabolism and conjugation in breast tissue of women with carcinoma: Potential biomarkers of susceptibility to cancer. Carcinogenesis 2003, 24, 697–702. [Google Scholar] [CrossRef] [Green Version]
- Qin, F.; Zhao, Y.; Sawyer, M.B.; Li, X. Hydrophilic Interaction Liquid Chromatography-Tandem Mass Spectrometry De-termination of Estrogen Conjugates in Human Urine. Anal. Chem. 2008, 80, 3404–3411. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Zhao, H.; Zhu, L.; Cai, Z. Comprehensive identification of steroid hormones in human urine based on liquid chromatography-high resolution mass spectrometry. Anal. Chim. Acta 2019, 1089, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Guan, F.; Soma, L.R.; Luo, Y.; Uboh, C.E.; Peterman, S. Collision-induced dissociation pathways of anabolic steroids by electrospray ionization tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 477–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, T.; Gu, J.; Soldin, O.P.; Singh, R.J.; Soldin, S.J. Rapid measurement of estrogens and their metabolites in human serum by liquid chromatography-tandem mass spectrometry without derivatization. Clin. Biochem. 2008, 41, 736–741. [Google Scholar] [CrossRef] [Green Version]
- Higashi, T.; Ogawa, S. Chemical derivatization for enhancing sensitivity during LC/ESI–MS/MS quantification of steroids in biological samples: A review. J. Steroid Biochem. Mol. Biol. 2016, 162, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Appelblad, P.; Pontén, E.; Jaegfeldt, H.; Backstrom, T.; Irgum, K. Derivatization of Steroids with Dansylhydrazine Using Trifluoromethanesulfonic Acid as Catalyst. Anal. Chem. 1997, 69, 4905–4911. [Google Scholar] [CrossRef]
- Katayama, M.; Nakane, R.; Matsuda, Y.; Kaneko, S.; Hara, I.; Sato, H. Determination of progesterone and 17-hydroxyprogesterone by high performance liquid chromatography after pre-column derivatization with 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a- diaza-s-indacene-3-propionohydrazide. Analyst 1998, 123, 2339–2342. [Google Scholar] [CrossRef]
- Kawasaki, T.; Maeda, M.; Tsuji, A. Fluorescence High-Performance Liquid Chromatography for Determination of Ke-tosteroids in Biological Fluids Using Dansyl Hydrazine: Application to Clinical Analysis. Yakugaku Zasshi 1980, 100, 925–932. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, T.; Maeda, M.; Tsuji, A. Determination of 17-hydroxycorticosteroids in urine by fluorescence high-performance liquid chromatography using Dns-hydrazine as a pre-column labeling reagent. J. Chromatogr. B Biomed. Sci. Appl. 1982, 232, 1–11. [Google Scholar] [CrossRef]
- Fiers, T.; Casetta, B.; Bernaert, B.; Vandersypt, E.; Debock, M.; Kaufman, J.-M. Development of a highly sensitive method for the quantification of estrone and estradiol in serum by liquid chromatography tandem mass spectrometry without derivatization. J. Chromatogr. B 2012, 893–894, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.; Kim, C.H.; Kim, S.; Cho, S.-H. Simultaneous determination of bisphenol A and estrogens in hair samples by liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. B 2017, 1058, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Qin, Q.; Feng, D.; Hu, C.; Wang, B.; Chang, M.; Liu, X.; Yin, P.; Shi, X.; Xu, G. Parallel derivatization strategy coupled with liquid chromatography-mass spectrometry for broad coverage of steroid hormones. J. Chromatogr. A 2020, 1614, 460709. [Google Scholar] [CrossRef]
- Gomes, R.L.; Meredith, W.; Snape, C.E.; Sephton, M.A. Analysis of conjugated steroid androgens: Deconjugation, derivatisation and associated issues. J. Pharm. Biomed. Anal. 2009, 49, 1133–1140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naldi, A.C.; Fayad, P.B.; Prévost, M.; Sauvé, S. Analysis of steroid hormones and their conjugated forms in water and urine by on-line solid-phase extraction coupled to liquid chromatography tandem mass spectrometry. Chem. Cent. J. 2016, 10, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galuska, C.E.; Hartmann, M.F.; Sánchez-Guijo, A.; Bakhaus, K.; Geyer, J.; Schuler, G.; Zimmer, K.-P.; Wudy, S.A. Profiling intact steroid sulfates and unconjugated steroids in biological fluids by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Analyst 2013, 138, 3792–3801. [Google Scholar] [CrossRef] [PubMed]
- Shackleton, C.; Pozo, O.J.; Marcos, J. GC/MS in Recent Years Has Defined the Normal and Clinically Disordered Steroidome: Will It Soon Be Surpassed by LC/Tandem MS in This Role? J. Endocr. Soc. 2018, 2, 974–996. [Google Scholar] [CrossRef] [PubMed]
- Fabregat, A.; Pozo, O.J.; Marcos, J.; Segura, J.; Ventura, R. Use of LC-MS/MS for the Open Detection of Steroid Metabolites Conjugated with Glucuronic Acid. Anal. Chem. 2013, 85, 5005–5014. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.; Kinne, D.; Fracchia, A.; Pierce, V.; Anderson, K.E.; Bradlow, H.L.; Fishman, J. Abnormal oxidative metabolism of estradiol in women with breast cancer. Proc. Natl. Acad. Sci. USA 1982, 79, 3047–3051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradlow, H.L.; Hershcopf, R.J.; Martucci, C.P.; Fishman, J. Estradiol 16 alpha-hydroxylation in the mouse correlates with mammary tumor incidence and presence of murine mammary tumor virus: A possible model for the hormonal etiology of breast cancer in humans. Proc. Natl. Acad. Sci. USA 1985, 82, 6295–6299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telang, N.T.; Axelrod, D.M.; Wong, G.Y.; Bradlow, H.; Osborne, M.P. Biotransformation of estradiol by explant culture of human mammary tissue. Steroids 1991, 56, 37–43. [Google Scholar] [CrossRef]
- Stanczyk, F.Z. The 2-/16 α-Hydroxylated Estrogen Ratio-Breast Cancer Risk Hypothesis: Insu Ffi Cient Evidence for Its Support Running Title: 2-/16 α-Hydroxyestrone-Breast Cancer Risk Hypothesis. J. Steroid Biochem. Mol. Biol. 2020, 201, 105685. [Google Scholar] [CrossRef]
- Van Der Berg, C.; Venter, G.; Van Der Westhuizen, F.H.; Erasmus, E. Development and validation of LC-ESI-MS/MS methods for quantification of 27 free and conjugated estrogen-related metabolites. Anal. Biochem. 2020, 590, 113531. [Google Scholar] [CrossRef]
- Zhang, A.; Sun, H.; Yan, G.; Wang, P.; Wang, X. Metabolomics for Biomarker Discovery: Moving to the Clinic. BioMed Res. Int. 2015, 2015, 354671. [Google Scholar] [CrossRef]
- Kennedy, A.D.; Wittmann, B.M.; Evans, A.M.; Miller, L.A.; Toal, D.R.; Lonergan, S.; Elsea, S.H.; Pappan, K.L. Metabolomics in the clinic: A review of the shared and unique features of untargeted metabolomics for clinical research and clinical testing. J. Mass Spectrom. 2018, 53, 1143–1154. [Google Scholar] [CrossRef] [PubMed]
- Gaudl, A.; Kratzsch, J.; Bae, Y.J.; Kiess, W.; Thiery, J.; Ceglarek, U. Liquid chromatography quadrupole linear ion trap mass spectrometry for quantitative steroid hormone analysis in plasma, urine, saliva and hair. J. Chromatogr. A 2016, 1464, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Gaudl, A.; Kratzsch, J.; Ceglarek, U. Advancement in steroid hormone analysis by LC–MS/MS in clinical routine diagnostics–A three year recap from serum cortisol to dried blood 17α-hydroxyprogesterone. J. Steroid Biochem. Mol. Biol. 2019, 192, 105389. [Google Scholar] [CrossRef]
- Keevil, B.G. LC–MS/MS analysis of steroids in the clinical laboratory. Clin. Biochem. 2016, 49, 989–997. [Google Scholar] [CrossRef]
Method | Derivatization | Steroids Quantified | Sample | Sensitivity LLOQ | Ref. |
---|---|---|---|---|---|
LC-ESI-MS/MS | DNSCl | 16 estrogen metabolites | 86 postmenopausal female breast cancer patients’ urine and 36 healthy controls | 2 pg/mL | [59] |
LC-MS/MS | Girard T reagent | free and esterified oxysterols | ER-positive (n = 11), ER-negative (n = 11) breast cancer tissue | 15 pM–31 pM | [60] |
LC-ESI-MS/MS | PPZ and methyl iodide (estrogens) | estradiol, estrone, cortisone and cortisol | adipose tissue from women with and without breast cancer | 15 and 100 pg per sample | [61] |
LC-HRMS | - | 10 steroids and metabolites of estrogenic pathway | MCF-7 breast cancer cell culture | 0.005–2 ng/mL | [62] |
LC-ESI-MS | MNAHS | 16 estrogens and their metabolites | breast cancer serum | LOD 0.36–2.3 ng/mL | [63] |
GC-MS/MS | PFPA (androgens/progestins) ECF + PFPA (estrogens) | 15 estrogens 6 androgens 2 progestins | 16 postmenopausal breast cancer tissue | LOQ 0.180–1.25 pg | [64] |
GC-MS/MS | PFB-NH2 * PFB-Cl ** | 10 endogenous steroids | twenty clinical serum samples from healthy premenopausal women (n = 10), healthy postmenopausal women (n = 20) and fifteen healthy men (n = 15) | 1–100 pg/mL | [65] |
RIA | - | androstenedione, testosterone, estrone and estradiol | 20 breast adipose tissues /10 breast tumors | - | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valko-Rokytovská, M.; Očenáš, P.; Salayová, A.; Kostecká, Z. Breast Cancer: Targeting of Steroid Hormones in Cancerogenesis and Diagnostics. Int. J. Mol. Sci. 2021, 22, 5878. https://doi.org/10.3390/ijms22115878
Valko-Rokytovská M, Očenáš P, Salayová A, Kostecká Z. Breast Cancer: Targeting of Steroid Hormones in Cancerogenesis and Diagnostics. International Journal of Molecular Sciences. 2021; 22(11):5878. https://doi.org/10.3390/ijms22115878
Chicago/Turabian StyleValko-Rokytovská, Marcela, Peter Očenáš, Aneta Salayová, and Zuzana Kostecká. 2021. "Breast Cancer: Targeting of Steroid Hormones in Cancerogenesis and Diagnostics" International Journal of Molecular Sciences 22, no. 11: 5878. https://doi.org/10.3390/ijms22115878
APA StyleValko-Rokytovská, M., Očenáš, P., Salayová, A., & Kostecká, Z. (2021). Breast Cancer: Targeting of Steroid Hormones in Cancerogenesis and Diagnostics. International Journal of Molecular Sciences, 22(11), 5878. https://doi.org/10.3390/ijms22115878