Active Surveillance in Prostate Cancer: Role of Available Biomarkers in Daily Practice
Abstract
:1. Introduction
2. Evidence Acquisition
3. Evidence Synthesis
3.1. Blood Biomarkers
- ○
- PSA
- ○
- PSA kinetics
- ○
- PSA density (PSAD)
- ○
- Prostate Health Index (PHI)
- ○
- 4Kscore®
3.2. Tissue Biomarkers
- ○
- Oncotype DX® Genomic Prostate Score (GPS)
- ○
- Genome DX Decipher® Genomic Classifier
- ○
- Prolaris® (Cell Cycle Progression Score)
3.3. Urine Biomarkers
- ○
- Prostate Cancer Antigen 3 (PCA3)
- ○
- TMPRSS2:ERG (T2E) fusion gene
- ○
- SelectMDx
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AA | African American |
AP | adverse surgical pathology |
AS | active surveillance |
AUC | area under the curve |
BR | biochemical recurrence |
CAPRA | Cancer of the Prostate Risk Assessment |
CCP | Cell Cycle Progression |
CCR | cell cycle risk |
C-index | concordance-index |
CsPCa | clinically significant prostate cancer |
DLX1 | distal-less homeobox 1 |
DRE | digital rectal examination |
ESMO | European Society of Medical Oncology |
FDA | Food and Drug Administration |
FFPE | formalin-fixed paraffin-embedded |
fPSA | free PSA |
GPS | Genomic Prostate Score |
GS | Gleason score |
HOXC6 | urinary homeobox C6 |
HRL | high-risk localised |
iPSA | intact PSA |
IRL | intermediate-risk localised |
ISUP | International Society of Urological Pathology |
ln(PSA) | logarithm of PSA |
LRL | low-risk localised |
M1 | metastatic |
MiPS | MiProstate Score |
mpMRI | multiparametric magnetic resonance imaging |
N+ | nodal positive |
NCCN | National Comprehensive Cancer Network |
PASS | Canary Prostate Active Surveillance Study |
PCa | prostate cancer |
PCA3 | prostate cancer antigen 3 |
PCPTRC | Prostate Cancer Prevention Trial risk calculator |
PHI | Prostate Health Index |
PSA | prostate-specific antigen |
PSAD | prostate-specific antigen density |
PSADT | prostate-specific antigen doubling-time |
PSAk | prostate-specific antigen kinetics |
PSAV | prostate-specific antigen velocity |
PSAV RC | PSAV Risk Count |
RT-qPCR | real-time quantitative polymerase chain reaction |
T2E | TMPRSS2:ERG |
TDRD1 | tudor domain containing 1 |
tPSA | total PSA |
References
- Cancer Today. Available online: https://gco.iarc.fr/today/online-analysis-multi-bars?v=2020&mode=cancer&mode_population=countries&population=900&populations=900&key=total&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=1 (accessed on 12 January 2021).
- American Cancer Society. Prostate Cancer Early Detection, Diagnosis. American Cancer Society, 2017; pp. 1–25. Available online: https://www.cancer.org/content/dam/CRC/PDF/Public/8795.00.pdf (accessed on 12 April 2021).
- Parker, C.; Gillessen, S.; Heidenreich, A.; Horwich, A. Cancer of the prostate: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26, v69–v77. [Google Scholar] [CrossRef]
- Aslam, N.; Nadeem, K.; Noreen, R. JAC Prostate Cancer Prostate Cancer. Abeloff’s Clin. Oncol. 5/e 2015, 8, 938–944. [Google Scholar]
- Mottet, N.; Bellmunt, J.; Briers, E.; van den Bergh, R.; Bolla, M.; van Casteren, N.; Cornford, P.; Culine, S.; Joniau, S.; Lam, T.; et al. Pocket Guidelines on Prostate Cancer. European Association of Urology, 2015. Available online: https://uroweb.org/wp-content/uploads/09-Prostate-Cancer_LR.pdf (accessed on 12 April 2021).
- Roy, S.; Morgan, S.C. Who Dies from Prostate Cancer? An Analysis of the Surveillance, Epidemiology and End Results Database. Clin. Oncol. 2019, 31, 630–636. [Google Scholar] [CrossRef]
- Hashine, K.; Kakuda, T.; Iuchi, S.; Tomida, R.; Matsumura, M. Patient-reported outcomes after open radical prostatectomy, laparoscopic radical prostatectomy and permanent prostate brachytherapy. Jpn. J. Clin. Oncol. 2019, 49, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Weinreb, J.C.; Barentsz, J.O.; Choyke, P.L.; Cornud, F.; Haider, M.A.; Macura, K.J.; Margolis, D.; Schnall, M.D.; Shtern, F.; Tempany, C.M.; et al. PI-RADS Prostate Imaging-Reporting and Data System: 2015, Version 2. Eur. Urol. 2016, 69, 16–40. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.J.L.; Del Mar, C.; Wright, G.; Dickinson, J.; Glasziou, P. Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int. J. Cancer 2015, 137, 1749–1757. [Google Scholar] [CrossRef] [PubMed]
- Tosoian, J.J.; Mamawala, M.; Epstein, J.I.; Landis, P.; Macura, K.J.; Simopoulos, D.N.; Carter, H.B.; Gorin, M.A. Active Surveillance of Grade Group 1 Prostate Cancer: Long-term Outcomes from a Large Prospective Cohort. Eur. Urol. 2020, 77, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.P.; Shah, N.D.; Meropol, N.J.; Tilburt, J.C.; Nguyen, P.L.; Yu, J.B.; Abouassaly, R.; Kim, A.; Gross, C.P. Recommendations of Active Surveillance for Intermediate-risk Prostate Cancer: Results from a National Survey of Radiation Oncologists and Urologists. Eur. Urol. Oncol. 2019, 2, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Tomer, A.; Nieboer, D.; Roobol, M.J.; Bjartell, A.; Steyerberg, E.W.; Rizopoulos, D. Personalised biopsy schedules based on risk of Gleason upgrading for patients with low-risk prostate cancer on active surveillance. BJU Int. 2020, 127, 96–107. [Google Scholar] [CrossRef]
- Thomsen, F.B.; Jakobsen, H.; Langkilde, N.C.; Borre, M.; Jakobsen, E.B.; Frey, A.; Lund, L.; Lunden, D.; Dahl, C.; Helgstrand, J.T.; et al. Active Surveillance for Localized Prostate Cancer: Nationwide Observational Study. J. Urol. 2019, 201, 520–526. [Google Scholar] [CrossRef]
- Abeshouse, A.; Ahn, J.; Akbani, R.; Ally, A.; Amin, S.; Andry, C.D.; Annala, M.; Aprikian, A.; Armenia, J.; Arora, A.; et al. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stabile, A.; Giganti, F.; Rosenkrantz, A.B.; Taneja, S.S.; Villeirs, G.; Gill, I.S.; Allen, C.; Emberton, M.; Moore, C.M.; Kasivisvanathan, V. Multiparametric MRI for prostate cancer diagnosis: Current status and future directions. Nat. Rev. Urol. 2020, 17, 41–61. [Google Scholar] [CrossRef]
- Stamatakis, L.; Siddiqui, M.M.; Nix, J.W.; Logan, J.; Rais-Bahrami, S.; Walton-Diaz, A.; Hoang, A.N.; Vourganti, S.; Truong, H.; Shuch, B.; et al. Accuracy of multiparametric magnetic resonance imaging in confirming eligibility for active surveillance for men with prostate cancer. Cancer 2013, 119, 3359–3366. [Google Scholar] [CrossRef]
- López-Guerrero, J.A.; Casanova-Salas, I.; Fernández-Serra, A.; Rubio, L.; Calatrava, A.; García-Flores, M.; García-Casado, Z.; Rubio-Briones, J. Nuevos biomarcadores para optimizar selección y seguimiento de pacientes con cáncer de próstata en vigilancia activa. Arch. Esp. Urol. 2014, 67, 462–472. [Google Scholar]
- Rubio-Briones, J.; Casanova-Salas, I.; Fernández-Serra, A.; Casanova Ramón-Borja, J.; Ramírez Backhaus, M.; Collado Serra, A.; Domínguez-Escrig, J.; Gómez-Ferrer, A.; López-Guerrero, J.A. Diagnóstico no invasivo del cáncer de próstata; marcadores séricos y en orina. Arch. Esp. Urol. 2013, 66, 440–452. [Google Scholar]
- Hugosson, J.; Roobol, M.J.; Månsson, M.; Tammela, T.L.J.; Zappa, M.; Nelen, V.; Kwiatkowski, M.; Lujan, M.; Carlsson, S.V.; Talala, K.M.; et al. A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer(Figure presented.). Eur. Urol. 2019, 76, 43–51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carter, H.B.; Pearson, J.D.; Metter, E.J.; Brant, L.J.; Fozard, J.L. Longitudinal Evaluation of Prostate-Specific Antigen Levels in Men With and Without Prostate Disease. JAMA J. Am. Med. Assoc. 1992, 267, 2215–2220. [Google Scholar] [CrossRef] [Green Version]
- Cooperberg, M.R.; Brooks, J.D.; Faino, A.V.; Newcomb, L.F.; Kearns, J.T.; Carroll, P.R.; Dash, A.; Etzioni, R.; Fabrizio, M.D.; Gleave, M.E.; et al. Refined Analysis of Prostate-Specific Antigen Kinetics to Predict Prostate Cancer Active Surveillance Outcomes. Eur. Urol. 2018, 74, 211–217. [Google Scholar] [CrossRef]
- Iremashvili, V.; Barney, S.L.; Manoharan, M.; Kava, B.R.; Parekh, D.J.; Punnen, S. Prediagnostic prostate-specific antigen kinetics and the risk of biopsy progression in active surveillance patients. Int. J. Urol. 2016, 23, 313–317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirama, H.; Sugimoto, M.; Ito, K.; Shiraishi, T.; Kakehi, Y. The impact of baseline [-2] proPSA-related indices on the prediction of pathological reclassification at 1 year during active surveillance for low-risk prostate cancer: The Japanese multicenter study cohort. J. Cancer Res. Clin. Oncol. 2014, 140, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klotz, L.; Vesprini, D.; Sethukavalan, P.; Jethava, V.; Zhang, L.; Jain, S.; Yamamoto, T.; Mamedov, A.; Loblaw, A. Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J. Clin. Oncol. 2015, 33, 272–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, H.D.; Feng, Z.; Landis, P.; Trock, B.J.; Epstein, J.I.; Carter, H.B. Prostate specific antigen velocity risk count predicts biopsy reclassification for men with very low risk prostate cancer. J. Urol. 2014, 191, 629–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benson, M.C.; Whang, I.S.; Pantuck, A.; Ring, K.; Kaplan, S.A.; Olsson, C.A.; Cooner, W.H. Prostate specific antigen density: A means of distinguishing benign prostatic hypertrophy and prostate cancer. J. Urol. 1992, 147, 815–816. [Google Scholar] [CrossRef]
- Yusim, I.; Krenawi, M.; Mazor, E.; Novack, V.; Mabjeesh, N.J. The use of prostate specific antigen density to predict clinically significant prostate cancer. Sci. Rep. 2020, 10, 20015. [Google Scholar] [CrossRef] [PubMed]
- Kryvenko, O.N.; Balise, R.; Soodana Prakash, N.; Epstein, J.I. African-American Men with Gleason Score 3 + 3 = 6 Prostate Cancer Produce Less Prostate Specific Antigen than Caucasian Men: A Potential Impact on Active Surveillance. J. Urol. 2016, 195, 301–306. [Google Scholar] [CrossRef]
- Umbehr, M.H.; Platz, E.A.; Peskoe, S.B.; Bhavsar, N.A.; Epstein, J.I.; Landis, P.; Partin, A.W.; Carter, H.B. Serum prostate-specific antigen (PSA) concentration is positively associated with rate of disease reclassification on subsequent active surveillance prostate biopsy in men with low PSA density. BJU Int. 2014, 113, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Beckman Coulter. Available online: https://www.beckmancoulter.com/es/products/immunoassay/phi (accessed on 11 February 2021).
- Loeb, S.; Sanda, M.G.; Broyles, D.L.; Shin, S.S.; Bangma, C.H.; Wei, J.T.; Partin, A.W.; Klee, G.G.; Slawin, K.M.; Marks, L.S.; et al. The prostate health index selectively identifies clinically significant prostate cancer. J. Urol. 2015, 193, 1163–1169. [Google Scholar] [CrossRef] [Green Version]
- Chiu, P.K.F.; Lai, F.M.M.; Teoh, J.Y.C.; Lee, W.M.; Yee, C.H.; Chan, E.S.Y.; Hou, S.M.; Ng, C.F. Prostate Health Index and % p2PSA Predict Aggressive Prostate Cancer Pathology in Chinese Patients Undergoing Radical Prostatectomy. Ann. Surg. Oncol. 2016, 23, 2707–2714. [Google Scholar] [CrossRef]
- Cantiello, F.; Russo, G.I.; Cicione, A.; Ferro, M.; Cimino, S.; Favilla, V.; Perdonà, S.; De Cobelli, O.; Magno, C.; Morgia, G.; et al. PHI and PCA3 improve the prognostic performance of PRIAS and Epstein criteria in predicting insignificant prostate cancer in men eligible for active surveillance. World J. Urol. 2016, 34, 485–493. [Google Scholar] [CrossRef]
- Cantiello, F.; Russo, G.I.; Ferro, M.; Cicione, A.; Cimino, S.; Favilla, V.; Perdonà, S.; Bottero, D.; Terracciano, D.; De Cobelli, O.; et al. Prognostic accuracy of Prostate Health Index and urinary Prostate Cancer Antigen 3 in predicting pathologic features after radical prostatectomy. Urol. Oncol. Semin. Orig. Investig. 2015, 33, e15–e163. [Google Scholar] [CrossRef] [Green Version]
- Porpiglia, F.; Cantiello, F.; De Luca, S.; Manfredi, M.; Veltri, A.; Russo, F.; Sottile, A.; Damiano, R. In-parallel comparative evaluation between multiparametric magnetic resonance imaging, prostate cancer antigen 3 and the prostate health index in predicting pathologically confirmed significant prostate cancer in men eligible for active surveillance. BJU Int. 2016, 118, 527–534. [Google Scholar] [CrossRef]
- Prostate Cancer Test 4Kscore OPKO Health. Available online: https://4kscore.com/ (accessed on 26 February 2021).
- Parekh, D.J.; Punnen, S.; Sjoberg, D.D.; Asroff, S.W.; Bailen, J.L.; Cochran, J.S.; Concepcion, R.; David, R.D.; Deck, K.B.; Dumbadze, I.; et al. A Multi-institutional Prospective Trial in the USA Confirms that the 4Kscore Accurately Identifies Men with High-grade Prostate Cancer. Eur. Urol. 2015, 68, 464–470. [Google Scholar] [CrossRef]
- Lin, D.W.; Newcomb, L.F.; Brown, M.D.; Sjoberg, D.D.; Dong, Y.; Brooks, J.D.; Carroll, P.R.; Cooperberg, M.; Dash, A.; Ellis, W.J.; et al. Evaluating the Four Kallikrein Panel of the 4Kscore for Prediction of High-grade Prostate Cancer in Men in the Canary Prostate Active Surveillance Study. Eur. Urol. 2017, 72, 448–454. [Google Scholar] [CrossRef]
- Borque-Fernando, Á.; Rubio-Briones, J.; Esteban, L.M.; Dong, Y.; Calatrava, A.; Gómez-Ferrer, Á.; Gómez-Gómez, E.; Gil Fabra, J.M.; Rodríguez-García, N.; López González, P.; et al. Role of the 4Kscore test as a predictor of reclassification in prostate cancer active surveillance. Prostate Cancer Prostatic Dis. 2019, 22, 84–90. [Google Scholar] [CrossRef]
- Haese, A.; Tin, A.L.; Carlsson, S.V.; Sjoberg, D.D.; Pehrke, D.; Steuber, T.; Huland, H.; Graefen, M.; Scardino, P.T.; Schlomm, T.; et al. A pre-specified model based on four kallikrein markers in blood improves predictions of adverse pathology and biochemical recurrence after radical prostatectomy. Br. J. Cancer 2020, 123, 604–609. [Google Scholar] [CrossRef] [PubMed]
- Bryant, R.J.; Sjoberg, D.D.; Vickers, A.J.; Robinson, M.C.; Kumar, R.; Marsden, L.; Davis, M.; Scardino, P.T.; Donovan, J.; Neal, D.E.; et al. Predicting High-Grade Cancer at Ten-Core Prostate Biopsy Using Four Kallikrein Markers Measured in Blood in the ProtecT Study. J. Natl. Cancer Inst. 2015, 107, djv095. [Google Scholar] [CrossRef] [Green Version]
- About the Oncotype DX Genomic Prostate Score® Test Oncotype IQ®. Available online: https://www.oncotypeiq.com/en-US/prostate-cancer/healthcare-professionals/oncotype-dx-genomic-prostate-score/about-the-test (accessed on 5 February 2021).
- Cedars, B.E.; Washington, S.L.; Cowan, J.E.; Leapman, M.; Tenggara, I.; Chan, J.M.; Cooperberg, M.R.; Carroll, P.R. Stability of a 17-gene genomic prostate score in serial testing of men on active surveillance for early stage prostate cancer. J. Urol. 2019, 202, 696–700. [Google Scholar] [CrossRef] [PubMed]
- Van Den Eeden, S.K.; Lu, R.; Zhang, N.; Quesenberry, C.P.; Shan, J.; Han, J.S.; Tsiatis, A.C.; Leimpeter, A.D.; Lawrence, H.J.; Febbo, P.G.; et al. A Biopsy-based 17-gene Genomic Prostate Score as a Predictor of Metastases and Prostate Cancer Death in Surgically Treated Men with Clinically Localized Disease [Figure presented]. Eur. Urol. 2018, 73, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.W.; Zheng, Y.; McKenney, J.K.; Brown, M.D.; Lu, R.; Crager, M.; Boyer, H.; Tretiakova, M.; Brooks, J.D.; Dash, A.; et al. 17-Gene Genomic Prostate Score Test Results in the Canary Prostate Active Surveillance Study (PASS) Cohort. J. Clin. Oncol. 2020, 38, 1549–1557. [Google Scholar] [CrossRef]
- Mohler, J.L.; Antonarakis, E.S.; Armstrong, A.J.; D’Amico, A.V.; Davis, B.J.; Dorff, T.; Eastham, J.A.; Enke, C.A.; Farrington, T.A.; Higano, C.S.; et al. Prostate cancer, version 2. 2019. JNCCN J. Natl. Compr. Cancer Netw. 2019, 17, 479–505. [Google Scholar] [CrossRef] [Green Version]
- Kornberg, Z.; Cooperberg, M.R.; Cowan, J.E.; Chan, J.M.; Shinohara, K.; Simko, J.P.; Tenggara, I.; Carroll, P.R. A 17-gene genomic prostate score as a predictor of adverse pathology in men on active surveillance. J. Urol. 2019, 202, 702–708. [Google Scholar] [CrossRef]
- Eure, G.; Germany, R.; Given, R.; Lu, R.; Shindel, A.W.; Rothney, M.; Glowacki, R.; Henderson, J.; Richardson, T.; Goldfischer, E.; et al. Use of a 17-Gene Prognostic Assay in Contemporary Urologic Practice: Results of an Interim Analysis in an Observational Cohort. Urology 2017, 107, 67–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eggener, S.; Karsh, L.I.; Richardson, T.; Shindel, A.W.; Lu, R.; Rosenberg, S.; Goldfischer, E.; Korman, H.; Bennett, J.; Newmark, J.; et al. A 17-gene Panel for Prediction of Adverse Prostate Cancer Pathologic Features: Prospective Clinical Validation and Utility. Urology 2019, 126, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Prostate Treatment Planning Patient Decipher Bio. Available online: https://decipherbio.com/prostate/ (accessed on 29 January 2021).
- Klein, E.A.; Haddad, Z.; Yousefi, K.; Lam, L.L.C.; Wang, Q.; Choeurng, V.; Palmer-Aronsten, B.; Buerki, C.; Davicioni, E.; Li, J.; et al. Decipher Genomic Classifier Measured on Prostate Biopsy Predicts Metastasis Risk. Urology 2016, 90, 148–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herlemann, A.; Huang, H.C.; Alam, R.; Tosoian, J.J.; Kim, H.L.; Klein, E.A.; Simko, J.P.; Chan, J.M.; Lane, B.R.; Davis, J.W.; et al. Decipher identifies men with otherwise clinically favorable-intermediate risk disease who may not be good candidates for active surveillance. Prostate Cancer Prostatic Dis. 2020, 23, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, P.L.; Haddad, Z.; Ross, A.E.; Martin, N.E.; Deheshi, S.; Lam, L.L.C.; Chelliserry, J.; Tosoian, J.J.; Lotan, T.L.; Spratt, D.E.; et al. Ability of a Genomic Classifier to Predict Metastasis and Prostate Cancer-specific Mortality after Radiation or Surgery based on Needle Biopsy Specimens. Eur. Urol. 2017, 72, 845–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, H.L.; Li, P.; Huang, H.C.; Deheshi, S.; Marti, T.; Knudsen, B.; Abou-Ouf, H.; Alam, R.; Lotan, T.L.; Lam, L.L.C.; et al. Validation of the Decipher Test for predicting adverse pathology in candidates for prostate cancer active surveillance. Prostate Cancer Prostatic Dis. 2019, 22, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Badani, K.; Thompson, D.J.S.; Buerki, C.; Davicioni, E.; Garrison, J.; Ghadessi, M.; Mitra, A.P.; Wood, P.J.; Hornberger, J. Impact of a genomic classifier of metastatic risk on postoperative treatment recommendations for prostate cancer patients: A report from the DECIDE study group. Oncotarget 2013, 4, 600–609. [Google Scholar] [CrossRef] [Green Version]
- Prolaris Prolaris. Available online: https://prolaris.com/ (accessed on 8 February 2021).
- Lin, D.W.; Crawford, E.D.; Keane, T.; Evans, B.; Reid, J.; Rajamani, S.; Brown, K.; Gutin, A.; Tward, J.; Scardino, P.; et al. Identification of men with low-risk biopsy-confirmed prostate cancer as candidates for active surveillance. Urol. Oncol. Semin. Orig. Investig. 2018, 36, e7–e310. [Google Scholar] [CrossRef]
- Canter, D.J.; Freedland, S.; Rajamani, S.; Latsis, M.; Variano, M.; Halat, S.; Tward, J.; Cohen, T.; Stone, S.; Schlomm, T.; et al. Analysis of the prognostic utility of the cell cycle progression (CCP) score generated from needle biopsy in men treated with definitive therapy. Prostate Cancer Prostatic Dis. 2020, 23, 102–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canter, D.J.; Reid, J.; Latsis, M.; Variano, M.; Halat, S.; Rajamani, S.; Gurtner, K.E.; Sangale, Z.; Brawer, M.; Stone, S.; et al. Comparison of the Prognostic Utility of the Cell Cycle Progression Score for Predicting Clinical Outcomes in African American and Non-African American Men with Localized Prostate Cancer. Eur. Urol. 2019, 75, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooperberg, M.R.; Pasta, D.J.; Elkin, E.P.; Litwin, M.S.; Latini, D.M.; Duchane, J.; Carroll, P.R. The University of California, San Francisco Cancer of the Prostate Risk Assessment score: A straightforward and reliable preoperative predictor of disease recurrence after radical prostatectomy. J. Urol. 2005, 173, 1938–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bussemakers, M.J.G.; Van Bokhoven, A.; Verhaegh, G.W.; Smit, F.P.; Karthaus, H.F.M.; Schalken, J.A.; Debruyne, F.M.J.; Ru, N.; Isaacs, W.B. DD3: A new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999, 59, 5975–5979. [Google Scholar]
- Progensatm PCA3-Southgenetics. Available online: https://southgenetics.com/progensa-pca3/ (accessed on 23 March 2021).
- Chevli, K.K.; Duff, M.; Walter, P.; Yu, C.; Capuder, B.; Elshafei, A.; Malczewski, S.; Kattan, M.W.; Jones, J.S. Urinary PCA3 as a predictor of prostate cancer in a cohort of 3073 men undergoing initial prostate biopsy. J. Urol. 2014, 191, 1743–1748. [Google Scholar] [CrossRef]
- Fenstermaker, M.; Mendhiratta, N.; Bjurlin, M.A.; Meng, X.; Rosenkrantz, A.B.; Huang, R.; Deng, F.M.; Zhou, M.; Huang, W.C.; Lepor, H.; et al. Risk Stratification by Urinary Prostate Cancer Gene 3 Testing Before Magnetic Resonance Imaging-Ultrasound Fusion-targeted Prostate Biopsy Among Men With No History of Biopsy. Urology 2017, 99, 174–179. [Google Scholar] [CrossRef]
- Tosoian, J.J.; Patel, H.D.; Mamawala, M.; Landis, P.; Wolf, S.; Elliott, D.J.; Epstein, J.I.; Carter, H.B.; Ross, A.E.; Sokoll, L.J.; et al. Longitudinal assessment of urinary PCA3 for predicting prostate cancer grade reclassification in favorable-risk men during active surveillance. Prostate Cancer Prostatic Dis. 2017, 20, 339–342. [Google Scholar] [CrossRef] [Green Version]
- Alshalalfa, M.; Verhaegh, G.W.; Gibb, E.A.; Santiago-Jiménez, M.; Erho, N.; Jordan, J.; Yousefi, K.; Lam, L.L.C.; Kolisnik, T.; Chelissery, J.; et al. Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: Exploratory analysis from 12,076 patients. Oncotarget 2017, 8, 50804–50813. [Google Scholar] [CrossRef]
- Tomlins, S.A.; Rhodes, D.R.; Perner, S.; Dhanasekaran, S.M.; Mehra, R.; Sun, X.W.; Varambally, S.; Cao, X.; Tchinda, J.; Kuefer, R.; et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005, 310, 644–648. [Google Scholar] [CrossRef]
- Fernández-Serra, A.; Rubio, L.; Calatrava, A.; Rubio-Briones, J.; Salgado, R.; Gil-Benso, R.; Espinet, B.; García-Casado, Z.; López-Guerrero, J.A. Molecular characterization and clinical impact of TMPRSS2-ERG rearrangement on prostate cancer: Comparison between FISH and RT-PCR. Biomed. Res. Int. 2013, 2013, 465179. [Google Scholar] [CrossRef] [Green Version]
- Laxman, B.; Tomlins, S.A.; Mehra, R.; Morris, D.S.; Wang, L.; Helgeson, B.E.; Shah, R.B.; Rubin, M.A.; Wei, J.T.; Chinnaiyan, A.M. Noninvasive detection of TMPRSS2:ERG fusion transcripts in the urine of men with prostate cancer. Neoplasia 2006, 8, 885–888. [Google Scholar] [CrossRef] [Green Version]
- Lin, D.W.; Newcomb, L.F.; Brown, E.C.; Brooks, J.D.; Carroll, P.R.; Feng, Z.; Gleave, M.E.; Lance, R.S.; Sanda, M.G.; Thompson, I.M.; et al. Urinary TMPRSS2:ERG and PCA3 in an active surveillance cohort: Results from a baseline analysis in the canary prostate active surveillance study. Clin. Cancer Res. 2013, 19, 2442–2450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berg, K.D.; Vainer, B.; Thomsen, F.B.; Røder, M.A.; Gerds, T.A.; Toft, B.G.; Brasso, K.; Iversen, P. ERG protein expression in diagnostic specimens is associated with increased risk of progression during active surveillance for prostate cancer. Eur. Urol. 2014, 66, 851–860. [Google Scholar] [CrossRef]
- Whelan, C.; Kawachi, M.; Smith, D.D.; Linehan, J.; Babilonia, G.; Mejia, R.; Wilson, T.; Smith, S.S. Expressed prostatic secretion biomarkers improve stratification of NCCN active surveillance candidates: Performance of secretion capacity and TMPRSS2:ERG models. J. Urol. 2014, 191, 220–226. [Google Scholar] [CrossRef] [PubMed]
- Leyten, G.H.J.M.; Hessels, D.; Jannink, S.A.; Smit, F.P.; De Jong, H.; Cornel, E.B.; De Reijke, T.M.; Vergunst, H.; Kil, P.; Knipscheer, B.C.; et al. Prospective multicentre evaluation of PCA3 and TMPRSS2-ERG gene fusions as diagnostic and prognostic urinary biomarkers for prostate cancer. Eur. Urol. 2014, 65, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Newcomb, L.F.; Zheng, Y.; Faino, A.V.; Bianchi-Frias, D.; Cooperberg, M.R.; Brown, M.D.; Brooks, J.D.; Dash, A.; Fabrizio, M.D.; Gleave, M.E.; et al. Performance of PCA3 and TMPRSS2:ERG urinary biomarkers in prediction of biopsy outcome in the Canary Prostate Active Surveillance Study (PASS). Prostate Cancer Prostatic Dis. 2019, 22, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Tomlins, S.A.; Day, J.R.; Lonigro, R.J.; Hovelson, D.H.; Siddiqui, J.; Kunju, L.P.; Dunn, R.L.; Meyer, S.; Hodge, P.; Groskopf, J.; et al. Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur. Urol. 2016, 70, 45–53. [Google Scholar] [CrossRef] [Green Version]
- MPS (MyProstateScore) MLabs. Available online: https://mlabs.umich.edu/tests/mps-myprostatescore (accessed on 25 March 2021).
- SelectMDx Urine Test Prostate Cancer Early Detection. Available online: https://mdxhealth.com/selectmdx-physician (accessed on 24 March 2021).
- Leyten, G.H.J.M.; Hessels, D.; Smit, F.P.; Jannink, S.A.; De Jong, H.; Melchers, W.J.G.; Cornel, E.B.; De Reijke, T.M.; Vergunst, H.; Kil, P.; et al. Identification of a candidate gene panel for the early diagnosis of prostate cancer. Clin. Cancer Res. 2015, 21, 3061–3070. [Google Scholar] [CrossRef] [Green Version]
- Van Neste, L.; Hendriks, R.J.; Dijkstra, S.; Trooskens, G.; Cornel, E.B.; Jannink, S.A.; de Jong, H.; Hessels, D.; Smit, F.P.; Melchers, W.J.G.; et al. Detection of High-grade Prostate Cancer Using a Urinary Molecular Biomarker–Based Risk Score. Eur. Urol. 2016, 70, 740–748. [Google Scholar] [CrossRef]
- Fiorella, D.; Marenco, J.L.; Mascarós, J.M.; Borque-fernando, A.; Esteban, L.M.; Calatrava, A.; Pastor, B.; López-Guerrero, J.A.; Rubio-Briones, J. Papel de PCA3 y SelectMDx en la optimización de la vigilancia activa en el cáncer de próstata. Actas Urológicas Españolas 2021. [Google Scholar] [CrossRef]
- Pepe, P.; Dibenedetto, G.; Pepe, L.; Pennisi, M. Multiparametric MRI versus selecTMDX accuracy in the diagnosis of clinically significant PCA in men enrolled in active surveillance. Vivo 2020, 34, 393–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hendriks, R.J.; van der Leest, M.M.G.; Dijkstra, S.; Barentsz, J.O.; Van Criekinge, W.; Hulsbergen-van de Kaa, C.A.; Schalken, J.A.; Mulders, P.F.A.; van Oort, I.M. A urinary biomarker-based risk score correlates with multiparametric MRI for prostate cancer detection. Prostate 2017, 77, 1401–1407. [Google Scholar] [CrossRef]
- Govers, T.M.; Hessels, D.; Vlaeminck-Guillem, V.; Schmitz-Dräger, B.J.; Stief, C.G.; Martinez-Ballesteros, C.; Ferro, M.; Borque-Fernando, A.; Rubio-Briones, J.; Sedelaar, J.P.M.; et al. Cost-effectiveness of SelectMDx for prostate cancer in four European countries: A comparative modeling study. Prostate Cancer Prostatic Dis. 2019, 22, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, S.; Govers, T.M.; Hendriks, R.J.; Schalken, J.A.; Van Criekinge, W.; Van Neste, L.; Grutters, J.P.C.; Sedelaar, J.P.M.; van Oort, I.M. Cost-effectiveness of a new urinary biomarker-based risk score compared to standard of care in prostate cancer diagnostics—A decision analytical model. BJU Int. 2017, 120, 659–665. [Google Scholar] [CrossRef]
- Moore, C.M.; Giganti, F.; Albertsen, P.; Allen, C.; Bangma, C.; Briganti, A.; Carroll, P.; Haider, M.; Kasivisvanathan, V.; Kirkham, A.; et al. Reporting Magnetic Resonance Imaging in Men on Active Surveillance for Prostate Cancer: The PRECISE Recommendations—A Report of a European School of Oncology Task Force. Eur. Urol. 2017, 71, 648–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Biomarker | Source | Characteristics | AS Application | References |
---|---|---|---|---|
PSA | Blood | PSA is a glycoprotein secreted by prostatic epithelial cells that lyses the clotted ejaculate to enhance sperm motility. It is the most important commonly used biomarker, but it has been shown not to be a cancer-specific marker, as some prostate diseases could also produce PSA elevated levels | Its role as biomarker in AS has been questioned due to its variability and has been mostly studied related to its changes with time, prostate volume or other isoforms | [19] |
PSA kinetics | Blood | Rate of PSA change over time: PSA doubling time (PSADT) is the number of years over which a certain level of PSA increases by a factor of two and is calculated as DT = ln(2); PSA velocity (PSAV) represents a change in PSA level over time/m | Differentiates between PCa with more and less aggressive natural history | [20,21,22,23,24,25] |
PSA density (PSAD) | Blood | Dividing preoperative PSA by prostate weight without seminal vesicles | Predicts upgrading and reclassification in men with low-risk PCa enrolled in AS, by improving the inclusion criteria and follow-up of PCa patients | [26,27,28,29] |
Prostate Health Index (PHI) | Blood | Index calculated as [-2]proPSA/fPSA x √PSA | PHI measurement could be clinically useful in discriminating the presence of insignificant PCa in active surveillance candidates | [30,31,32,33,34,35] |
4Kscore® | Blood | A panel of four kallikreins (tPSA, fPSA, intact PSA [iPSA], and human kallikrein 2 [hK2]) combined with clinical data available before cancer diagnosis | Identifies patients most likely to benefit from biopsy because of a high risk of having a clinically significant tumour that would require active treatment | [36,37,38,39,40,41] |
Oncotype DX® Genomic Prostate Score (GPS) | Tissue | RNA based expression assay of 12 PCa related normalized to 5 housekeeping genes | Associated with an increased risk of AP and BR in the initial test of early-stage PCa | [42,43,44,45,46,47,48,49,50] |
Genome DX Decipher® Genomic Classifier | Tissue | Includes 22 coding and non-coding genes, which covers seven cancer pathways, such as angiogenesis, invasion and metastasis, or growth and differentiation | Helps to predict metastasis risk after RP and exclude patients of following AS programs | [51,52,53,54,55,56] |
Prolaris® (Cell Cycle Progression Score) | Tissue | RNA expression signature based on measuring the expression levels of 31 genes that participate in cell cycle progression and 15 housekeeping genes | Helps to identify patients who may warrant increased intervention intensity due to their predicted risk of metastatic disease | [57,58,59,60,61] |
Prostate Cancer Antigen 3 (PCA3) | Urine | Non-coding mRNA only expressed in human prostate tissue but overexpressed in PCa tissue | Patients who reclassified had significantly higher PCA3 scores at both initial and subsequent measures, indicating an association with grade reclassification | [62,63,64,65,66,67] |
TMPRSS2:ERG fusion gene | Urine | T2E fusion gene is present in approximately 50% of prostatic tumours and is detected both in FFPE and urine samples | Non-invasive T2E measurement in urine may refine patient acceptance into AS programs | [68,69,70,71,72,73,74,75,76,77] |
SelectMDx | Urine | Combines serum PSA, PSAD and clinical factors such as age and prior negative biopsy with mRNA signatures: urinary homeobox C6 (HOXC6) and distal-less homeobox 1 (DLX1) | Can detect high-grade csPCa accurately and could therefore be used in AS decision making, reducing the number of unnecessary prostate biopsies and potential overtreatment | [78,79,80,81,82,83,84,85] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastor-Navarro, B.; Rubio-Briones, J.; Borque-Fernando, Á.; Esteban, L.M.; Dominguez-Escrig, J.L.; López-Guerrero, J.A. Active Surveillance in Prostate Cancer: Role of Available Biomarkers in Daily Practice. Int. J. Mol. Sci. 2021, 22, 6266. https://doi.org/10.3390/ijms22126266
Pastor-Navarro B, Rubio-Briones J, Borque-Fernando Á, Esteban LM, Dominguez-Escrig JL, López-Guerrero JA. Active Surveillance in Prostate Cancer: Role of Available Biomarkers in Daily Practice. International Journal of Molecular Sciences. 2021; 22(12):6266. https://doi.org/10.3390/ijms22126266
Chicago/Turabian StylePastor-Navarro, Belén, José Rubio-Briones, Ángel Borque-Fernando, Luis M. Esteban, Jose Luis Dominguez-Escrig, and José Antonio López-Guerrero. 2021. "Active Surveillance in Prostate Cancer: Role of Available Biomarkers in Daily Practice" International Journal of Molecular Sciences 22, no. 12: 6266. https://doi.org/10.3390/ijms22126266
APA StylePastor-Navarro, B., Rubio-Briones, J., Borque-Fernando, Á., Esteban, L. M., Dominguez-Escrig, J. L., & López-Guerrero, J. A. (2021). Active Surveillance in Prostate Cancer: Role of Available Biomarkers in Daily Practice. International Journal of Molecular Sciences, 22(12), 6266. https://doi.org/10.3390/ijms22126266