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Abstract: Peroxisomes are ubiquitous membrane-bound organelles, and aberrant localisation of
peroxisomal proteins contributes to the pathogenesis of several disorders. Many computational
methods focus on assigning protein sequences to subcellular compartments, but there are no specific
tools tailored for the sub-localisation (matrix vs. membrane) of peroxisome proteins. We present here
In-Pero, a new method for predicting protein sub-peroxisomal cellular localisation. In-Pero combines
standard machine learning approaches with recently proposed multi-dimensional deep-learning
representations of the protein amino-acid sequence. It showed a classification accuracy above 0.9 in
predicting peroxisomal matrix and membrane proteins. The method is trained and tested using a
double cross-validation approach on a curated data set comprising 160 peroxisomal proteins with
experimental evidence for sub-peroxisomal localisation. We further show that the proposed approach
can be easily adapted (In-Mito) to the prediction of mitochondrial protein localisation obtaining
performances for certain classes of proteins (matrix and inner-membrane) superior to existing tools.

Keywords: protein sequence encoding and embedding; machine learning; neural networks; subcel-
lular localisation; sub-peroxisomal localisation; sub-mitochondrial localisation

1. Introduction

In eukaryotes, there are ten main subcellular localisations which can be further subdi-
vided into intra-organellar compartments (see Figure 1A). These organelles perform one
or more, and often complementary, specific tasks in the cellular machinery. Examples of
organelles are the nucleus, for the storage of genetic (DNA) material, mitochondria for the
production of energy and the peroxisome.

The organelles provide suitable biological conditions for proteins and the correct
transport of a protein to its final destination is crucial to its function. Failure in protein
transport systems has been associated with several disorders including Alzheimer’s and
cancers [1-3].

It has been observed that proteins from different organelles show signatures, in their
amino acid composition, that associate with their subcellular localisation [4]. This has led
to the hypothesis that each protein has evolved to function optimally in a given subcellular
compartment, and to the idea that the information encoded in the sequence can be used to
predict the subcellular localisation.

Since the pioneering work of Nakashima and Nishikawa, who used the amino acid
composition to discriminate between intra- and extra-cellular proteins [5], several studies
have been proposed to predict protein localisation (see [6] for comprehensive reviews). A
list of the most common tools for subcellular localisation includes BaCello [7] a predictor
based on different Support Vector Machines (SVM) organised in a decision tree; Phobius [8],
a combined transmembrane topology and signal peptide predictor; WoLF PSORT [9] a
k-nearest neighbors based classifier; TPpred3 [10], an SVM predictor exploiting N-terminal
targeting peptides.
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Figure 1. (A) The eukaryotic cell and its organelles and compartments: (1) Nucleolus, (2) Nucleus, (3) Ribosome, (4) Per-

oxisome, (5) Rough Endoplasmic Reticulum, (6) Golgi apparathus, (7) Cytoskeleton, (8) Smooth endoplasmic reticulum,

(9) Mitochondrion, (10) Vacuole, (11) Cytoplasm, (12) Lysosome, (13) Vescicles. (B) The peroxisome and its structure,

showing the lipidic bilayer membrane, the inner matrix and crystalloid core (not always present). Peroxisomal proteins

can be divided into two groups, matrix and membrane proteins, depending on the localisation. Membrane proteins are

found attached on the inner and outer surface or can span through the layer (trans-membrane proteins). Panel A is partially

adapted from en.wikipedia.org/wiki/Ribosome#/media/File:Animal_Cell.svg, accessed on 18 February 2021.

Nowadays, many bioinformatics methods for subcellular and sub-organelle local-
isation are easily findable and accessible [7,9-11]. Moreover, the recent applications of
machine learning (ML) and deep-learning (DL) approaches to encode protein sequences,
has shown promising results in several tasks, including subcellular classification [12-18].

In these approaches, protein sequences are commonly transformed to numerical rep-
resentations that can be mathematically manipulated. Classically, these representations
are referred to as “encodings” and can be broadly subdivided in four categories (i) binary
encoding, (i7) encoding based on physical-chemical properties, (iii) evolution-based encod-
ing and, (iv) structural encoding [19]. Examples are the one-hot encoding (IHOT) [19], the
residue physical-chemical properties encoding (PROP) [20], the Position-Specific Scoring
Matrix (PSSM) [21,22].

Recently, deep learning methods have also been proposed and applied to extracting
fundamental features of a protein and to embed them into a statistical representation
that is semantically rich and structurally, evolutionary, and bio-physically grounded [12].
These statistical representations are known as deep-learning embeddings (DL-embeddings)
and are a multidimensional transformation of the protein sequence obtained using DL to
extract and learn the information from the huge amount of protein sequences available in
biological databases.

We can take advantage of these embeddings for several tasks, especially subcellular
localisation [14]. Two of the most promising DL-embeddings are the Unified Represen-
tation (UniRep) [12] and the Sequence-to-Vector (SeqVec) [13] embeddings. UniRep [12]
provides amino-acid embedding containing meaningful physicochemically and phyloge-
netic clusters and proved to be efficient for distinguishing proteins from various SCOP
(structural classifications of proteins) classes. SeqVec showed similar results and optimal
performance for predicting subcellular localisation, including peroxisomes [13].

Peroxisomes (see Figure 1B) are ubiquitous organelles surrounded by a single biomem-
brane that are relevant to many metabolic pathways like phospholipid biosynthesis, fatty
acid beta-oxidation, bile acid synthesis, docosahexaenoic acid synthesis, fatty acid alpha-
oxidation, glyoxylate metabolism, amino acid degradation, and ROS/RNS metabolism [23].
Peroxisomes are also involved in non-metabolic functions, like cellular stress responses,
response to pathogens and antiviral defence, and cellular signalling [24]. Because of this
they gained the appellative of "protective” organelles [24] and dysfunctions in peroxisomal
proteins have been associated with metabolic disorders [23,24]. However, the full extent of



Int. J. Mol. Sci. 2021, 22, 6409

30f16

their functions is still largely unknown [25] and the discovery of new peroxisomal proteins
can facilitate further knowledge acquisition.

This leads to the problem of determining the localisation of peroxisome proteins. For
instance, both membrane contact site (MCS) proteins [26] and peroxisomal transporters
(PT) [27] are found on the membrane: that is, distinguishing between proteins located on
the peroxisomal membrane or in its granular matrix is thus a fundamental step for the
characterization of unknown peroxisomal proteins.

The problem of protein sub-peroxisomal localisation has received limited attention: as
for today, the only way to retrieve information about the sub-peroxisomal localisation is
to check for short conserved sequence motif known as signal motifs, or protein targeting
signals (PTS) as implemented in the PeroxisomeDB server [28] (www.peroxisomedb.org,
accessed on 1 June 2020). Through PeroxisomeDB, given a FASTA sequence as input, it is
possible to identify PEX19BS, PTS1 and PTS2 targeting signals: more precisely, PTS1 and
PTS2, can identify peroxisomal matrix proteins while PEX19BS can identify peroxisomal
membrane proteins.

In this study, we address the problem of predicting the sub-localisation of peroxisomal
protein using a computational strategy that combines protein-sequence embedding with
classical machine learning. We reviewed and compared four different machine learn-
ing approaches, namely Logistic Regression (LR), Random Forest (RF), Support Vector
Machine (SVM), and Partial Least Square Discriminant Analysis (PLS-DA) in combina-
tion with five protein embedding approaches: residue one-hot encoding (1HOT), residue
physical-chemical properties (PROP), Position Specific Scoring Matrices (PSSM), Unified
Representation, Sequence-to-Vector.

Based on our comparative study, we built a computational pipeline (In-Pero), which is
based on Support Vector Machines and the combination of UniRep and SeqVec embedding.
We also tested our approach for sub-mitochondrial localisation, obtaining a predictor
(In-Mito) that outperformed most of the existing classifiers.

2. Results
2.1. Selection of the Best Classifier for Sub-Peroxisomal Prediction

We compared four commonly used machine learning approaches (Logistic Regression,
Partial Least Squares Discriminant analysis, Random Forest and Support Vector Machines)
in combination with different protein sequence encodings and embeddings to select the
best classification strategy to predict the sub-localisation of peroxisomal proteins. Results
are summarised, per classification algorithm, in Table 1 where different metrics for model
quality quantification are given. All results were obtained with repeated double cross-
validation to avoid model overfitting and bias.

In general, Logistic regression (Table 1a) and Support vector machines (Table 1b)
showed similar performance, superior to PLS-DA Table 1c) and Random Forest (Table 1d).
However, the prediction model built using SVM has a smaller standard deviation, indicat-
ing higher stability.

We observed that combining two different encodings and/or embeddings gives a
better prediction of the peroxisomal sub-localisation. In particular, concatenating UniRep
and SeqVec showed a noticeable improvement in the performances. That indicates that
the two embeddings carry different and complementary information about the properties
of the protein sequence, as given in Figure 2, that show how the two embeddings are
not correlated.
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Figure 2. Correlation among the UniRep (1900 features) and the SeqVec (1024 features) protein
sequence embeddings. Pearson’s linear correlation is used and are calculated over 160 protein
sequences. The two embeddings are uncorrelated.

Table 1. Step Forward Feature Selection for each of the compared methods. (a) Logistic Regression (LR) performances;
(b) Support Vector Machines (SVM) performances; (c) Partial Least Square-Discriminant Analysis (PLS-DA) performances;
(d) Random Forest (RF) performances. The analysed encodings and embeddings are protein one hot encoding (1HOT),
residue physical-chemical properties encoding (PROP), position specific scoring matrix (PSSM), Unified Representation
(UniRep) and Sequence to Vector (SeqVec). The results refer to the Double Cross Validation (DCV) procedure performed for
each iteration of the forward feature selection (Section 4.5). The F; (inner) score refers to the inner loop of the DCV while F;
(outer) refers to the outer loop. The performances are reported in terms of F1 score, BACC, MCC and ACC (see Section 4.8

and SM).
(a) LR
F;(inner) F; (outer) BACC MCC ACC
1HOT 0.577 0.623 +0.071 0.618 £0.075 0.269 +£0.143 0.809 +0.036
PROP 0.607 0.595 +0.109 0.591 +0.093 0.213 +0.222 0.794 +£0.054
PSSM 0.615 0.575 +0.067 0.604 +0.089 0.177 +£0.144 0.719 +0.040
t UniRep 0.765 0.749 +0.068 0.755 +0.077 0.501 +0.137 0.856 +0.032
SeqVec 0.792 0.712 +0.068 0.726 +0.079 0.427 +0.140 0.825 +0.042
UniRep + 1IHOT 0.636 0.648 +0.103 0.65 +0.111 0.312 £0.204 0.806 +0.061
UniRep + PROP 0.614 0.595 +0.104 0.589 +0.093 0.234 +0.217 0.812 +0.040
UniRep + PSSM 0.634 0.615 +0.100 0.615 +0.100 0.201 +0.166 0.738 +0.042
UniRep + SeqVec 0.844 0.851 +0.055 0.847 +0.075 0.715 +0.113 0.919 +0.032
(b) SVM
F; (inner) Fi (outer) BACC MCC ACC
1HOT 0.624 0.693 +£0.130 0.713 £0.139 0.396 £0.261 0.819 +0.070
PROP 0.634 0.616 +0.108 0.606 +0.094 0.274 +0.226 0.819 +0.041
PSSM 0.631 0.602 +0.087 0.623 £0.102 0.217 £0.178 0.750 +0.044
UniRep 0.775 0.768 +0.077 0.755 +0.099 0.544 +0.162 0.869 +0.036
SeqVec 0.778 0.777 £0.046 0.813 +0.052 0.567 +0.090 0.856 +0.038
SeqVec + 1THOT 0.68 0.757 +0.079 0.774 £0.103 0.527 £0.166 0.856 +0.042
SeqVec + PROP 0.648 0.597 +0.114 0.589 +0.099 0.218 +0.229 0.812 +0.044
SeqVec + PSSM 0.634 0.614 +0.091 0.639 £0.110 0.244 +£0.188 0.756 +0.041

SeqVec + UniRep 0.825 0.859 +0.031 0.863 +0.042 0.721 +£0.060 0.919 +0.015
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Table 1. Cont.

(c) PLS-DA
Fj(inner) F (outer) BACC MCC ACC
1HOT 0.452 0.452 +£0.005 0.500 +0.001 0.001 +0.001 0.825 +0.015
PROP 0.551 0.582 +0.086 0.575 +0.065 0.249 +0.198 0.831 +0.032
PSSM 0.542 0.592 +£0.133 0.582 +0.092 0.277 +0.290 0.844 +0.044
UniRep 0.743 0.782 +0.060 0.782 +0.060 0.568 +0.117 0.875 +0.034
SeqVec 0.759 0.707 +£0.081 0.695 £0.080 0.419 +0.160 0.844 +0.044
UniRep + 1HOT 0.478 0.471 +£0.051 0.502 +0.034 0.002 £0.112 0.806 +£0.023
UniRep + PROP 0.478 0.471 £0.051 0.502 +0.034 0.267 +£0.128 0.825 +0.032
UniRep + PSSM 0.564 0.616 £0.110 0.599 +£0.075 0.326 £0.233 0.850 +£0.041
UniRep + SeqVec 0.806 0.792 +0.078 0.773 £0.074 0.599 +0.166 0.888 +0.042
(d) RF
Fj (inner) F (outer) BACC MCC ACC
1HOT 0.569 0.401 £0.077 0.523 +0.050 0.046 +0.089 0.450 £0.124
PROP 0.631 0.572 £0.016 0.564 +£0.012 0.203 +0.090 0.812 +0.020
PSSM 0.618 0.585 +£0.110 0.567 +£0.088 0.261 £0.261 0.819 +0.064
UniRep 0.732 0.741 +0.051 0.779 +0.079 0.503 +0.104 0.838 +0.023
SeqVec 0.695 0.691 £0.035 0.720 +£0.053 0.407 +£0.790 0.800 +0.042
UniRep + IHOT 0.728 0.703 +£0.063 0.765 £0.089 0.443 +0.139 0.794 +£0.032
UniRep + PROP 0.710 0.692 +£0.093 0.731 £0.113 0.403 +£0.192 0.806 +£0.041
UniRep + PSSM 0.699 0.743 +£0.100 0.776 £0.128 0.501 £0.209 0.844 +0.052
UniRep + SeqVec 0.778 0.764 +0.135 0.790 +0.141 0.540 +0.267 0.850 +0.087
UniRep + SeqVec + 1HOT 0.774 0.721 £0.108 0.738 £0.121 0.456 +0.214 0.844 +0.044
UniRep + SeqVec + PROP 0.720 0.787 +£0.134 0.793 +0.144 0.581 +0.261 0.888 +0.061
UniRep + SeqVec + PSSM 0.741 0.733 £0.123 0.754 £0.136 0.480 +£0.242 0.850 +£0.054

2.2. In-PERO a Tool for the Prediction of Peroxisomal Protein Sub-Localisation

Based on the results obtained and discussed in Section 2.1, we developed In-Pero, a
computational pipeline to predict the Intra-Peroxisomal localisation of a proximal protein,
that is, to discriminate between matrix and membrane proteins.

In-Pero is based on a Support Vector Machine classifier trained on the statistical
representation of protein sequences obtained by the combination of two deep-learning
embeddings (UniRep + SecVec).

In-Pero consists of four main steps (see Figure 3A)

1. Input of the protein sequence in FASTA format.

2. Calculation of the statistical representation of the protein sequence using the UniRep
(1 x 1900) and the SeqVec (1 x 1024) embeddings.

3. Merging of the two statistical representation to obtain a 2924-dimensional representa-
tion of the protein sequence.

4.  Prediction of the subcellular localization using the trained SVM prediction model.

In-Pero is implemented in Python and work in command line modality. An example
of the input command line and output is given in Figure 3B.
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Hilipds Seaienceiamn ! ./In-Pero.py candidates.fasta
UniRep Encoding:
10

2) UniRep + SeqVec ID: P23542
embedding ID: Q9ZRTS

: P36168

ID: Q8VZD4

ID: Q8VZF1
ID: Q9FWA3

cooooo

/
74
/
7
/
/

oV B WN R

3)SVM
classification

4) Output

SeqVec encoding:

100% | I | /6 [00:46<00:00, 7.74s/it]

Matrix proteins: ['P23542', 'Q8VZD4']
Membrane proteins: ['Q9ZRT5', 'Q9FWA3', 'Q8VZF1', 'P36168']

Figure 3. (A) In-Pero workflow (1) Input as protein fasta sequence. (2) Sequence representation via DL encoding, in particular
concatenating UniRep and SeqVec. (3) Support Vector Machines based classification. (4) Outputof the sub-peroxisomal
location of the queried protein. (B) Example of a typical execution, with 6 sequences contained in the candidates.fasta file:
the sub-peroxisomal classification of each protein is give.

2.3. Validation of Sub-Peroxisomal Membrane Protein Prediction

The In-Pero prediction tool was trained and validated using a double cross-validation
strategy (see Section 4.7) with a stratified 5-fold splitting. The predictive capability of the
model was assessed on the data that have not been used for model calibration (i.e., the
selection of meta-parameters to obtain the best prediction quality). This approach is a
proxy for the use of an external data set for experimental validation, and ensures unbiased
model assessment and reduces the risk of over-fitting.

Despite all precautions, we believe it is important to benchmark In-Pero against exist-
ing tools. However, at the time of this writing, there are no existing computational specifi-
cally designed tools for the sub-localisation of peroxisomal protein. As a work-around, we
compared the prediction of In-Pero with those of TMHMM server (see Section 4.9) using a
set of 116 peroxisomal protein of unknown sub-peroxisomal localisation (see Section 4.2.3)
which have not been used to train the In-Pero classifier.

When In-Pero is run on these 116 proteins, we obtained membrane localisation for 48
and matrix localisation for 68. We tested the 48 protein classified as membrane proteins
using TMHMM: 7 were predicted as transmembrane proteins while 13 have characteristics
compatible with transmembrane localisation (a value >= 1 for at least one among the
ExpAA, First60 and PredHel scores, see Section 4.9). Prediction results are given in Table 2.

Table 2. Transmembrane and Membrane proteins found with both methods (In-Pero and TMHMM).
The seven Transmembrane proteins showing high prediction scores with TMHMM are in bold.

Membrane Transmembrane
082399 Q8H191 064883
P36168 Q8K459 P20138
P90551 Q8VZF1 Q84P23
Q12524 QILYT1 Q84P17
Q4WRS83 QINKW1 Q84P21
Q75LJ4 Q9S9W2 QIMO0X9
Q9SKX5 P08659

For two of the protein predicted as transmembrane proteins (064883 and P20138), there
is experimental evidence of them being involved in to various cellular membranes [29,30],
while the sub-peroxisomal location is not reported. Among the others, four (Q84P23,
Q84P17, Q84P21, and QIMOX9) are present in Arabidopsis thaliana while P08659 is present
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in Photinus pyralis. For these five proteins, neither membrane localisation nor the sub-
peroxisomal location are given, making them candidates for a more precise annotation.

It should be noted that TMHMM method focuses on predicting transmembrane re-
gions, not predicting subcellular location. However, we can speculate that also peroxisome
membrane protein may share some structural and physico-chemical properties similar to
cell membrane proteins; thus confronting the results of TMHMM with In-Pero can provide
an independent, albeit only partial, validation of the In-Pero classifier.

2.4. Extending In-Pero to Predict Sub-Mitochondrial Proteins

To explore further the applicability of the combination of machine learning and deep-
learning protein sequence embeddings to other problems related to the prediction of protein
localisation, we applied In-Pero for sub-mitochondrial classification.

Mitochondrial proteins are physiologically active in different compartments (the
matrix, the internal membrane, the inter-membrane space and the external membrane)
and their aberrant localisation contributes to the pathogenesis of human mitochondrial
pathologies [31]. By adapting In-Pero to a multiclass classification problem, we obtained
the In-Mito predictor. We considered both an SVM and a multinomial Logistic Regression
as classification algorithms since, in this case, they performed similarly.

There are several tools available for the prediction of sub-mitochondrial localisation. We
compared In-Mito against SubMitoPred [32], DeepMito [15], and DeepPred-SubMito [33].

We tested our model with the SM424-18 and SubMitoPred data sets (see Section 4.2.4
for more details). Results are given in Table 3.

In-Mito compared favourably to existing predictors, especially in respect to methods
designed to classify all four mitochondrial compartments. Moreover, In-Mito shows a well-
balanced capability to predict all four different compartments. In particular, In-Mito shows
excellent performance in the prediction of matrix proteins and inner membrane proteins,
which are the two most abundant subcellular compartments (80% of the SubMitoPred
data set).

For this multi-class problem, we obtained better prediction performance using either
logistic regression (for matrix protein) or SVM (for inter-membrane proteins). This supports
the idea of possibly combining different predictors for better classification.

Given the accuracy of the classifications obtained with our approach, we also imple-
mented the tool In-Mito for sub-mitochondrial classification, which works in the same way
as In-Pero (Figure 3). In particular, the final output here consists of one among the four
possible sub-mitochondrial compartments.

Table 3. Comparison with DeepMito and DeepPred-SubMito (DP-SM) based on the SM424-18 data
set (Data A) and the SubMitoPred data set (Data B). The results are reported in terms of Matthews
Correlation Coefficient (MCC). The four mitochondrial compartments are outer membrane (O), inner
membrane (I), intermembrane space (T) and matrix (M). Given the similar performances of our
predictor (In-Mito) implemented with Logistic Regression (LR) and Support Vector Machines (SVM),
we report both. The best performances are highlighted in bold font.

Data A MCC(O) MCCI) MCC(T) MCC(M)
DeepMito 0.460 0.470 0.530 0.650
DP-SM 0.850 0.490 0.990 0.560
In-Mito (LR) 0.680 0.730 0.690 0.820
In-Mito (SVM) 0.640 0.690 0.620 0.800

Data B

SubMitoPred 0.420 0.340 0.190 0.510
DeepMito 0.450 0.680 0.540 0.790
DP-SM 0.920 0.690 0.970 0.730
In-Mito (LR) 0.690 0.750 0.620 0.850

In-Mito (SVM) 0.650 0.760 0.540 0.840
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3. Discussion

With this work, we covered a less explored area of bioinformatics analysis of protein
sequences, namely the computational prediction of the localisation of peroxisome proteins.

Building on existing approaches, we addressed the problem by combining machine
learning algorithms with different combinations of protein encodings and embeddings.

We found that the (combination of) deep learning embeddings Seq-Vec [13] and
UniRep [12] outperformed classical encodings when applied to sub-peroxisomal classifi-
cation. Our newly proposed prediction tool In-Pero obtained a (double cross-validated)
classification accuracy of 0.92.

We also adopted the approach deployed in In-Pero to predicting the subcellular
localisation of mitochondrial proteins, resulting in the In-Mito classifier. We found In-Mito
to compare favourably with state-of-the-art approaches and for certain classes of proteins
(matrix and intermembrane) to outperform existing prediction tools like DeepMito [34]
and SubMitoPred [32].

These results suggest that (i) the evolutionary, biochemical and structural information
encoded in a protein amino acid sequence cannot be fully captured by one single embedding
and that different approaches need to be combined, (ii) deep-learning embeddings are
highly versatile and could become a standard for protein sequence representation and
analysis and (iii) the possibility of extending In-Pero and In-Mito for the characterisation
of other sub-organelles proteins.

Moreover, while in this work we utilised machine learning approaches, we anticipate
that our method can be extended to the use of deep-learning methods also for the prediction,
such as convolutional neural networks, recurrent neural networks or a combination thereof.

The lack of predictors and tools specifically dedicated to the prediction of sub-
localisation of peroxisomal protein makes our work the very first on this subject and
presents a complete method and benchmark that can be used as a base for future studies.

4. Materials and Methods
4.1. Overview of the Full Comparison Workflow

A complete overview of the comparison strategy for the selection of the best classifica-
tion strategy to predict the sub-localisation of peroxisomal proteins is given in Figure 4.
The comparison pipeline consists of three main steps:

1.  Data curation: Retrieval of peroxisome protein sequence from UniProt, clustering
and filtering.

2. Feature extraction: Transformation of the protein sequences into numerical represen-
tations capturing protein characteristics using classical encodings (IHOT, PROP and
PSSM) and deep-learning embeddings (UniRep and SeqVec).

3. Full comparison. Double cross-validated assessment of the prediction capability of
different combination of machine-learning approaches (Logistic Regression, Support
Vector Machines, Partial Least Square Discriminant Analysis and Random Forest) and
protein sequence encodings and embeddings using Step Forward Feature Selection.

All methods and approaches used are detailed in the following sections.
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Figure 4. Overview of the full analysis for the predictor pipeline development. Data curation: retrieval and selection of

peroxisomal protein sequences (see Sections 4.2). Feature extraction: conversion of protein sequences to standard encodings,

namely: one-hot encoding (1HOT), residue physical-chemical properties encoding (PROP), position specific scoring matrix

(PSSM), unified representation (UniRep), sequence-to-vector (SeqVec). Full Comparison: application of classification

algorithms (Section 4.6) and selection of the best combination(s) of sequence encodings and embeddings using step forward

feature selection (see Section 4.5).

4.2. Data Sets

Amino acid sequences for peroxisomal membrane and matrix proteins were retrieved
in 6 December 2019 from the UniprotKB/SwissProt database (www.uniprot.org) [35].

4.2.1. Retrieval of Peroxisomal Membrane Proteins

Peroxisomal membrane proteins were retrieved using the query ‘fragment:no loca-
tions:(location: “Peroxisome membrane [SL-0203]”) AND reviewed:yes’ with peroxisomal
membrane sub-cellular location (SL-0203) to select reviewed, non-fragmented membrane
protein sequences.

We obtained 327 non-fragmented protein sequences which were then clustered using
Cd-hit [36], with sequence identity of 40%. The representative ( i.e., the longest protein
sequence in the cluster) of each cluster was chosen resulting in 162 sequences. We used a
40% similarity threshold consistently with DeepMito [15].

We restricted further the selection only to those proteins with at least one associated
publication specific for the sub-cellular localization, obtaining 135 highly curated peroxi-
somal membrane protein sequences. Additionally, three sequences were removed from
the data set, since they were not available for the UniRep embedding. The final data set
contains 132 membrane proteins.

4.2.2. Retrieval of Peroxisomal Matrix Proteins

Reviewed, non-fragmented matrix peroxisomal protein sequences were obtained
with the query ‘fragment:no locations:(location:“Peroxisome matrix [SL-0202]”) AND
reviewed: yes’.

We obtained 60 entries that were reduced to 22 after clustering for similarity and
further reduced to 19 after selecting only those proteins with at least one publication
specific for the subcellular localisation.


www.uniprot.org
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Due to the low number of matrix proteins in comparison to the number of mem-
brane proteins (132), we performed another advanced search in Uniprot with query ‘frag-
ment:no locations:(location:“Peroxisome [SL-0204]”) NOT locations:(location:“Peroxisome
membrane [SL-0203]”) AND reviewed:yes’ selecting reviewed, non-fragmented protein
sequences, with peroxisomal location (SL-0204), and not peroxisomal membrane location
(SL-0203).

We obtained 721 non membrane protein sequences, 202 after clustering, which were
reduce to 22 after applying the same filtering procedure. There were 13 common entries be-
tween the two subsets; clustering using a 40% sequence similarity threshold gave 28 unique
peroxisomal matrix protein sequences.

4.2.3. Retrieval of Candidate Peroxisomal Proteins

Further peroxisomal protein candidates were retrieved from Uniprot (1 June 2020).
We looked for peroxisomal proteins (SL-0204 and GO:5777) with a non-specific sub-
peroxisomal location (SL-0203, SL-0202, GO:5778, GO:5782) and experimental evidence.
We then excluded the peroxisomal proteins also found in mitochondria (SL-0173, GO:5739)
and in the endoplasmic reticulum (SL-0095, GO:10168), obtaining 116 reviewed entries.

4.2.4. Data Sets for Sub-Mitochondrial Protein Classification

To assess the applicability of our prediction tool to the prediction of other sub-
organelles protein localisation we considered two well-curated data sets containing mito-
chondrial proteins.

SM424-18 data set: this data set was used to build the DeepMito predictor [15] and
contains 424 mitochondrial proteins collected using stringent conditions, in particular only
non-fragmented proteins with an experimentally determined subcellular localisation in
one of the four sub-mitochondrial compartments (outer membrane, inter-membrane space,
inner membrane and matrix). Clustering using Cd-hit [36], with a 40% sequence identity
threshold was used to select representative sequences. We refer the reader to the original
publication for more details [15]. SubMitoPred data set: this data set was used to build
the SubMitoPred predictor [32]. It contains 570 mitochondrial proteins collected using
stringent conditions, in particular only non-fragmented proteins with and experimentally
determined subcellular localisation in one of the four sub-mitochondrial compartments
(outer membrane, inter-membrane space, inner membrane and matrix). Clustering using
Cd-hit [36], with a 40% sequence identity threshold was used to select representative
sequences. We refer the reader to the original publication for more details [32].

4.3. Classic Protein Sequence Encoding Methods

We considered three of the most commonly used method for the encoding of the
amino acid protein sequences.

® Residue one-hot encoding. The one-hot encoding (1-HOT) [19] is the most used bi-
nary encoding method. A residue j is represented by a 1 x 20 vector containing 0 s except
in the j-th position; for instance alanine (A) is represented as 100,000,000,000,000,000,000.
A protein sequence constituted by L amino acid is thus represented by an L x 20 matrix.

® Residue physical-chemical properties encoding. Akinori et al. devised a way
to represent an amino-acid with ten factors [20] summarising different amino acid
physico-chemical properties. This encoding method, often abbreviated as PROP, is
the most commonly used physico-chemical encoding [19]. Any given residue j in
the protein sequence is represented by a 1 x 10 vector containing real number. Each
number summarise different amino-acid properties and it is an orthogonal property
obtained after multivariate statistical analysis applied to a starting set of 188 residue-
specific physical properties. A protein sequence constituted by L amino acid is thus
represented by an L x 10 matrix.

e The Position-specific scoring matrix (PSSM) [21,22] takes into account the evo-
lutionary information of a protein. This scoring matrix is at the basis of protein BLAST
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searches (BLAST and PSI-BLAST) [37] where residues are translated into substitution
scores. A residue j in the protein sequence is represented by a 1 x 20 vector containing
the 20 specific substitution scores. Amino acid substitution scores are given separately
for each position of the protein multiple sequence alignment (MSA) after running
PSI-BLAST [37] against the Uniref90 data set (release Oct 2019) for three iterations
and e-value threshold set to 0.001. We used a sigmoid function to map the values
extracted from the PSI-BLAST checkpoint file in the range [0-1], as in DeepMito [15].
Basically, PSSM captures the conservation pattern in the alignment and summarises
evolutionary information of the protein. In PSSM a protein sequence constituted by L
amino acid is thus represented by an L x 20 matrix.

4.4. Deep Learning Protein Sequence Embeddings

We considered two recently proposed methods for the embedding of protein sequences
based on deep-learning approaches:

1.  Unified Representation. The Unified Representation (UniRep) [12] is based on a
recurrent neural network architecture (1900-hidden unite) able to capture chemical,
biological and evolutionary information encoded in the protein sequence starting from
~24 million UniRef50 sequences [38]. Technically, the protein sequence is modelled
by using a hidden state vector, which is recursively updated based on the previous
hidden state vector. This means that the method learns scanning a sequence of amino
acids, predicting the next one based on the sequence it has seen so far. Using UniRep
a protein sequence can be represented by an embedding of length 64, 256, or 1900
units depending on the neural network architecture used. In this study, we used the
1900 units long (average final hidden array). For a detailed explanation on how to
retrieve the UniRep embedding, we refer the reader to the specific GitHub repository:
https:/ /github.com/churchlab/UniRep (accessed on 6 June 2021).

2. Sequence-to-Vector embedding. The Sequence-to-Vector embedding (SeqVec) [13]
embeds biophysical information of a protein sequence taking a natural language
processing approach considering amino acids as words and proteins as sentences.
SeqVec is obtained by training ELMo [39], a deep contextualised word representation
that models both complex characteristics of word use (e.g., syntax and semantics), and
how these uses vary across linguistic contexts, which consists of a 2-layer bidirectional
LSTM [40] backbone pre-trained on a large text corpus, in this case, UniRef50 [38]. The
SeqVec embedding can be obtained by training ELMo at the per-residue (word-level)
and per-protein (sentence-level). With the per-residue level it is possible to obtain
a protein sequence embedding that can be use to predict the secondary structure or
intrinsically disordered region; with the per-protein level embedding it is possible to
predict subcellular localisation and to distinguish membrane-bound vs. water-soluble
proteins [13]. Here we use the per-protein level representation, where the protein
sequence is represented by an embedding of length 1024. For a detailed explanation
on how to retrieve the SeqVec embedding, we refer the reader to the specific GitHub
repository: https://github.com/mheinzinger/SeqVec (accessed on 6 June 2021).

4.5. Step Forward Feature Selection

Step Forward Feature Selection was used to select the best combination of features
(predictors) that is, protein encodings or embeddings to be used as input for classification
algorithms [41].

It is a wrapper method that evaluates subsets of variables, in our case, combinations of
protein encodings/embeddings. It starts with the evaluation of each individual encoding,
and selects that which results in the best performing selected algorithm model. Next, it
proceeds by iteratively adding one encoding/embedding to the current best performing
features and evaluating the performance of the classification. The procedure is halted when
performance worsens and the best combination of embeddings/encodings is retained. A
schematic representation of this approach given in Figure 4 (Step 3: Full Comparison).
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4.6. Classification Algorithms

The determination of the sub-localisation of peroxisomal (membrane vs matrix) protein
is easily translated into a two-group classification problem. For this task we considered
four widely used machine learning methods (hyperparameters optimisation details in
Table 4).

*  Support Vector Machines (§VM) is an algorithm for two-group classification which
aims to find the maximal margin hyperplane separating the points in the feature
space [42,43].

¢  Random Forest [44,45] is an ensemble learning method that, in the case of a classifica-
tion task construct a multitude of decision trees and output the mode of the classes of
the individual trees.

*  DPartial least squares discriminant analysis (PLS-DA) is a partial least squares regres-
sion [46,47] where the response vector Y contains dummy variables indicating class
labels (0-1 in this case). Sample predicted with Y > 0.5 are classified as belonging
to class 1 and to class 0 other wise. PLS finds combinations of the original variable
maximizing the covariance between the predictor variable and response Y by project-
ing the data in a k-dimensional space with k possibly much smaller than the original
number of variables.

¢ Logistic Regression (LR). We used a penalised implementation of multivariable logistic
regression [48].

Table 4. Hyperparameters for the grid searches

Hyperparameters
SVM e Cilogspace(—2,10,13)
e gamma:logspace(—9,3,13)
¢ kernel:['linear’,’poly’, tbf’,’sigmoid’]
e n_estimators:[15,25,50,75,100,200,300]
e criterion:['gini’,’entropy’]
*  max_depth:[2,5,10,None]
L]
L]

RF

min_samples_split:[2,4,8,10]
max_features:['sqtr’,’auto’,’log2’]

PLS-DA * n_components:[2,5,10,15,20,25,30]

LR e penalty:[11’,12']
e  solver:[‘liblinear’,’saga’]
e C:logspace(—3,9,13)

4.7. Model Calibration and Validation

We used double cross validation (DCV) [49,50] for (i) optimising the hyper-parameters
of the different classification algorithm used (i.e., for model calibration) and (i7) for an
unbiased estimation of prediction errors when the model is applied to new cases (that are
within the population of the data used). This strategy is particularly well suited for small
data sets.

The DCV strategy consists of two nested cross-validation loops. In the outer loop data
is first split in k folds. One fold is used as Validation set while the remaining k — 1 folds are
used as calibration set. The inner loop is applied to the Calibration set which is again split in
a test and training set using k-fold split. In our work we used 5 folds for both inner and outer
loop. The inner loop is used to optimise the hyperparameters of the different classification
algorithms through a (hyper)grid search: for each set of hyperparameters, the average
classification score is computed across the folds. The hyperparameters corresponding to
the best classification score are then used to fit a classification model whose quality is
assessed on the Validation set obtaining unbiased model evaluation since the validation
data has not been used to train the classification model.
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The step forward feature selection procedure described in Section 4.5 was included
in the calibration loop so that model calibration involved also the selection of the best
combination (with respect with model predictive ability) of protein sequence encodings
and embeddings.

Given the unbalance of the two class of proteins, different weights were applied to the
two class. Class weights were considered to be metaparameters and optimised in the inner
calibration loop.

4.8. Metrics for Model Classification Accuracy

We used several metrics to quantify the quality of the classification models, namely:
accuracy (ACC), F1 score [51], balanced accuracy (BACC) [52], Matthews correlation
coefficient (MCC) [53]. Formulas are defined as follows:

Accuracy (ACC) that is, the classification error, defined as

TP+ TN
ACC = TP+ TN+ FP+FN )

where: TP is the number of true positives, FP is the number of false positives; TN and FN
are the number of true and false negatives, respectively.
The F; score [51]:

PPV x TPR
B =2 bpv y PR’ @
where PPV is the as positive predicted value (or precision)
TP
PPV = oo =7/ ®)
and TPR is the true positive rate (recall or sensitivity):
TP
TPR= Tp N @

The F; score is the harmonic mean of recall and precision and varies between 0, if the
precision or the recall is 0, and 1 indicating perfect precision and recall.
The balanced accuracy BACC [52]:

TPR+TNR

BACC = — 5)
TN
TNR = TN + FP ©)

is the true negative rate or specificity. The BACC is an appropriate measure when data is
unbalanced and there is no preference for the accurate prediction of one of the two classes.
The Matthews correlation coefficient (MCC) [53]:

MCC — TP x TN — FP x FN ’ )
\/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

MCC is the correlation coefficient between the true ad predicted class: it is bound between
—1 (total disagreement between prediction and observation) and +1 (perfect prediction); 0
indicates no better than random prediction. The MCC is appropriate also in presence of
class unbalance [54].

4.9. Prediction of Trans-Membrane Proteins
We used TMHMM (Trans-Membrane Hidden Markov Model) for the prediction of

trans-membrane proteins [55,56] available at: http://www.cbs.dtu.dk/services/ TMHMM/
(accessed on 17 May 2020)
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TMHMM returns the most probable location and orientation of trans-membrane
helices in the protein sequence, summarised in several output parameters: ExpAA, the
expected number of amino acids in transmembrane helices. If this number is larger than 18
it is very likely to be a transmembrane protein; First60, the expected number of amino acids
in transmembrane helices in the first 60 amino acids of the protein; PredHel, the number
of predicted transmembrane helices. We refer the reader to the original publications for
more details.

We used TMHMM to predict the localisation of peroxisomal protein with unknown
sub-localisation (see data sets description in Sections 4.2.3)

4.10. Software

For all classification algorithms we used the implementation available in the scikit-
learn python library (version 0.22.1) [57]. We obtained the PLS-DA algorithm by adapt-
ing the PLS regression algorithm to perform a regression with a dummy variable. All
data sets and codes are available at https://github.com/MarcoAnteghini and at www.
systemsbiology.nl.
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