Cyclodextrin Nanosponges Inclusion Compounds Associated with Gold Nanoparticles for Potential Application in the Photothermal Release of Melphalan and Cytoxan
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of the ICs
2.1.1. 1H-NMR Spectra of the ICs
2.1.2. TGA of the ICs
2.1.3. XRPD of the ICs
2.1.4. SEM Analyses of the ICs
2.1.5. UV–Vis of MPH and CYT after Contact with NSs
2.2. Characterization of ICs Associated with the AuNPs
2.2.1. SEM and EDS Analyses of the ICs Associated with the AuNPs
2.2.2. TEM Analyses of the ICs Associated with the AuNPs
2.2.3. UV–Vis Spectra of the ICs Associated with the AuNPs
2.2.4. DLS and Z-Potential of the ICs Associated with the AuNPs
2.3. Guest Photothermal Release by Laser Irradiation
2.3.1. Drug Loading and Encapsulation Efficiencies
2.3.2. Laser Irradiation Assays
3. Materials and Methods
3.1. Materials
3.2. Synthesis of AuNPs
3.3. Synthesis of the NSs
3.4. Preparation of NS-MPH and NS-CYT ICs
3.5. Association of AuNPs onto the ICs
3.6. Proton Nuclear Magnetic Resonance (1H-NMR) Spectroscopy
3.7. X-ray Powder Diffraction (XRPD)
3.8. Thermogravimetric Analysis (TGA)
3.9. Scanning Electron Microscopy (SEM)
3.10. Ultraviolet and Visible Absorption (UV–Vis) Spectroscopy
3.11. Transmission Electron Microscopy (TEM)
3.12. Determination of Drug Content on NSs
3.13. DLS and Z-Potential
3.14. Laser Irradiation Assays
3.15. Temperature Control of the Samples after Irradiation
3.16. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DMSO | Dimethyl sulfoxide |
TMS | Tetramethylsilane |
NSs | Nanosponges |
DPC | Diphenylcarbonate |
β-CD | Beta cyclodextrin |
IC | Inclusion compound |
MPH | Melphalan |
CYT | Cytoxan |
AuNPs | Gold nanoparticles |
1H-NMR | Proton nuclear magnetic resonance |
TGA | Thermogravimetric analysis |
DLS | Dynamic light scattering |
XRPD | X-ray powder diffraction |
SEM | Scanning electron microscopy |
TEM | Transmission electron microscopy |
EDS | Energy dispersive spectroscopy |
SAED | Selected area electron diffraction |
PDI | Polydispersity index |
References
- Osmani, R.A.M.; Kulkarni, P.K.; Gowda, V.; Hani, U.; Gupta, V.K.; Prerana, M.; Saha, C. Cyclodextrin-based nanosponges in drug delivery and cancer therapeutics. In Applications of Nanocomposite Materials in Drug Delivery; Woodhead Publishing: Cambridge, UK, 2018; pp. 97–147. [Google Scholar] [CrossRef]
- Mphahlele, M.J.; Parbhoo, N. Synthesis, Evaluation of Cytotoxicity and Molecular Docking Studies of the 7-Acetamido Substituted 2-Aryl-5-bromo-3-trifluoroacetylindoles as Potential Inhibitors of Tubulin Polymerization. Pharmaceuticals 2018, 11, 59. [Google Scholar] [CrossRef] [Green Version]
- Ali, I. Nano Anti-Cancer Drugs: Pros and Cons and Future Perspectives. Curr. Cancer Drug Targets 2011, 11, 131–134. [Google Scholar] [CrossRef]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef] [PubMed]
- Mohammed-Saeid, W.; Karoyo, A.H.; Verrall, R.E.; Wilson, L.D.; Badea, I. Inclusion Complexes of Melphalan with Gemini-Conjugated β-Cyclodextrin: Physicochemical Properties and Chemotherapeutic Efficacy in In-Vitro Tumor Models. Pharmaceutics 2019, 11, 427. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, M.; Pirouzi, M.; Saberi, M.R.; Ghaderabad, M.; Chamani, J. Investigation on the Interaction between Cyclophosphamide and Lysozyme in the Presence of Three Different Kind of Cyclodextrins: Determination of the Binding Mechanism by Spectroscopic and Molecular Modeling Techniques. Molecules 2013, 18, 789–813. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, A.; Bringhen, S.; Petrucci, M.T.; Musto, P.; Rossini, F.; Nunzi, M.; Lauta, V.M.; Bergonzi, C.; Barbui, A.; Caravita, T.; et al. Intermediate-dose melphalan improves survival of myeloma patients aged 50 to 70: Results of a randomized controlled trial. Blood 2004, 104, 3052–3057. [Google Scholar] [CrossRef]
- Mills, K.A.; Chess-Williams, R.; McDermott, C. Novel insights into the mechanism of cyclophosphamide-induced bladder toxicity: Chloroacetaldehyde’s contribution to urothelial dysfunction in vitro. Arch. Toxicol. 2019, 93, 3291–3303. [Google Scholar] [CrossRef]
- Ralhan, R.; Kaur, J. Alkylating agents and cancer therapy. Expert Opin. Ther. Pat. 2007, 17, 1061–1075. [Google Scholar] [CrossRef]
- Trotta, F.; Cavalli, R. Characterization and Applications of New Hyper-Cross-Linked Cyclodextrins. Compos. Interfaces 2009, 16, 39–48. [Google Scholar] [CrossRef]
- Olteanu, A.A.; Aramă, C.C.; Bleotu, C.; Lupuleasa, D.; Monciu, C.M. Investigation of cyclodextrin based nanosponges complexes with angiotensin I converting enzyme inhibitors (Enalapril, captopril, cilazapril). Farmacia 2015, 63, 492–503. [Google Scholar]
- Tejashri, G.; Amrita, B.; Darshana, J. Cyclodextrin based nanosponges for pharmaceutical use: A review. Acta Pharm. 2013, 63, 335–358. [Google Scholar] [CrossRef]
- Danaei, M.; Dehghankhold, M.; Ataei, S.; Davarani, F.H.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of Particle Size and Polydispersity Index on the Clinical Applications of Lipidic Nanocarrier Systems. Pharmaceutics 2018, 10, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, V.; Xu, J.; Wu, L.; Liu, B.; Guo, T.; Guo, Z.; York, P.; Gref, R.; Zhang, J. Ordered and disordered cyclodextrin nanosponges with diverse physicochemical properties. RSC Adv. 2017, 7, 23759–23764. [Google Scholar] [CrossRef] [Green Version]
- Krabicová, I.; Appleton, S.L.; Tannous, M.; Hoti, G.; Caldera, F.; Pedrazzo, A.R.; Cecone, C.; Cavalli, R.; Trotta, F. History of Cyclodextrin Nanosponges. Polymers 2020, 12, 1122. [Google Scholar] [CrossRef]
- Moin, A.; Roohi, N.K.F.; Rizvi, S.M.D.; Ashraf, S.A.; Siddiqui, A.J.; Patel, M.; Ahmed, S.M.; Gowda, D.V.; Adnan, M. Design and formulation of polymeric nanosponge tablets with enhanced solubility for combination therapy. RSC Adv. 2020, 10, 34869–34884. [Google Scholar] [CrossRef]
- Yakavets, I.; Guereschi, C.; Lamy, L.; Kravchenko, I.; Lassalle, H.-P.; Zorin, V.; Bezdetnaya, L. Cyclodextrin nanosponge as a temoporfin nanocarrier: Balancing between accumulation and penetration in 3D tumor spheroids. Eur. J. Pharm. Biopharm. 2020, 154, 33–42. [Google Scholar] [CrossRef]
- Adeoye, O.; Bártolo, I.; Conceição, J.; da Silva, A.B.; Duarte, N.; Francisco, A.P.; Taveira, N.; Cabral-Marques, H. Pyromellitic dianhydride crosslinked soluble cyclodextrin polymers: Synthesis, lopinavir release from sub-micron sized particles and anti-HIV-1 activity. Int. J. Pharm. 2020, 583, 119356. [Google Scholar] [CrossRef]
- Shringirishi, M.; Mahor, A.; Gupta, R.; Prajapati, S.K.; Bansal, K.; Kesharwani, P. Fabrication and characterization of nifedipine loaded β-cyclodextrin nanosponges: An in vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol. 2017, 41, 344–350. [Google Scholar] [CrossRef]
- Omar, S.M.; Ibrahim, F.; Ismail, A. Formulation and evaluation of cyclodextrin-based nanosponges of griseofulvin as pediatric oral liquid dosage form for enhancing bioavailability and masking bitter taste. Saudi Pharm. J. 2020, 28, 349–361. [Google Scholar] [CrossRef]
- Salazar, S.; Yutronic, N.; Jara, P. Magnetic β-Cyclodextrin Nanosponges for Potential Application in the Removal of the Neonicotinoid Dinotefuran from Wastewater. Int. J. Mol. Sci. 2020, 21, 4079. [Google Scholar] [CrossRef]
- Li, L.; Liu, H.; Li, W.; Liu, K.; Tang, T.; Liu, J.; Jiang, W. One-step synthesis of an environment-friendly cyclodextrin-based nanosponge and its applications for the removal of dyestuff from aqueous solutions. Res. Chem. Intermed. 2020, 46, 1715–1734. [Google Scholar] [CrossRef]
- Trotta, F.; Zanetti, M.; Cavalli, R. Cyclodextrin-based nanosponges as drug carriers. Beilstein J. Org. Chem. 2012, 8, 2091–2099. [Google Scholar] [CrossRef]
- Cavalli, R.; Akhter, A.K.; Bisazza, A.; Giustetto, P.; Trotta, F.; Vavia, P. Nanosponge formulations as oxygen delivery systems. Int. J. Pharm. 2010, 402, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Osmani, R.A.; Kulkarni, P.; Manjunatha, S.; Vaghela, R.; Bhosale, R. Cyclodextrin nanosponge-based systems in drug delivery and nanotherapeutics. Org. Mater. Smart Nanocarriers Drug Deliv. 2018, 659–717. [Google Scholar] [CrossRef]
- Argenziano, M.; Foglietta, F.; Canaparo, R.; Spagnolo, R.; Della Pepa, C.; Caldera, F.; Trotta, F.; Serpe, L.; Cavalli, R. Biological Effect Evaluation of Glutathione-Responsive Cyclodextrin-Based Nanosponges: 2D and 3D Studies. Molecules 2020, 25, 2775. [Google Scholar] [CrossRef]
- Liu, X.; Li, W.; Xuan, G. Preparation and Characterization of β-Cyclodextrin Nanosponges and Study on Enhancing the Solubility of Insoluble Nicosulfuron. IOP Conf. Ser. Mater. Sci. Eng. 2020, 774, 012108. [Google Scholar] [CrossRef]
- Dhakar, N.K.; Matencio, A.; Caldera, F.; Argenziano, M.; Cavalli, R.; Dianzani, C.; Zanetti, M.; López-Nicolás, J.M.; Trotta, F. Comparative Evaluation of Solubility, Cytotoxicity and Photostability Studies of Resveratrol and Oxyresveratrol Loaded Nanosponges. Pharmaceutics 2019, 11, 545. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Rao, R. Enhancing efficacy and safety of azelaic acid via encapsulation in cyclodextrin nanosponges: Development, characterization and evaluation. Polym. Bull. 2020, 1–28. [Google Scholar] [CrossRef]
- Huang, H.-C.; Rege, K.; Heys, J.J. Spatiotemporal Temperature Distribution and Cancer Cell Death in Response to Extracellular Hyperthermia Induced by Gold Nanorods. ACS Nano 2010, 4, 2892–2900. [Google Scholar] [CrossRef] [Green Version]
- Lim, Z.-Z.J.; Li, J.-E.J.; Ng, C.-T.; Yung, L.-Y.L.; Bay, B.-H. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin. 2011, 32, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, P.M.; Vig, K.; Dennis, V.A.; Singh, S.R. Functionalized Gold Nanoparticles and Their Biomedical Applications. Nanomaterials 2011, 1, 31–63. [Google Scholar] [CrossRef] [PubMed]
- Romero, I.; Aizpurua, J.; Bryant, G.W.; de Abajo, F.J.G. Plasmons in nearly touching metallic nanoparticles: Singular response in the limit of touching dimers. Opt. Express 2006, 14, 9988–9999. [Google Scholar] [CrossRef]
- Robinson, I.; Tung, L.D.; Maenosono, S.; Wälti, C.; Thanh, N.T.K. Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA. Nanoscale 2010, 2, 2624–2630. [Google Scholar] [CrossRef]
- Bolaños, K.; Celis, F.; Garrido, C.; Campos, M.; Guzmán, F.; Kogan, M.J.; Araya, E. Adsorption of bovine serum albumin on gold nanoprisms: Interaction and effect of NIR irradiation on protein corona. J. Mater. Chem. B 2020, 8, 8644–8657. [Google Scholar] [CrossRef]
- Sierpe, R.; Lang, E.; Jara, P.; Guerrero, A.R.; Chornik, B.; Kogan, M.J.; Yutronic, N. Gold Nanoparticles Interacting with β-Cyclodextrin–Phenylethylamine Inclusion Complex: A Ternary System for Photothermal Drug Release. ACS Appl. Mater. Interfaces 2015, 7, 15177–15188. [Google Scholar] [CrossRef]
- Silva, N.; Muñoz, C.; Diaz, J.; Samitier, J.; Yutronic, N.; Kogan, M.J.; Jara, P. In Situ Visualization of the Local Photothermal Effect Produced on α-Cyclodextrin Inclusion Compound Associated with Gold Nanoparticles. Nanoscale Res. Lett. 2016, 11, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Salazar, S.; Guerra, D.; Yutronic, N.; Jara, P. Removal of Aromatic Chlorinated Pesticides from Aqueous Solution Using β-Cyclodextrin Polymers Decorated with Fe3O4 Nanoparticles. Polymers 2018, 10, 1038. [Google Scholar] [CrossRef] [Green Version]
- Mele, A.; Castiglione, F.; Malpezzi, L.; Ganazzoli, F.; Raffaini, G.; Trotta, F.; Rossi, B.; Fontana, A.; Giunchi, G. HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 2011, 69, 403–409. [Google Scholar] [CrossRef]
- Trotta, F.; Caldera, F.; Cavalli, R.; Soster, M.; Riedo, C.; Biasizzo, M.; Barretta, G.U.; Balzano, F.; Brunella, V. Molecularly imprinted cyclodextrin nanosponges for the controlled delivery of L-DOPA: Perspectives for the treatment of Parkinson’s disease. Expert Opin. Drug Deliv. 2016, 13, 1671–1680. [Google Scholar] [CrossRef] [Green Version]
- Garrido, B.; González, S.; Hermosilla, J.; Millao, S.; Quilaqueo, M.; Guineo, J.; Acevedo, F.; Pesenti, H.; Rolleri, A.; Shene, C.; et al. Carbonate-β-Cyclodextrin-Based Nanosponge as a Nanoencapsulation System for Piperine: Physicochemical Characterization. J. Soil Sci. Plant. Nutr. 2019, 19, 620–630. [Google Scholar] [CrossRef]
- Anandam, S.; Selvamuthukumar, S. Optimization of microwave-assisted synthesis of cyclodextrin nanosponges using response surface methodology. J. Porous Mater. 2014, 21, 1015–1023. [Google Scholar] [CrossRef]
- Sambasevam, K.P.; Mohamad, S.; Sarih, N.M.; Ismail, N.A.; Sambasevam, K.P.; Mohamad, S.; Sarih, N.M.; Ismail, N.A. Synthesis and Characterization of the Inclusion Complex of β-cyclodextrin and Azomethine. Int. J. Mol. Sci. 2013, 14, 3671–3682. [Google Scholar] [CrossRef]
- Swaminathan, S.; Vavia, P.R.; Trotta, F.; Cavalli, R.; Tumbiolo, S.; Bertinetti, L.; Coluccia, S. Structural evidence of differential forms of nanosponges of beta-cyclodextrin and its effect on solubilization of a model drug. J. Incl. Phenom. Macrocycl. Chem. 2013, 76, 201–211. [Google Scholar] [CrossRef]
- Swaminathan, S.; Pastero, L.; Serpe, L.; Trotta, F.; Vavia, P.; Aquilano, D.; Trotta, M.; Zara, G.; Cavalli, R. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 2010, 74, 193–201. [Google Scholar] [CrossRef]
- Shende, P.K.; Trotta, F.; Gaud, R.S.; Deshmukh, K.; Cavalli, R.; Biasizzo, M. Influence of different techniques on formulation and comparative characterization of inclusion complexes of ASA with β-cyclodextrin and inclusion complexes of ASA with PMDA cross-linked β-cyclodextrin nanosponges. J. Incl. Phenom. Macrocycl. Chem. 2012, 74, 447–454. [Google Scholar] [CrossRef]
- Ansari, K.A.; Vavia, P.R.; Trotta, F.; Cavalli, R. Cyclodextrin-Based Nanosponges for Delivery of Resveratrol: In Vitro Characterisation, Stability, Cytotoxicity and Permeation Study. AAPS PharmSciTech 2011, 12, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Zainuddin, R.; Zaheer, Z.; Sangshetti, J.; Momin, M. Enhancement of oral bioavailability of anti-HIV drug rilpivirine HCl through nanosponge formulation. Drug Dev. Ind. Pharm. 2017, 43, 2076–2084. [Google Scholar] [CrossRef]
- Mamba, B.B.; Krause, R.W.; Malefetse, T.J.; Gericke, G.; Sithole, S.P. Cyclodextrin nanosponges in the removal of organic matter for ultrapure water in power generation. J. Water Supply Res. Technol. 2009, 58, 299–304. [Google Scholar] [CrossRef]
- Lu, Q.; Yao, K.; Xi, D.; Liu, Z.; Luo, X.; Ning, Q. Comparative study on the selected area electron diffraction pattern of Fe oxide/Au core-shell structured nanoparticles. J. Mater. Sci. Technol. 2007, 23, 189–192. [Google Scholar]
- Sundararajan, M.; A Thomas, P.; Venkadeswaran, K.; Jeganathan, K.; Geraldine, P. Synthesis and Characterization of Chrysin-Loaded β -Cyclodextrin-Based Nanosponges to Enhance In Vitro Solubility, Photostability, Drug Release, Antioxidant Effects and Antitumorous Efficacy. J. Nanosci. Nanotechnol. 2017, 17, 8742–8751. [Google Scholar] [CrossRef]
- Barrientos, L.; Lang, E.; Zapata-Torres, G.; Celis-Barros, C.; Orellana, C.; Jara, P.; Yutronic, N. Structural elucidation of supramolecular alpha-cyclodextrin dimer/aliphatic monofunctional molecules complexes. J. Mol. Model. 2013, 19, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Trotta, F.; Rao, R. Encapsulation of Babchi Oil in Cyclodextrin-Based Nanosponges: Physicochemical Characterization, Photodegradation, and In Vitro Cytotoxicity Studies. Pharmaceutics 2018, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Hayiyana, Z.; Choonara, Y.; Makgotloe, A.; du Toit, C.; Kumar, P.; Pillay, V. Ester-Based Hydrophilic Cyclodextrin Nanosponges for Topical Ocular Drug Delivery. Curr. Pharm. Des. 2017, 22, 6988–6997. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hiller, J. Synthesis of Gold Nanoparticles Turkevich method. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. Turkevich Method for Gold Nanoparticle Synthesis Revisited. J. Phys. Chem. B 2006, 110, 15700–15707. [Google Scholar] [CrossRef]
- Gharakhloo, M.; Sadjadi, S.; Rezaeetabar, M.; Askari, F.; Rahimi, A. Cyclodextrin-Based Nanosponges for Improving Solubility and Sustainable Release of Curcumin. ChemistrySelect 2020, 5, 1734–1738. [Google Scholar] [CrossRef]
- Silva, N.; Moris, S.; Díaz, M.; Yutronic, N.; Lang, E.; Chornik, B.; Kogan, M.J.; Jara, P. Evidence of the Disassembly of α-Cyclodextrin-octylamine Inclusion Compounds Conjugated to Gold Nanoparticles via Thermal and Photothermal Effects. Molecules 2016, 21, 1444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, N.; Riveros, A.; Yutronic, N.; Lang, E.; Chornik, B.; Guerrero, S.; Samitier, J.; Jara, P.; Kogan, M.J. Photothermally Controlled Methotrexate Release System Using β-Cyclodextrin and Gold Nanoparticles. Nanomaterials 2018, 8, 985. [Google Scholar] [CrossRef] [Green Version]
System | H1 | H2 | H3 | H4 | H5 | H6 | OH2 | OH3 | OH6 |
---|---|---|---|---|---|---|---|---|---|
NS | 4.827 | 3.300 | 3.627 | 3.361 | 3.579 | 3.655 | 5.705 | 5.673 | 4.440 |
NS-MPH | 4.825 | 3.298 | 3.618 | 3.358 | 3.573 | 3.652 | 5.718 | 5.680 | 4.445 |
Δδ | 0.002 | 0.002 | 0.009 | 0.003 | 0.006 | 0.003 | −0.013 | −0.007 | −0.005 |
System | H’1 | H’2 | H’3 | H’4 | H’5 | H’6 | H’7 |
---|---|---|---|---|---|---|---|
MPH | 3.738 | 3.447 | 7.135 | 6.798 | 2.835 | 3.117 | 11.035 |
NS-MPH | 3.735 | 3.444 | 7.130 | 6.793 | 2.830 | 3.115 | 11.029 |
Δδ | 0.003 | 0.003 | 0.005 | 0.005 | 0.005 | 0.002 | 0.006 |
System | H1 | H2 | H3 | H4 | H5 | H6 | OH2 | OH3 | OH6 |
---|---|---|---|---|---|---|---|---|---|
NS | 4.827 | 3.300 | 3.627 | 3.361 | 3.579 | 3.655 | 5.705 | 5.673 | 4.440 |
NS-CYT | 4.822 | 3.297 | 3.621 | 3.359 | 3.572 | 3.652 | 5.712 | 5.678 | 4.443 |
Δδ | 0.005 | 0.003 | 0.006 | 0.002 | 0.007 | 0.003 | −0.007 | −0.005 | −0.003 |
System | H’1 | H’2 | H’3 | H’4 | H’5 | H’6 |
---|---|---|---|---|---|---|
CYT | 3.380 | 3.735 | 4.228 | 1.728 | 3.465 | 3.319 |
NS-CYT | 3.378 | 3.733 | 4.225 | 1.725 | 3.460 | 3.316 |
Δδ | 0.002 | 0.002 | 0.003 | 0.003 | 0.005 | 0.003 |
System | Decomposition Temperature (°C) | Weight Loss (%) |
---|---|---|
NS | 345.7 | 65.1 |
MPH | 249.5 | 25.1 |
NS-MPH | 233.9 | 39.7 |
NS-MPH | 348.1 | 48.3 |
CYT | 271.5 | 27.1 |
NS-CYT | 235.1 | 41.1 |
NS-CYT | 350.7 | 49.9 |
System | DLS (nm) | Z-Potential (mV) | PDI |
---|---|---|---|
AuNPs | 19 ± 2 | −46 ± 0.4 | 0.21 |
AuNP-NS-MPH | 633 ± 43 | −31 ± 0.5 | 0.47 |
AuNP-NS-CYT | 618 ± 38 | −35 ± 0.5 | 0.45 |
System | Drug Loading (%) | Encapsulation Efficiency (%) |
---|---|---|
NS (1:4)–MPH | 83.1 ± 2.25 | 90.3 ± 0.25 |
NS (1:4)–CYT | 85.2 ± 2.31 | 93.7 ± 0.22 |
NS (1:8)–MPH | 63.1 ± 2.13 | 75.3 ± 0.15 |
NS (1:8)–CYT | 67.2 ± 2.08 | 77.1 ± 0.35 |
Protons | β-CD | NSs 1:4 | NSs 1:8 | ∫ (β-CD) | ∫ (NSs 1:4) | ∫ (NSs 1:8) | Δ∫ (NSs 1:4) | Δ∫ (NSs 1:8) |
---|---|---|---|---|---|---|---|---|
OH2 | 5.721 | 5.705 | 5.701 | 7.03 | 6.33 | 5.67 | 0.7 | 1.36 |
OH3 | 5.670 | 5.673 | 5.670 | 7.05 | 6.22 | 5.40 | 0.83 | 1.65 |
OH6 | 4.453 | 4.440 | 4.437 | 7.15 | 6.18 | 5.33 | 0.97 | 1.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salazar, S.; Yutronic, N.; Kogan, M.J.; Jara, P. Cyclodextrin Nanosponges Inclusion Compounds Associated with Gold Nanoparticles for Potential Application in the Photothermal Release of Melphalan and Cytoxan. Int. J. Mol. Sci. 2021, 22, 6446. https://doi.org/10.3390/ijms22126446
Salazar S, Yutronic N, Kogan MJ, Jara P. Cyclodextrin Nanosponges Inclusion Compounds Associated with Gold Nanoparticles for Potential Application in the Photothermal Release of Melphalan and Cytoxan. International Journal of Molecular Sciences. 2021; 22(12):6446. https://doi.org/10.3390/ijms22126446
Chicago/Turabian StyleSalazar, Sebastián, Nicolás Yutronic, Marcelo J. Kogan, and Paul Jara. 2021. "Cyclodextrin Nanosponges Inclusion Compounds Associated with Gold Nanoparticles for Potential Application in the Photothermal Release of Melphalan and Cytoxan" International Journal of Molecular Sciences 22, no. 12: 6446. https://doi.org/10.3390/ijms22126446
APA StyleSalazar, S., Yutronic, N., Kogan, M. J., & Jara, P. (2021). Cyclodextrin Nanosponges Inclusion Compounds Associated with Gold Nanoparticles for Potential Application in the Photothermal Release of Melphalan and Cytoxan. International Journal of Molecular Sciences, 22(12), 6446. https://doi.org/10.3390/ijms22126446