Retinal Stem Cell ‘Retirement Plans’: Growth, Regulation and Species Adaptations in the Retinal Ciliary Marginal Zone
Abstract
:1. Introduction
2. Multi-Species Comparison of an Identifiable CMZ or ‘CMZ-Like’ Region
3. Distinct Cell Types within the CMZ Niche and Their Proliferative and Multilineage Potential
4. CMZ RSCs as a Source of Neural Retina and Retinal Pigmented Epithelial Cells?
5. Maintaining the CMZ Cells through Transcriptional Regulation
6. Microenvironment of the Niche Confines Proliferation to the CMZ
7. Dystrophic Eye Growth in the Post-embryonic Retina and its Relationship to the CMZ
8. The CMZ and Its Potential to Prevent Retinal Disease
9. Conclusions and Future Perspectives
Myopia | ||
---|---|---|
Gene | Link to Myopia/Hyperopia | Association with the CMZ or RPC Activity |
Signalling Molecule | ||
Shh |
| |
Glucagon | ||
IGF-1 |
| |
Wnt | ||
Mutated Gene | ||
Lrp2 |
|
|
ZNF644 |
| |
Hyperopia | ||
Signalling Molecule | ||
Shh |
|
|
Wnt |
| |
Mutated Gene | ||
MRFP |
| |
Prss56 |
|
Author Contributions
Funding
Conflicts of Interest
Abbreviations
CMZ | Ciliary/circumferential marginal zone |
NR | Neural retina |
RPE | Retinal pigmented epithelium |
CE | Ciliary epithelium |
CB | Ciliary body |
RPC | Retinal progenitor cells |
RSCs | Retinal stem cells |
PCNA | Proliferating cell nuclear antigen |
RCJ | Retinociliary junction |
SVZ | Subventricular zone |
SGZ | Subgranular zone |
ArCoSs | Arched continuous stripes |
INL | Inner nuclear layer |
ONL | Outer nuclear layer |
HDACi | Histone deacetylase inhibitors |
BDNF | brain derived neurotropic factor |
Dnmt1 | DNA methyltransferase 1 |
IGF-1 | Insulin-like growth factor-1 |
Igf1r | IGF1 receptor |
Shh | Sonic hedgehog |
Ptch2 | Patched2 |
Rx/rax | Retina and Anterior Neural Fold Homeobox |
Chx10/Vsx2 | Ceh-10 Homeodomain Containing Homolog/Visual System Homeobox 2 |
Pax6 | Paired Box 6 |
Sox2 | (Sex determining region-Y)-box 2 |
pH3 | phospho-histone H3 |
Sox9 | SRY-Box Transcription Factor 9 |
Msx1 | Msh Homeobox 1 |
Zic2 | Zic Family Member 2 |
CRALBP | Cellular retinaldehyde- binding protein |
GFAP | Glial fibrillary acidic protein |
dmbx1a | Diencephalon/mesencephalon homeobox 1a |
Ezh2 | Enhancer Of Zeste 2 |
PRC2 | Polycomb repressive complex 2 |
Gli1/3 | GLI Family Zinc Finger 1/3 |
Her9 | Hairy-related 9 |
Six3/6 | SIX homeobox 3/6 |
GLP1 | Glucagon-like peptide-1 |
Znf644 | Zinc finger protein 644 |
TNFα | Tumor necrosis factor alpha |
BrdU | Bromodeoxyuridine |
EdU | Ethynyl Deoxyuridine |
References
- Miesfeld, J.B.; Brown, N.L. Eye organogenesis: A hierarchical view of ocular development. Curr. Top. Dev. Biol. 2019, 132, 351–393. [Google Scholar] [CrossRef]
- Agathocleous, M.; Harris, W.A. From progenitors to differentiated cells in the vertebrate retina. Annu. Rev. Cell Dev. Biol. 2009, 25, 45–69. [Google Scholar] [CrossRef]
- Kuhrt, H.; Gryga, M.; Wolburg, H.; Joffe, B.; Grosche, J.; Reichenbach, A.; Noori, H.R. Postnatal mammalian retinal development: Quantitative data and general rules. Prog. Retin. Eye Res. 2012, 31, 605–621. [Google Scholar] [CrossRef]
- Van Cruchten, S.; Vrolyk, V.; Lepage, M.-F.P.; Baudon, M.; Voute, H.; Schoofs, S.; Haruna, J.; Benoit-Biancamano, M.-O.; Ruot, B.; Allegaert, K. Pre- and postnatal development of the eye: A species comparison. Birth Defects Res. 2017, 109, 1540–1567. [Google Scholar] [CrossRef]
- Wallman, J.; Winawer, J. Homeostasis of eye growth and the question of myopia. Neuron 2004, 43, 447–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raymond, P.A.; Barthel, L.K.; Bernardos, R.L.; Perkowski, J.J. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev. Biol. 2006, 6, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harris, W.A.; Perron, M. Molecular recapitulation: The growth of the vertebrate retina. Int. J. Dev. Biol. 1998, 42, 299–304. [Google Scholar] [PubMed]
- Chiba, C. The retinal pigment epithelium: An important player of retinal disorders and regeneration. Exp. Eye Res. 2014, 123, 107–114. [Google Scholar] [CrossRef]
- Islam, M.R.; Nakamura, K.; Casco-Robles, M.M.; Kunahong, A.; Inami, W.; Toyama, F.; Maruo, F.; Chiba, C. The newt reprograms mature RPE cells into a unique multipotent state for retinal regeneration. Sci. Rep. 2014, 4, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, J.; Goldman, D. Retina regeneration in zebrafish. Curr. Opin. Genet. Dev. 2016, 40, 41–47. [Google Scholar] [CrossRef] [Green Version]
- Perron, M.; Kanekar, S.; Vetter, M.L.; Harris, W.A. The genetic sequence of retinal development in the ciliary margin of the Xenopus eye. Dev. Biol. 1998, 199, 185–200. [Google Scholar] [CrossRef] [Green Version]
- Locker, M.; Perron, M. In vivo assessment of neural precursor cell cycle kinetics in the amphibian retina. Cold Spring Harb. Protoc. 2019, 2019, 589–599. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Nogales, M.; Murcia-Belmonte, V.; Chen, H.Y.; Herrera, E. The peripheral eye: A neurogenic area with potential to treat retinal pathologies? Prog. Retin. Eye Res. 2019, 68, 110–123. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Núñez, I.; Robledo, D.; Mayeur, H.; Mazan, S.; Sánchez, L.; Adrio, F.; Barreiro-Iglesias, A.; Candal, E. Loss of active neurogenesis in the adult shark retina. Front. Cell Dev. Biol. 2021, 9, 628721. [Google Scholar] [CrossRef] [PubMed]
- Strickler, A.G.; Famuditimi, K.; Jeffery, W.R. Retinal homeobox genes and the role of cell proliferation in cavefish eye degeneration. Int. J. Dev. Biol. 2002, 46, 285–294. [Google Scholar] [CrossRef] [PubMed]
- Eymann, J.; Salomies, L.; Macrì, S.; Di-Poï, N. Variations in the proliferative activity of the peripheral retina correlate with postnatal ocular growth in squamate reptiles. J. Comp. Neurol. 2019, 527, 2356–2370. [Google Scholar] [CrossRef] [Green Version]
- Todd, L.; Suarez, L.; Squires, N.; Zelinka, C.P.; Gribbins, K.; Fischer, A.J. Comparative analysis of glucagonergic cells, glia and the circumferential marginal zone in the reptilian retina HHS Public Access. J. Comp. Neurol. 2016, 524, 74–89. [Google Scholar] [CrossRef] [Green Version]
- Kubota, R.; Hokoc, J.N.; Moshiri, A.; McGuire, C.; Reh, T.A. A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates. Dev. Brain Res. 2002, 134, 31–41. [Google Scholar] [CrossRef]
- Ghai, K.; Stanke, J.J.; Fischer, A.J. Patterning of the circumferential marginal zone of progenitors in the chicken retina. Brain Res. 2008, 1192, 76–89. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.J.; Reh, T.A. Identification of a proliferating marginal zone of retinal progenitors in postnatal chickens. Dev. Biol. 2000, 220, 197–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima, I.P.; Saito, K.; Hamassaki, D.E.; Yan, C.Y.I. Immunohistochemical characterization of the chick marginal retina. Braz. J. Med. Biol. Res. 2007, 40, 1455–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, A.J.; Bosse, J.L.; El-Hodiri, H.M. Reprint of: The ciliary marginal zone (CMZ) in development and regeneration of the vertebrate eye. Exp. Eye Res. 2014, 123, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Tropepe, V.; Coles, B.L.K.; Chiasson, B.J.; Horsford, D.J.; Elia, A.J.; McInnes, R.R.; Van Der Kooy, D.D. Retinal stem cells in the adult mammalian eye. Science 2000, 287, 2032–2036. [Google Scholar] [CrossRef] [PubMed]
- Ballios, B.G.; Clarke, L.; Coles, B.L.K.; Shoichet, M.S.; Van Der Kooy, D. The adult retinal stem cell is a rare cell in the ciliary epithelium whose progeny can differentiate into photoreceptors. Biol. Open 2012, 1, 237–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmad, I.; Tang, L.; Pham, H. Identification of neural progenitors in the adult mammalian eye. Biochem. Biophys. Res. Commun. 2000, 270, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Bélanger, M.C.; Robert, B.; Cayouette, M. Msx1-positive progenitors in the retinal ciliary margin give rise to both neural and non-neural progenies in mammals. Dev. Cell 2017, 40, 137–150. [Google Scholar] [CrossRef] [Green Version]
- Marcucci, F.; Murcia-Belmonte, V.; Wang, Q.; Coca, Y.; Ferreiro-Galve, S.; Kuwajima, T.; Khalid, S.; Ross, M.E.; Mason, C.; Herrera, E. The ciliary margin zone of the mammalian retina generates retinal ganglion cells. Cell Rep. 2016, 17, 3153–3164. [Google Scholar] [CrossRef]
- Jian, Q.; Xu, H.; Xie, H.; Tian, C.; Zhao, T.; Yin, Z.Q. Activation of retinal stem cells in the proliferating marginal region of RCS rats during development of retinitis pigmentosa. Neurosci. Lett. 2009, 465, 41–44. [Google Scholar] [CrossRef]
- Grisé, K.N.; Bautista, N.X.; Jacques, K.; Coles, B.L.K.; Van der Kooy, D. Glucocorticoid agonists enhance retinal stem cell self-renewal and proliferation. Stem Cell Res. Ther. 2021, 12, 83. [Google Scholar] [CrossRef]
- Bhatia, B.; Singhal, S.; Lawrence, J.M.; Khaw, P.T.; Limb, G.A. Distribution of Müller stem cells within the neural retina: Evidence for the existence of a ciliary margin-like zone in the adult human eye. Exp. Eye Res. 2009, 89, 373–382. [Google Scholar] [CrossRef]
- Johnsen, E.O.; Frøen, R.C.; Olstad, O.K.; Nicolaissen, B.; Petrovski, G.; Moe, M.C.; Noer, A. Proliferative cells isolated from the adult human peripheral retina only transiently upregulate key retinal markers upon Induced differentiation. Curr. Eye Res. 2018, 43, 340–349. [Google Scholar] [CrossRef]
- Johnsen, E.O.; Frøen, R.C.; Albert, R.; Omdal, B.K.; Sarang, Z.; Berta, A.; Nicolaissen, B.; Petrovski, G.; Moe, M.C. Activation of neural progenitor cells in human eyes with proliferative vitreoretinopathy. Exp. Eye Res. 2012, 98, 28–36. [Google Scholar] [CrossRef]
- Kuwahara, A.; Ozone, C.; Nakano, T.; Saito, K.; Eiraku, M.; Sasai, Y. Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue. Nat. Commun. 2015, 6, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaya-Okur, H.S.; Wu, S.J.; Codomo, C.A.; Pledger, E.S.; Bryson, T.D.; Henikoff, J.G.; Ahmad, K.; Henikoff, S. CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Buenrostro, J.D.; Wu, B.; Chang, H.Y.; Greenleaf, W.J. ATAC-seq: A method for assaying chromatin accessibility genome-wide. Curr. Protoc. Mol. Biol. 2015, 2015, 21–29. [Google Scholar] [CrossRef]
- Zentner, G.E.; Henikoff, S. High-resolution digital profiling of the epigenome. Nat. Rev. Genet. 2014, 15, 814–827. [Google Scholar] [CrossRef] [PubMed]
- Wabik, A.; Jones, P.H. Switching roles: The functional plasticity of adult tissue stem cells. EMBO J. 2015, 34, 1164–1179. [Google Scholar] [CrossRef] [PubMed]
- Braun, S.M.G.; Jessberger, S. Adult neurogenesis: Mechanisms and functional significance. Development 2014, 141, 1983–1986. [Google Scholar] [CrossRef] [Green Version]
- Lindsey, B.W.; Hall, Z.J.; Heuzé, A.; Joly, J.S.; Tropepe, V.; Kaslin, J. The role of neuro-epithelial-like and radial-glial stem and progenitor cells in development, plasticity, and repair. Prog. Neurobiol. 2018, 170, 99–114. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Gao, J.; Jia, X.; Zhao, W.; Zhang, Y.; Pan, W.; He, J. Bipotent progenitors as embryonic origin of retinal stem cells. J. Cell Biol. 2017, 216, 1833–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Centanin, L.; Ander, J.J.; Hoeckendorf, B.; Lust, K.; Kellner, T.; Kraemer, I.; Urbany, C.; Hasel, E.; Harris, W.A.; Simons, B.D.; et al. Exclusive multipotency and preferential asymmetric divisions in post-embryonic neural stem cells of the fish retina. Development 2014, 141, 3472–3482. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.; Almeida, A.D.; Rulands, S.; Chalour, N.; Muresan, L.; Wu, Y.; Simons, B.D.; He, J.; Harris, W.A. The ciliary marginal zone of the zebrafish retina: Clonal and time-lapse analysis of a continuously growing tissue. Development 2016, 143, 1099–1107. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Nunez, V.; Nocco, V.; Budd, A. Characterization of drCol 15a1b: A novel component of the stem cell niche in the zebrafish retina. Stem Cells 2010, 28, 1399–1411. [Google Scholar] [CrossRef]
- Reinhardt, R.; Centanin, L.; Tavhelidse, T.; Inoue, D.; Wittbrodt, B.; Concordet, J.; Martinez-Morales, J.R.; Wittbrodt, J. Sox2, Tlx, Gli3, and Her9 converge on Rx2 to define retinal stem cells in vivo. EMBO J. 2015, 34, 1572–1588. [Google Scholar] [CrossRef] [PubMed]
- Malo, M.C.; Duchemin, A.L.; Guglielmi, L.; Patzel, E.; Sel, S.; Auffarth, G.U.; Carl, M.; Poggi, L. The zebrafish anillin-eGFP reporter marks late dividing retinal precursors and stem cells entering neuronal lineages. PLoS ONE 2017, 12, e0170356. [Google Scholar] [CrossRef] [Green Version]
- Centanin, L.; Hoeckendorf, B.; Wittbrodt, J. Fate restriction and multipotency in retinal stem cells. Cell Stem Cell 2011, 9, 553–562. [Google Scholar] [CrossRef] [Green Version]
- Wetts, R.; Serbedzija, G.N.; Fraser, S.E. Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina. Dev. Biol. 1989, 136, 254–263. [Google Scholar] [CrossRef]
- Tsingos, E.; Höckendorf, B.; Sütterlin, T.; Kirchmaier, S.; Grabe, N.; Centanin, L.; Wittbrodt, J. Retinal stem cells modulate proliferative parameters to coordinate post-embryonic morphogenesis in the eye of fish. eLife 2019, 8, e42646. [Google Scholar] [CrossRef]
- Morrison, S.J.; Spradling, A.C. Stem cells and niches: Mechanisms that promote stem cell maintenance throughout life. Cell 2008, 132, 598–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, J.; Zhang, G.; Almeida, A.D.; Cayouette, M.; Simons, B.D.; Harris, W.A. How variable clones build an invariant retina. Neuron 2012, 75, 786–798. [Google Scholar] [CrossRef] [Green Version]
- Frøen, R.; Johnsen, E.O.; Nicolaissen, B.; Facskó, A.; Petrovski, G.; Moe, M.C. Does the adult human ciliary body epithelium contain “true” retinal stem cells? Biomed. Res. Int. 2013, 2013, 531579. [Google Scholar] [CrossRef]
- Wohl, S.G.; Schmeer, C.W.; Isenmann, S. Neurogenic potential of stem/progenitor-like cells in the adult mammalian eye. Prog. Retin. Eye Res. 2012, 31, 213–242. [Google Scholar] [CrossRef]
- Gualdoni, S.; Baron, M.; Lakowski, J.; Decembrini, S.; Smith, A.J.; Pearson, R.A.; Ali, R.R.; Sowden, J.C. Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells 2010, 28, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Lewallen, M.; Chen, S.; Yu, W.; Zhang, N.; Xie, T. Multipotent stem cells isolated from the adult mouse retina are capable of producing functional photoreceptor cells. Cell Res. 2013, 23, 788–802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, P.Y.; Peng, G.H.; Xu, H.; Yin, Z.Q. c-Kit+ cells isolated from human fetal retinas represent a new population of retinal progenitor cells. J. Cell Sci. 2015, 128, 2169–2178. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Wang, S.; Xu, H.; Pereira, J.D.; Hatzistergos, K.E.; Saur, D.; Seidler, B.; Hare, J.M.; Perrella, M.A.; Yin, Z.Q.; et al. Evidence for a retinal progenitor cell in the postnatal and adult mouse. Stem Cell Res. 2017, 23, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Coles, B.L.K.; Angénieux, B.; Inoue, T.; Rio-Tsonis, K.D.; Spence, J.R.; McInnes, R.R.; Arsenijevic, Y.; Van der Kooy, D. Facile isolation and the characterization of human retinal stem cells. Proc. Natl. Acad. Sci. USA 2004, 101, 15772–15777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Link, B.A.; Darland, T. Genetic analysis of initial and ongoing retinogenesis in the zebrafish: Comparing the central neuroepithelium and marginal zone. Prog. Brain Res. 2001, 131, 565–577. [Google Scholar]
- Miesfeld, J.B.; Gestri, G.; Clark, B.S.; Flinn, M.A.; Poole, R.J.; Bader, J.R.; Besharse, J.C.; Wilson, S.W.; Link, B.A. Yap and Taz regulate retinal pigment epithelial cell fate. Development 2015, 142, 3021–3032. [Google Scholar] [CrossRef] [Green Version]
- Wehman, A.M.; Staub, W.; Meyers, J.R.; Raymond, P.A.; Baier, H. Genetic dissection of the zebrafish retinal stem-cell compartment. Dev. Biol. 2005, 281, 53–65. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.S.; May, N.R.; Fan, C.-M. Transdifferentiation of the ventral retinal pigmented epithelium to neural retina in the growth arrest specific gene I mutant. Dev. Biol. 2001, 236, 17–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshii, C.; Ueda, Y.; Okamoto, M.; Araki, M. Neural retinal regeneration in the anuran amphibian Xenopus laevis post-metamorphosis: Transdifferentiation of retinal pigmented epithelium regenerates the neural retina. Dev. Biol. 2007, 303, 45–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, B.; Tang, X.; Jin, M.; Zhang, H.; Du, L.; Yu, S.; He, J. Unifying developmental programs for embryonic and postembryonic neurogenesis in the zebrafish retina. Development 2020, 147, dev185660. [Google Scholar] [CrossRef] [PubMed]
- Bassett, E.A.; Wallace, V.A. Cell fate determination in the vertebrate retina. Trends Nerosci. 2012, 35, 565–573. [Google Scholar] [CrossRef]
- Wong, L.; Weadick, C.J.; Kuo, C.; Chang, B.S.; Tropepe, V. Duplicate dmbx1 genes regulate progenitor cell cycle and differentiation during zebrafish midbrain and retinal development. BMC Dev. Biol. 2010, 10. [Google Scholar] [CrossRef] [Green Version]
- Wong, L.; Power, N.; Miles, A.; Tropepe, V. Mutual antagonism of the paired-type homeobox genes, vsx2 and dmbx1, regulates retinal progenitor cell cycle exit upstream of ccnd1 expression. Dev. Biol. 2015, 402, 216–228. [Google Scholar] [CrossRef] [PubMed]
- Jobe, E.M.; Zhao, X. DNA Methylation and adult neurogenesis. Brain Plast. 2016, 3, 5–26. [Google Scholar] [CrossRef] [Green Version]
- Niklison-Chirou, M.V.; Agostini, M.; Amelio, I.; Melino, G. Regulation of adult neurogenesis in mammalian brain. Int. J. Mol. Sci. 2020, 21, 4869. [Google Scholar] [CrossRef] [PubMed]
- Daly, C.; Shine, L.; Heffernan, T.; Deeti, S.; Reynolds, A.L.; O’Connor, J.J.; Dillon, E.T.; Duffy, D.J.; Kolch, W.; Cagney, G.; et al. A brain-derived neurotrophic factor mimetic is sufficient to restore cone photoreceptor visual function in an inherited blindness model. Sci. Rep. 2017, 7, 11320. [Google Scholar] [CrossRef] [Green Version]
- Nuckels, R.J.; Ng, A.; Darland, T.; Gross, J.M. The vacuolar-ATPase complex regulates retinoblast proliferation and survival, photoreceptor morphogenesis, and pigmentation in the zebrafish eye. Investig. Ophthalmol. Vis. Sci. 2009, 50, 893–905. [Google Scholar] [CrossRef]
- Mitra, S.; Sharma, P.; Kaur, S.; Khursheed, M.A.; Gupta, S.; Ahuja, R.; Kurup, A.J.; Chaudhary, M.; Ramachandran, R. Histone deacetylase-mediated Müller glia reprogramming through Her4.1-Lin28a axis is essential for retina regeneration in zebrafish. iScience 2018, 7, 68–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angileri, K.M.; Gross, J.M. dnmt1 function is required to maintain retinal stem cells within the ciliary marginal zone of the zebrafish eye. Sci. Rep. 2020, 10. [Google Scholar] [CrossRef]
- Nasonkin, I.O.; Lazo, K.; Hambright, D.; Brooks, M.; Fariss, R.; Swaroop, A. Distinct nuclear localization patterns of DNA methyltransferases in developing and mature mammalian retina. J. Comp. Neurol. 2011, 519, 1914–1930. [Google Scholar] [CrossRef] [PubMed]
- Olsen, J.B.; Wong, L.; Deimling, S.; Miles, A.; Guo, H.; Li, Y.; Zhang, Z.; Greenblatt, J.F.; Emili, A.; Tropepe, V. G9a and ZNF644 physically associate to suppress progenitor gene expression during neurogenesis. Stem Cell Rep. 2016, 7, 454–470. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Yamazaki, R.; Onishi, A.; Sanuki, R.; Furukawa, T. G9a histone methyltransferase activity in retinal progenitors is essential for proper differentiation and survival of mouse retinal cells. J. Neurosci. 2012, 32, 17658–17670. [Google Scholar] [CrossRef]
- Zhang, J.; Taylor, R.J.; Torre, A.L.; Wilken, M.S.; Cox, K.E.; Reh, T.A.; Vetter, M.L. Ezh2 maintains retinal progenitor proliferation, transcriptional integrity, and the timing of late differentiation. Dev. Biol. 2015, 403, 128–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujimura, N.; Kuzelova, A.; Ebert, A.; Strnad, H.; Lachova, J.; Machon, O.; Busslinger, M.; Kozmik, Z. Polycomb repression complex 2 is required for the maintenance of retinal progenitor cells and balanced retinal differentiation. Dev. Biol. 2018, 433, 47–60. [Google Scholar] [CrossRef]
- Miles, A.; Tropepe, V. Coordinating progenitor cell cycle exit and differentiation in the developing vertebrate retina. Neurogenesis 2016, 3, e1161697. [Google Scholar] [CrossRef] [Green Version]
- Zagozewski, J.L.; Zhang, Q.; Eisenstat, D.D. Genetic regulation of vertebrate eye development. Clin. Genet. 2014, 86, 453–460. [Google Scholar] [CrossRef]
- Farhy, C.; Elgart, M.; Shapira, Z.; Oron-Karni, V.; Yaron, O.; Menuchin, Y.; Rechavi, G.; Ashery-Padan, R.; Banfi, S. Pax6 Is required for normal cell-cycle exit and the differentiation kinetics of retinal progenitor cells. PLoS ONE 2013, 8, e76489. [Google Scholar] [CrossRef] [Green Version]
- Sigulinsky, C.L.; German, M.L.; Leung, A.M.; Clark, A.M.; Yun, S.; Levine, E.M. Genetic chimeras reveal the autonomy requirements for Vsx2 in embryonic retinal progenitor cells. Neural Dev. 2015, 10, 12. [Google Scholar] [CrossRef] [Green Version]
- Kelly, L.E.; Luna, R.I.M.-D.; El-Hodiri, H.M. Autoregulation of retinal homeobox (rax) gene promoter activity through a highly conserved genomic element. Genesis 2016, 54, 562–567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.M.; Zhang, C.L. TLX: A master regulator for neural stem cell maintenance and neurogenesis. Biochim. Biophys. Acta Gene Regul. Mech. 2015, 1849, 210–216. [Google Scholar] [CrossRef] [Green Version]
- Surzenko, N.; Crowl, T.; Bachleda, A.; Langer, L.; Pevny, L. SOX2 maintains the quiescent progenitor cell state of postnatal retinal Müller glia. Development 2013, 140, 1445–1456. [Google Scholar] [CrossRef] [Green Version]
- Gorsuch, R.A.; Lahne, M.; Yarka, C.E.; Petravick, M.E.; Li, J.; Hyde, D.R. Sox2 regulates Müller glia reprogramming and proliferation in the regenerating zebrafish retina via Lin28 and Ascl1a. Exp. Eye Res. 2017, 161, 174–192. [Google Scholar] [CrossRef]
- Yakoubi, W.E.; Borday, C.; Hamdache, J.; Parain, K.; Tran, H.T.; Vleminckx, K.; Perron, M.; Locker, M. Hes4 controls proliferative properties of neural stem cells during retinal ontogenesis. Stem Cells 2012, 30, 2784–2795. [Google Scholar] [CrossRef] [Green Version]
- Wilson, S.G.; Wen, W.; Pillai-Kastoori, L.; Morris, A.C. Tracking the fate of her4 expressing cells in the regenerating retina using her4: Kaede zebrafish. Exp. Eye Res. 2016, 145, 75–87. [Google Scholar] [CrossRef] [Green Version]
- Kubo, F.; Nakagawa, S. Hairy1 acts as a node downstream of Wnt signaling to maintain retinal stem cell-like progenitor cells in the chick ciliary marginal zone. Development 2009, 136, 1823–1833. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, Y.; Han, B.; Li, L.; Li, M.; Lu, X.; Chen, C.; Lu, M.; Zhang, Y.; Jia, X.; et al. One-step efficient generation of dual-function conditional knockout and geno-tagging alleles in zebrafish. eLife 2019, 8. [Google Scholar] [CrossRef]
- Miura, H.; Quadros, R.M.; Gurumurthy, C.B.; Ohtsuka, M. Easi-CRISPR for creating knock-in and conditional knockout mouse models using long ssDNA donors. Nat. Protoc. 2018, 13, 195–215. [Google Scholar] [CrossRef] [PubMed]
- Ritchey, E.R.; Zelinka, C.P.; Tang, J.; Liu, J.; Fischer, A.J. The combination of IGF1 and FGF2 and the induction of excessive ocular growth and extreme myopia. Exp Eye Res 2012, 99, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Boucher, S.-E.M.; Hitchcock, P.F. Insulin-like growth factor-I binds in the inner plexiform layer and circumferential germinal zone in the retina of the goldfish. J. Comp. Neurol. 1998, 394, 395–401. [Google Scholar] [CrossRef] [Green Version]
- Otteson, D.C.; Cirenza, P.F.; Hitchcock, P.F. Persistent neurogenesis in the teleost retina: Evidence for regulation by the growth-hormone/insulin-like growth factor-I axis. Mech. Dev. 2002, 117, 137–149. [Google Scholar] [CrossRef]
- Becker, C.; Lust, K.; Wittbrodt, J. Igf signaling couples retina growth with body growth by modulating progenitor cell division. Development 2021, 148, dev199133. [Google Scholar] [CrossRef]
- Borday, C.; Cabochette, P.; Parain, K.; Mazurier, N.; Janssens, S.; Tran, H.T.; Sekkali, B.; Bronchain, O.; Vleminckx, K.; Locker, M.; et al. Antagonistic cross-regulation between Wnt and Hedgehog signalling pathways controls post-embryonic retinal proliferation. Development 2012, 139, 3499–3509. [Google Scholar] [CrossRef] [Green Version]
- Moshiri, A.; McGuire, C.R.; Reh, T.A. Sonic hedgehog regulates proliferation of the retinal ciliary marginal zone in posthatch chicks. Dev. Dyn. 2005, 233, 66–75. [Google Scholar] [CrossRef]
- Locker, M.; Agathocleous, M.; Amato, M.A.; Parain, K.; Harris, W.A.; Perron, M. Hedgehog signaling and the retina: Insights into the mechanisms controlling the proliferative properties of neural precursors. Genes Dev. 2006, 20, 3036–3048. [Google Scholar] [CrossRef] [Green Version]
- Shkumatava, A.; Neumann, C.J. Shh directs cell-cycle exit by activating p57Kip2 in the zebrafish retina. EMBO Rep. 2005, 6, 563–569. [Google Scholar] [CrossRef] [Green Version]
- Carballo, G.B.; Honorato, J.R.; Lopes, G.P.F. A highlight on Sonic hedgehog pathway. Cell Commun. Signal. 2018, 16, 1–15. [Google Scholar] [CrossRef]
- Bibliowicz, J.; Gross, J.M. Ectopic proliferation contributes to retinal dysplasia in the juvenile zebrafish patched2 mutant eye. Investig. Ophthalmol. Vis. Sci. 2011, 52, 8868–8877. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Thurig, S.; Mohamed, O.; Dufort, D.; Wallace, V.A. Mapping canonical Wnt signaling in the developing and adult retina. Investig. Ophthalmol. Vis. Sci. 2006, 47, 5088–5097. [Google Scholar] [CrossRef] [Green Version]
- Denayer, T.; Locker, M.; Borday, C.; Deroo, T.; Janssens, S.; Hecht, A.; Van Roy, F.; Perron, M.; Vleminckx, K. Canonical Wnt signaling controls proliferation of retinal stem/progenitor cells in postembryonic xenopus eyes. Stem Cells 2008, 26, 2063–2074. [Google Scholar] [CrossRef]
- Stephens, W.Z.; Senecal, M.; Nguyen, M.; Piotrowski, T. Loss of adenomatous polyposis coli (apc) results in an expaed ciliary marginal zone in the zebrafish eye. Dev. Dyn. 2010, 239, 2066–2077. [Google Scholar] [CrossRef]
- Fang, Y.; Cho, K.S.; Tchedre, K.; Lee, S.W.; Guo, C.; Kinouchi, H.; Fried, S.; Sun, X.; Chen, D.F. Ephrin-A3 suppresses Wnt signaling to control retinal stem cell potency. Stem Cells 2013, 31, 349–359. [Google Scholar] [CrossRef] [Green Version]
- Zhu, R.-L.; Fang, Y.; Yu, H.-H.; Chen, D.; Yang, L.; Cho, K.-S. Absence of ephrin-A2/A3 increases retinal regenerative potential for Müller cells in Rhodopsin knockout mice. Neural Regen. Res. 2021, 16, 1317. [Google Scholar] [CrossRef]
- Diacou, R.; Zhao, Y.; Zheng, D.; Cvekl, A.; Liu, W. Six3 and Six6 are jointly required for the maintenance of multipotent retinal progenitors through both positive and negative regulation. Cell Rep. 2018, 25, 2510–2523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, A.J.; Ritchey, E.R.; Scott, M.A.; Wynne, A. Bullwhip neurons in the retina regulate the size and shape of the eye. Dev. Biol. 2008, 317, 196–212. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.J.; Skorupa, D.; Schonberg, D.L.; Walton, N.A. Characterization of glucagon-expressing neurons in the chicken retina. J. Comp. Neurol. 2006, 496, 479–494. [Google Scholar] [CrossRef] [Green Version]
- Fischer, A.J.; Omar, G.; Walton, N.A.; Verrill, T.A.; Unson, C.G. Glucagon-expressing neurons within the retina regulate the proliferation of neural progenitors in the circumferential marginal zone of the avian eye. J. Neurosci. 2005, 25, 10157–10166. [Google Scholar] [CrossRef] [Green Version]
- Saturnino, A.P.; Lust, K.; Wittbrodt, J. Notch signalling patterns retinal composition by regulating atoh7 during post-embryonic growth. Development 2018, 145, dev169698. [Google Scholar] [CrossRef] [Green Version]
- Maurer, K.A.; Riesenberg, A.N.; Brown, N.L. Notch signaling differentially regulates Atoh7 and Neurog2 in the distal mouse retina. Development 2014, 141, 3243–3254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, A.V.; Bhattacharya, S.; Zhao, X.; Hegde, G.; Mallya, K.; Eudy, J.D.; Ahmad, I. The canonical Wnt pathway regulates retinal stem cells/progenitors in concert with notch signaling. Dev. Neurosci. 2009, 30, 389–409. [Google Scholar] [CrossRef] [PubMed]
- Zi, Y.; De Ng, Y.; Zhao, J.; Ji, M.; Qin, Y.; De Ng, T.; Jin, M. Morphologic and biochemical changes in the retina and sclera induced by form deprivation high myopia in Guinea pigs. BMC Ophthalmol. 2020, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottlieb, M.D.; Joshi, H.B.; Nickla, D.L. Scleral changes in chicks with form-deprivation myopia. Curr. Eye Res. 1990, 9, 1157–1165. [Google Scholar] [CrossRef]
- Thomson, K.; Karouta, C.; Ashby, R. Form-deprivation and lens-induced myopia are similarly affected by pharmacological manipulation of the dopaminergic system in chicks. Investig. Ophthalmol. Vis. Sci. 2020, 61. [Google Scholar] [CrossRef]
- Schaeffel, F.; Feldkaemper, M. Animal models in myopia research. Clin. Exp. Optom. 2015, 98, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Wisely, C.E.; Sayed, J.A.; Tamez, H.; Zelinka, C.; Abdel-Rahman, M.H.; Fischer, A.J.; Cebulla, C.M. The chick eye in vision research: An excellent model for the study of ocular disease. Prog. Retin. Eye Res. 2017, 61, 72–97. [Google Scholar] [CrossRef]
- Tkatchenko, A.V.; Walsh, P.A.; Tkatchenko, T.V.; Gustincich, S.; Raviola, E. Form deprivation modulates retinal neurogenesis in primate experimental myopia. Proc. Natl. Acad. Sci. USA 2006, 103, 4681–4686. [Google Scholar] [CrossRef] [Green Version]
- Szczerkowska, K.I.; Petrezselyova, S.; Lindovsky, J.; Palkova, M.; Dvorak, J.; Makovicky, P.; Fang, M.; Jiang, C.; Chen, L.; Shi, M.; et al. Myopia disease mouse models: A missense point mutation (S673G) and a protein-truncating mutation of the Zfp644 mimic human disease phenotype. Cell Biosci. 2019, 9, 21. [Google Scholar] [CrossRef]
- Shi, Y.; Li, Y.; Zhang, D.; Zhang, H.; Li, Y.; Lu, F.; Liu, X.; He, F.; Gong, B.; Cai, L.; et al. Exome sequencing identifies ZNF644 mutations in high myopia. PLoS Genet. 2011, 7, e1002084. [Google Scholar] [CrossRef]
- Bian, C.; Chen, Q.; Yu, X. The zinc finger proteins ZNF644 and WIZ regulate the G9A/GLP complex for gene repression. eLife 2015, 4, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Veth, K.N.; Willer, J.R.; Collery, R.F.; Gray, M.P.; Willer, G.B.; Wagner, D.S.; Mullins, M.C.; Udvadia, A.J.; Smith, R.S.; John, S.W.M.; et al. Mutations in zebrafish lrp2 result in adult-onset ocular pathogenesis that models myopia and other risk factors for glaucoma. PLoS Genet. 2011, 7, e1001310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almoallem, B.; Arno, G.; Zaeytijd, J.D.; Verdin, H.; Balikova, I.; Casteels, I.; Ravel, T.D.; Hull, S.; Suzani, M.; Destrée, A.; et al. The majority of autosomal recessive nanophthalmos and posterior microphthalmia can be attributed to biallelic sequence and structural variants in MFRP and PRSS. Sci. Rep. 2020, 10, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Collery, R.F.; Volberding, P.J.; Bostrom, J.R.; Link, B.A.; Besharse, J.C. Loss of zebrafish Mfrp causes nanophthalmia, hyperopia, and accumulation of subretinal macrophages. Investig. Ophthalmol. Vis. Sci. 2016, 57, 6805–6814. [Google Scholar] [CrossRef] [PubMed]
- Chekuri, A.; Sahu, B.; Chavali, V.R.M.; Voronchikhina, M.; Soto-Hermida, A.; Suk, J.J.; Alapati, A.N.; Bartsch, D.U.; Ayala-Ramirez, R.; Zenteno, J.C.; et al. Long-term effects of gene therapy in a novel mouse model of human MFRP-associated retinopathy. Hum. Gene Ther. 2019, 30, 632–650. [Google Scholar] [CrossRef]
- Sundin, O.H.; Leppert, G.S.; Silva, E.D.; Yang, J.-M.; Dharmaraj, S.; Maumenee, I.H.; Santos, L.C.; Parsa, C.F.; Traboulsi, E.I.; Broman, K.W.; et al. Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proc. Natl. Acad. Sci. USA 2005, 102, 9553–9558. [Google Scholar] [CrossRef] [Green Version]
- Gal, A.; Rau, I.; Matri, L.E.; Kreienkamp, H.J.; Fehr, S.; Baklouti, K.; Chouchane, I.; Li, Y.; Rehbein, M.; Fuchs, J.; et al. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease. Am. J. Hum. Genet. 2011, 88, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Paylakhi, S.; Labelle-Dumais, C.; Tolman, N.G.; Sellarole, M.A.; Seymens, Y.; Saunders, J.; Lakosha, H.; deVries, W.N.; Orr, A.C.; Topilko, P.; et al. Müller glia-derived PRSS56 is required to sustain ocular axial growth and prevent refractive error. PLoS Genet. 2018, 14. [Google Scholar] [CrossRef]
- Vishweswaraiah, S.; Swierkowska, J.; Ratnamala, U.; Mishra, N.K.; Guda, C.; Chettiar, S.S.; Johar, K.R.; Mrugacz, M.; Karolak, J.A.; Gajecka, M.; et al. Epigenetically dysregulated genes and pathways implicated in the pathogenesis of non-syndromic high myopia. Sci. Rep. 2019, 9, 4145. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, Z.; Du, E.; Zheng, W.; Gu, Q.; Xu, X.; Ke, B. Wnt signaling in form deprivation myopia of the mice retina. PLoS ONE 2014, 9, e91086. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.S.; Chu, R.Y.; Hu, M.; Hoffman, M.R. Sonic hedgehog expression and its role in form-deprivation myopia in mice. Curr. Eye Res. 2009, 34, 623–635. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, I. Centrosomes in mitotic spindle assembly and orientation. Curr. Opin. Struct. Biol. 2021, 66, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Goldman, D. Müller glial cell reprogramming and retina regeneration. Nat. Rev. Neurosci. 2014, 15, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Angueyra, J.M.; Kindt, K.S. Leveraging zebrafish to study retinal degenerations. Front. Cell Dev. Biol. 2018, 6, 110. [Google Scholar] [CrossRef]
- Noel, N.C.L.; Macdonald, I.M.; Allison, W.T. Zebrafish models of photoreceptor dysfunction and degeneration. Biomolecules 2021, 11, 78. [Google Scholar] [CrossRef]
- Bernardos, R.L.; Barthel, L.K.; Meyers, J.R.; Raymond, P.A. Late-stage neuronal progenitors in the retina are radial Müller glia that function as retinal stem cells. J. Neurosci. 2007, 27, 7028–7040. [Google Scholar] [CrossRef] [Green Version]
- Langhe, R.; Chesneau, A.; Colozza, G.; Hidalgo, M.; Ail, D.; Locker, M.; Perron, M. Müller glial cell reactivation in Xenopus models of retinal degeneration. Glia 2017, 65, 1333–1349. [Google Scholar] [CrossRef]
- Miyake, A.; Araki, M. Retinal stem/progenitor cells in the ciliary marginal zone complete retinal regeneration: A study of retinal regeneration in a novel animal model. Dev. Neurobiol. 2014, 74, 739–756. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Fogerty, J.; Cianciolo, L.T.; Stupay, R.; Perkins, B.D. Cone photoreceptor degeneration and neuroinflammation in the zebrafish bardet-biedl syndrome 2 (bbs2) mutant does not lead to retinal regeneration. Front. Cell Dev. Biol. 2020, 8, 1410. [Google Scholar] [CrossRef] [PubMed]
- Iribarne, M.; Hyde, D.R.; Masai, I. TNFα induces Müller glia to transition from non-proliferative gliosis to a regenerative response in mutant zebrafish presenting chronic photoreceptor degeneration. Front. Cell Dev. Biol. 2019, 7. [Google Scholar] [CrossRef] [Green Version]
- Gupta, D.; Bhattacharjee, O.; Mandal, D.; Sen, M.K.; Dey, D.; Dasgupta, A.; Kazi, T.A.; Gupta, R.; Sinharoy, S.; Acharya, K.; et al. CRISPR-Cas9 system: A new-fangled dawn in gene editing. Life Sci. 2019, 232, 116636. [Google Scholar] [CrossRef] [PubMed]
- Hwang, B.; Lee, J.H.; Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. Exp. Mol. Med. 2018, 50, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, A.P.; Mullin, N.K.; Stone, E.M.; Tucker, B.A.; Scheetz, T.E.; Mullins, R.F. Single-cell RNA sequencing in vision research: Insights into human retinal health and disease. Prog. Retin. Eye Res. 2020, 100934. [Google Scholar] [CrossRef] [PubMed]
- Marx, V. Method of the Year: Spatially resolved transcriptomics. Nat. Methods 2021, 18, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Kubo, F.; Nakagawa, S. Wnt signaling in retinal stem cells and regeneration. Dev. Growth Differ. 2008, 50, 245–251. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miles, A.; Tropepe, V. Retinal Stem Cell ‘Retirement Plans’: Growth, Regulation and Species Adaptations in the Retinal Ciliary Marginal Zone. Int. J. Mol. Sci. 2021, 22, 6528. https://doi.org/10.3390/ijms22126528
Miles A, Tropepe V. Retinal Stem Cell ‘Retirement Plans’: Growth, Regulation and Species Adaptations in the Retinal Ciliary Marginal Zone. International Journal of Molecular Sciences. 2021; 22(12):6528. https://doi.org/10.3390/ijms22126528
Chicago/Turabian StyleMiles, Amanda, and Vincent Tropepe. 2021. "Retinal Stem Cell ‘Retirement Plans’: Growth, Regulation and Species Adaptations in the Retinal Ciliary Marginal Zone" International Journal of Molecular Sciences 22, no. 12: 6528. https://doi.org/10.3390/ijms22126528
APA StyleMiles, A., & Tropepe, V. (2021). Retinal Stem Cell ‘Retirement Plans’: Growth, Regulation and Species Adaptations in the Retinal Ciliary Marginal Zone. International Journal of Molecular Sciences, 22(12), 6528. https://doi.org/10.3390/ijms22126528