Complement Components C3 and C4 Indicate Vasculitis Manifestations to Distinct Renal Compartments in ANCA-Associated Glomerulonephritis
Abstract
:1. Introduction
2. Results
2.1. Description of Demographic and Clinical Characteristics
2.2. Hypocomplementemia Is Detectable in a Minor Subset of ANCA GN and Not Correlated with Renal or Extrarenal AAV Manifestations
2.3. Low Levels of Circulating C3c Correlates with AKI Severity in ANCA GN Independent of Systemic Disease Activity or Extrarenal AAV Manifestation
2.4. Low Levels of Circulating C3c and C4 Indicate Vasculitis Manifestations to Distinct Renal Compartments in ANCA GN
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Renal Histopathology
4.3. C3c and C4 Measurements
4.4. Statistical Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jennette, J.C.; Falk, R.J.; Andrassy, K.; Bacon, P.A.; FRCP; Churg, J.; Gross, W.L.; Hagen, E.C.; Hoffman, G.S.; Hunder, G.G.; et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 1994, 37, 187–192. [Google Scholar] [CrossRef]
- Jennette, J.C.; Falk, R.J.; Bacon, P.A.; Basu, N.; Cid, M.C.; Ferrario, F.; Flores-Suarez, L.F.; Gross, W.L.; Guillevin, L.; Hagen, E.C.; et al. 2012 Revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013, 65, 1–11. [Google Scholar] [CrossRef]
- Pettersson, E.E.; Sundelin, B.; Heigl, Z. Incidence and outcome of pauci-immune necrotizing and crescentic glomerulonephritis in adults. Clin. Nephrol. 1995, 43, 141–149. [Google Scholar]
- Hruskova, Z.; Stel, V.S.; Jayne, D.; Aasarød, K.; De Meester, J.; Ekstrand, A.; Eller, K.; Heaf, J.G.; Hoitsma, A.; Jimenéz, C.M.; et al. Characteristics and Outcomes of Granulomatosis With Polyangiitis (Wegener) and Microscopic Polyangiitis Requiring Renal Replacement Therapy: Results From the European Renal Association–European Dialysis and Transplant Association Registry. Am. J. Kidney Dis. 2015, 66, 613–620. [Google Scholar] [CrossRef]
- Jennette, J.C.; Wilkman, A.S.; Falk, R.J. Anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and vasculitis. Am. J. Pathol. 1989, 135, 921–930. [Google Scholar]
- Berden, A.E.; Ferrario, F.; Hagen, E.C.; Jayne, D.R.; Jennette, J.C.; Joh, K.; Neumann, I.; Noël, L.-H.; Pusey, C.D.; Waldherr, R.; et al. Histopathologic Classification of ANCA-Associated Glomerulonephritis. J. Am. Soc. Nephrol. 2010, 21, 1628–1636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brix, S.R.; Noriega, M.; Tennstedt, P.; Vettorazzi, E.; Busch, M.; Nitschke, M.; Jabs, W.J.; Özcan, F.; Wendt, R.; Hausberg, M.; et al. Development and validation of a renal risk score in ANCA-associated glomerulonephritis. Kidney Int. 2018, 94, 1177–1188. [Google Scholar] [CrossRef] [PubMed]
- Nakazawa, D.; Masuda, S.; Tomaru, U.; Ishizu, A. Pathogenesis and therapeutic interventions for ANCA-associated vasculitis. Nat. Rev. Rheumatol. 2019, 15, 91–101. [Google Scholar] [CrossRef] [PubMed]
- Söderberg, D.; Segelmark, M. Neutrophil Extracellular Traps in ANCA-Associated Vasculitis. Front. Immunol. 2016, 7, 256. [Google Scholar] [CrossRef]
- Panda, R.; Krieger, T.; Hopf, L.; Renné, T.; Haag, F.; Röber, N.; Conrad, K.; Csernok, E.; Fuchs, T.A. Neutrophil Extracellular Traps Contain Selected Antigens of Anti-Neutrophil Cytoplasmic Antibodies. Front. Immunol. 2017, 8, 439. [Google Scholar] [CrossRef] [PubMed]
- Deshayes, S.; Aouba, A.; Khoy, K.; Mariotte, D.; Lobbedez, T.; Silva, N.M. Hypocomplementemia is associated with worse renal survival in ANCA-positive granulomatosis with polyangiitis and microscopic polyangiitis. PLoS ONE 2018, 13, e0195680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, W.; Shen, C.; Zhong, Y.; Ooi, J.D.; Eggenhuizen, P.; Zhou, Y.-O.; Luo, H.; Huang, J.; Chen, J.-B.; Wu, T.; et al. Glomerular Immune Deposition in MPO-ANCA Associated Glomerulonephritis Is Associated with Poor Renal Survival. Front. Immunol. 2021, 12, 625672. [Google Scholar] [CrossRef]
- Lamprecht, P.; Kerstein, A.; Klapa, S.; Schinke, S.; Karsten, C.M.; Yu, X.; Ehlers, M.; Epplen, J.T.; Holl-Ulrich, K.; Wiech, T.; et al. Pathogenetic and Clinical Aspects of Anti-Neutrophil Cytoplasmic Autoantibody-Associated Vasculitides. Front. Immunol. 2018, 9, 680. [Google Scholar] [CrossRef] [Green Version]
- Crnogorac, M.; Horvatic, I.; Kacinari, P.; Ljubanovic, D.G.; Galesic, K. Serum C3 complement levels in ANCA associated vasculitis at diagnosis is a predictor of patient and renal outcome. J. Nephrol. 2017, 31, 257–262. [Google Scholar] [CrossRef]
- Xiao, H.; Dairaghi, D.J.; Powers, J.P.; Ertl, L.S.; Baumgart, T.; Wang, Y.; Seitz, L.C.; Penfold, M.E.; Gan, L.; Hu, P.; et al. C5a Receptor (CD88) Blockade Protects against MPO-ANCA GN. J. Am. Soc. Nephrol. 2013, 25, 225–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilhorst, M.; Van Paassen, P.; Van Rie, H.; Bijnens, N.; Heerings-Rewinkel, P.; Vriesman, P.V.B.; Tervaert, J.W.C.; Registry, F.T.L.R. Complement in ANCA-associated glomerulonephritis. Nephrol. Dial. Transplant. 2015, 32, 1302–1313. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Gou, S.-J.; Huang, J.; Hao, J.; Chen, M.; Zhao, M.-H. C5a and its receptors in human anti-neutrophil cytoplasmic antibody (ANCA)-associated vasculitis. Arthritis Res. Ther. 2012, 14, R140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gou, S.-J.; Yuan, J.; Chen, M.; Yu, F.; Zhao, M.-H. Circulating complement activation in patients with anti-neutrophil cytoplasmic antibody–associated vasculitis. Kidney Int. 2013, 83, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Augusto, J.-F.; Langs, V.; Demiselle, J.; Lavigne, C.; Brilland, B.; Duveau, A.; Poli, C.; Chevailler, A.; Croue, A.; Tollis, F.; et al. Low Serum Complement C3 Levels at Diagnosis of Renal ANCA-Associated Vasculitis Is Associated with Poor Prognosis. PLoS ONE 2016, 11, e0158871. [Google Scholar] [CrossRef]
- Manenti, L.; Vaglio, A.; Gnappi, E.; Maggiore, U.; Allegri, L.; Allinovi, M.; Urban, M.L.; Delsante, M.; Galetti, M.; Nicastro, M.; et al. Association of Serum C3 Concentration and Histologic Signs of Thrombotic Microangiopathy with Outcomes among Patients with ANCA-Associated Renal Vasculitis. Clin. J. Am. Soc. Nephrol. 2015, 10, 2143–2151. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Jayne, D.R.W.; Zhao, M.C.M.-H. Complement in ANCA-associated vasculitis: Mechanisms and implications for management. Nat. Rev. Nephrol. 2017, 13, 359–367. [Google Scholar] [CrossRef]
- Quintana, L.F.; Kronbichler, A.; Blasco, M.; Zhao, M.-H.; Jayne, D. ANCA associated vasculitis: The journey to complement-targeted therapies. Mol. Immunol. 2019, 112, 394–398. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D. Complement inhibition in ANCA vasculitis. Néphrologie Thérapeutique 2019, 15, 409–412. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D.R.; Merkel, P.A.; Schall, T.J.; Bekker, P. Avacopan for the Treatment of ANCA-Associated Vasculitis. N. Engl. J. Med. 2021, 384, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Jayne, D.R.; Bruchfeld, A.N.; Harper, L.; Schaier, M.; Venning, M.C.; Hamilton, P.; Burst, V.; Grundmann, F.; Jadoul, M.; Szombati, I.; et al. Randomized Trial of C5a Receptor Inhibitor Avacopan in ANCA-Associated Vasculitis. J. Am. Soc. Nephrol. 2017, 28, 2756–2767. [Google Scholar] [CrossRef] [Green Version]
- Van Paassen, P.; Tervaert, J.C.; Heeringa, P. Mechanisms of Vasculitis: How Pauci-Immune Is ANCA-Associated Renal Vasculitis? Nephron 2006, 105, e10–e16. [Google Scholar] [CrossRef]
- Chalkia, A.; Thomas, K.; Giannou, P.; Panagiotopoulos, A.; Hadziyannis, E.; Kapota, A.; Gakiopoulou, H.; Vassilopoulos, D.; Petras, D. Hypocomplementemia is associated with more severe renal disease and worse renal outcomes in patients with ANCA-associated vasculitis: A retrospective cohort study. Ren. Fail. 2020, 42, 845–852. [Google Scholar] [CrossRef]
- Merle, N.S.; Noé, R.; Halbwachs-Mecarelli, L.; Fremeaux-Bacchi, V.; Roumenina, L.T. Complement System Part II: Role in Immunity. Front. Immunol. 2015, 6, 257. [Google Scholar] [CrossRef] [Green Version]
- Walport, M.J. Complement. N. Engl. J. Med. 2001, 344, 1058–1066. [Google Scholar] [CrossRef]
- Jensen, J.A.; Festa, E.; Smith, D.S.; Cayer, M. The complement system of the nurse shark: Hemolytic and comparative characteristics. Science 1981, 214, 566–569. [Google Scholar] [CrossRef]
- Haas, M.; Eustace, J.A. Immune complex deposits in ANCA-associated crescentic glomerulonephritis: A study of 126 cases. Kidney Int. 2004, 65, 2145–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, F.; Chen, M.; Gao, Y.; Wang, S.-X.; Zou, W.-Z.; Zhao, M.-H.; Wang, H.-Y. Clinical and Pathological Features of Renal Involvement in Propylthiouracil-Associated ANCA-Positive Vasculitis. Am. J. Kidney Dis. 2007, 49, 607–614. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xing, G.-Q.; Yu, F.; Liu, G.; Zhao, M.-H. Complement deposition in renal histopathology of patients with ANCA-associated pauci-immune glomerulonephritis. Nephrol. Dial. Transplant. 2008, 24, 1247–1252. [Google Scholar] [CrossRef]
- Huugen, D.; van Esch, A.; Xiao, H.; Peutz-Kootstra, C.-J.; Buurman, W.-A.; Tervaert, J.W.C.; Jennette, J.-C.; Heeringa, P. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 2007, 71, 646–654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuo, S.; Morita, Y.; Mizuno, M.; Nishikawa, K.; Yuzawa, Y. Proteinuria and damage to tubular cells--is complement a culprit? Nephrol. Dial. Transplant. 1998, 13, 2723–2726. [Google Scholar] [CrossRef] [Green Version]
- Sheerin, N.S.; Sacks, S.H. Chronic interstitial damage in proteinuria. Kidney Blood Press. Res. 1999, 22, 47–52. [Google Scholar] [CrossRef]
- Gaarkeuken, H.; Siezenga, M.A.; Zuidwijk, K.; Van Kooten, C.; Rabelink, T.J.; Daha, M.R.; Berger, S.P. Complement activation by tubular cells is mediated by properdin binding. Am. J. Physiol. Physiol. 2008, 295, F1397–F1403. [Google Scholar] [CrossRef] [Green Version]
- Siezenga, M.A.; Van Der Geest, R.N.; Mallat, M.J.K.; Rabelink, T.; Daha, M.R.; Berger, S.P. Urinary properdin excretion is associated with intrarenal complement activation and poor renal function. Nephrol. Dial. Transplant. 2010, 25, 1157–1161. [Google Scholar] [CrossRef] [Green Version]
- Bao, L.; Wang, Y.; Haas, M.; Quigg, R.J. Distinct roles for C3a and C5a in complement-induced tubulointerstitial injury. Kidney Int. 2011, 80, 524–534. [Google Scholar] [CrossRef] [Green Version]
- Renner, B.; Coleman, K.; Goldberg, R.; Amura, C.; Holland-Neidermyer, A.; Pierce, K.; Orth, H.; Molina, H.; Ferreira, V.; Cortes, C.; et al. The complement inhibitors Crry and factor H are critical for preventing autologous complement activation on renal tubular epithelial cells. J. Immunol. 2010, 185, 3086–3094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheerin, N.S.; Zhou, W.; Adler, S.; Sacks, S.H. TNF-α regulation of C3 gene expression and protein biosynthesis in rat glomerular endothelial cells. Kidney Int. 1997, 51, 703–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Risdon, R.; Sloper, J.; De Wardener, H. Relationship between renal function and histological changes found in renal-biopsy specimens from patients with persistent glomerular nephritis. Lancet 1968, 292, 363–366. [Google Scholar] [CrossRef]
- Bulanov, N.; Chebotareva, N.V.; I Novikov, P.; Moiseev, S.V. Role of tubulointerstitial injury in ANCA-associated vasculitis is underestimated. Ann. Rheum. Dis. 2018, 78, e111. [Google Scholar] [CrossRef]
- Hakroush, S.; Tampe, D.; Korsten, P.; Strobel, P.; Tampe, B. Bowman’s capsule rupture links glomerular damage to tubulointerstitial inflammation in ANCA-associated glomerulonephritis. Clin. Exp. Rheumatol. 2021, 9, S27–S31. [Google Scholar]
- Hakroush, S.; Kluge, I.; Ströbel, P.; Korsten, P.; Tampe, D.; Tampe, B. Systematic Histological Scoring Reveals More Prominent Interstitial Inflammation in Myeloperoxidase-ANCA Compared to Proteinase 3-ANCA Glomerulonephritis. J. Clin. Med. 2021, 10, 1231. [Google Scholar] [CrossRef] [PubMed]
- Wen, Y.-K.; Chen, M.-L. Transformation from Tubulointerstitial Nephritis to Crescentic Glomerulonephritis: An Unusual Presentation of ANCA-Associated Renal Vasculitis. Ren. Fail. 2006, 28, 189–191. [Google Scholar] [CrossRef]
- Banerjee, A.; McKane, W.; Thiru, S.; Farrington, K. Wegener’s granulomatosis presenting as acute suppurative interstitial nephritis. J. Clin. Pathol. 2001, 54, 787–789. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohashi, N.; Ishigaki, S.; Kitajima, K.; Tsuji, N.; Isobe, S.; Iwakura, T.; Ono, M.; Fujikura, T.; Tsuji, T.; Sakao, Y.; et al. The level of urinary α1 microglobulin excretion is a useful marker of peritubular capillaritis in antineutrophil cytoplasmic antibody associated vasculitis. Clin. Exp. Nephrol. 2014, 19, 851–858. [Google Scholar] [CrossRef]
- Kasperska-Zajac, A.; Grzanka, A.; Machura, E.; Misiołek, M.; Mazur, B.; Jochem, J. Increased serum complement C3 and C4 concentrations and their relation to severity of chronic spontaneous urticaria and CRP concentration. J. Inflamm. 2013, 10, 22. [Google Scholar] [CrossRef] [Green Version]
- Murakami, Y.; Imamichi, T.; Nagasawa, S. Characterization of C3a anaphylatoxin receptor on guinea-pig macrophages. Immunology 1993, 79, 633–638. [Google Scholar]
- Elsner, J.; Oppermann, M.; Czech, W.; Kapp, A. C3a activates the respiratory burst in human polymorphonuclear neutrophilic leukocytes via pertussis toxin-sensitive G-proteins. Blood 1994, 83, 3324–3331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsner, J.; Oppermann, M.; Czech, W.; Dobos, G.; Schöpf, E.; Norgauer, J.; Kapp, A. C3a activates reactive oxygen radical species production and intracellular calcium transients in human eosinophils. Eur. J. Immunol. 1994, 24, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Kretzschmar, T.; Jeromin, A.; Gietz, C.; Bautsch, W.; Klos, A.; Köhl, J.; Rechkemmer, G.; Bitter-Suermann, D. Chronic myelogenous leukemia-derived basophilic granulocytes express a functional active receptor for the anaphylatoxin C3a. Eur. J. Immunol. 1993, 23, 558–561. [Google Scholar] [CrossRef]
- El-Lati, S.G.; Church, M.K.; Dahinden, C.A. Complement Peptides C3a- and C5a-Induced Mediator Release from Dissociated Human Skin Mast Cells. J. Investig. Dermatol. 1994, 102, 803–806. [Google Scholar] [CrossRef] [Green Version]
- Coulthard, L.; Woodruff, T.M. Is the Complement Activation Product C3a a Proinflammatory Molecule? Re-evaluating the Evidence and the Myth. J. Immunol. 2015, 194, 3542–3548. [Google Scholar] [CrossRef] [Green Version]
- Chen, N.-J.; Mirtsos, C.; Suh, D.; Lu, Y.-C.; Lin, W.-J.; McKerlie, C.; Lee, T.; Baribault, H.; Tian, H.; Yeh, W.-C. C5L2 is critical for the biological activities of the anaphylatoxins C5a and C3a. Nat. Cell Biol. 2007, 446, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Daffern, P.J.; Pfeifer, P.H.; Ember, J.A.; Hugli, T.E. C3a is a chemotaxin for human eosinophils but not for neutrophils. I. C3a stimulation of neutrophils is secondary to eosinophil activation. J. Exp. Med. 1995, 181, 2119–2127. [Google Scholar] [CrossRef] [PubMed]
- Tsuruta, T.; Yamamoto, T.; Matsubara, S.; Nagasawa, S.; Tanase, S.; Tanaka, J.; Takagi, K.; Kambara, T. Novel function of C4a anaphylatoxin. Release from monocytes of protein which inhibits monocyte chemotaxis. Am. J. Pathol. 1993, 142, 1848–1857. [Google Scholar] [PubMed]
- Zhao, Y.; Xu, H.; Yu, W.; Xie, B.-D. Complement anaphylatoxin C4a inhibits C5a-induced neointima formation following arterial injury. Mol. Med. Rep. 2014, 10, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Barnum, S.R. C4a: An Anaphylatoxin in Name Only. J. Innate Immun. 2015, 7, 333–339. [Google Scholar] [CrossRef]
- Hakroush, S.; Tampe, D.; Korsten, P.; Ströbel, P.; Zeisberg, M.; Tampe, B. Histopathological Findings Predict Renal Recovery in Severe ANCA-Associated Vasculitis Requiring Intensive Care Treatment. Front. Med. 2021, 7. [Google Scholar] [CrossRef]
- Tampe, D.; Korsten, P.; Ströbel, P.; Hakroush, S.; Tampe, B. Proteinuria Indicates Decreased Normal Glomeruli in ANCA-Associated Glomerulonephritis Independent of Systemic Disease Activity. J. Clin. Med. 2021, 10, 1538. [Google Scholar] [CrossRef]
- Hakroush, S.; Kopp, S.B.; Tampe, D.; Gersmann, A.-K.; Korsten, P.; Zeisberg, M.; Tampe, B. Variable Expression of Programmed Cell Death Protein 1-Ligand 1 in Kidneys Independent of Immune Checkpoint Inhibition. Front. Immunol. 2021, 11, 624547. [Google Scholar] [CrossRef]
- Mukhtyar, C.; Lee, R.; Brown, D.; Carruthers, D.; Dasgupta, B.; Dubey, S.; Flossmann, O.; Hall, C.; Hollywood, J.; Jayne, D.; et al. Modification and validation of the Birmingham Vasculitis Activity Score (version 3). Ann. Rheum. Dis. 2009, 68, 1827–1832. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Roufosse, C.; Simmonds, N.; Groningen, M.C.-V.; Haas, M.; Henriksen, K.J.; Horsfield, C.; Loupy, A.; Mengel, M.; Perkowska-Ptasińska, A.; Rabant, M.; et al. A 2018 Reference Guide to the Banff Classification of Renal Allograft Pathology. Transplantation 2018, 102, 1795–1814. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Median age (IQR)—years | 66.5 (50.75–74) |
Female sex—no. (%) | 17 (44.7) |
Disease onset—days before admission (IQR) | 17 (7–59) |
Kidney biopsy—days after admission (IQR) | 6 (3–10) |
ANCA subtype MPA/GPA—no. (%) | 22 (57.9) |
History of vasculitis—no. (%) | 6 (15.8) |
Dialysis within 30 days after admission—no. (%) | 13 (34.2) |
Median BVAS (IQR)—points | 18 (15–20.25) |
Extrarenal manifestation—no. (%) | 30 (78.9) |
Lung involvement—no. (%) | 25 (65.8) |
Pulmonary hemorrhage—no. (%) | 5 (13.2) |
Sinus involvement—no. (%) | 5 (13.2) |
Joint involvement—no. (%) | 6 (15.8) |
Ear involvement—no. (%) | 2 (5.3) |
Eye involvement—no. (%) | 1 (2.6) |
Nerve involvement—no. (%) | 4 (10.5) |
Skin involvement—no. (%) | 6 (15.8) |
Median serum creatinine (IQR)—mg/dL | 22 (57.9) |
ANCA subtype MPO/PR3—no. (%) | 3.155 (1.475–5.215) |
Median eGFR (IQR)—mL/min/1.73 m2 | 17.25 (8.775–47.65) |
Median CRP (IQR)—mg/L | 60.5 (19.5–101.2) |
C3c (IQR)—g/L | 1.295 (0.9925–1.413) |
C4 (IQR)—g/L | 0.26 (0.195–0.3025) |
Median uPCR (IQR)—mg/g | 1027 (508.9–1841) |
Median uACR (IQR)—mg/g | 430.8 (211.2–897.2) |
Median α1-microglobulin (IQR)—mg/g | 83.17 (33.2–187.8) |
Median α2-macroglobulin (IQR)—mg/g | 5.14 (2.935–12.25) |
Median IgG (IQR)—mg/g | 52.88 (23.3–205.5) |
Acanthocytes—no. (%) | 6 (15.8) |
Crescentic class—no. (%) | 14 (36.8) |
Focal class—no. (%) | 19 (50) |
Sclerotic class—no. (%) | 2 (5.3) |
Mixed class—no. (%) | 3 (7.9) |
ARRS high risk—no. (%) | 6 (15.8) |
ARRS medium risk—no. (%) | 16 (42.1) |
ARRS low risk—no. (%) | 16 (42.1) |
Parameter | Decreased C3c | Normal C3c | p Value |
---|---|---|---|
No. of patients | 5 | 33 | |
Median age (IQR)—years | 76 (55–76.5) | 66 (50.5–72.5) | 0.2655 |
Female sex—no. (%) | 2 (40) | 15 (45.5) | 0.8192 |
ANCA subtype MPA/GPA—no. (%) | 3 (60) | 19 (57.6) | 0.9185 |
History of vasculitis—no. (%) | 2 (40) | 4 (12.1) | 0.1111 |
Median BVAS (IQR)—points | 18 (12–22.5) | 18 (15.5–20.5) | 0.7950 |
Lung involvement—no. (%) | 1 (20) | 24 (72.7) | 0.0206 |
Pulmonary hemorrhage—no. (%) | 0 (0) | 5 (15.2) | 0.3503 |
Sinus involvement—no. (%) | 0 (0) | 5 (15.2) | 0.3503 |
Joint involvement—no. (%) | 0 (0) | 6 (18.2) | 0.2988 |
Ear involvement—no. (%) | 0 (0) | 2 (6.1) | 0.5717 |
Eye involvement—no. (%) | 0 (0) | 1 (3) | 0.6932 |
Nerve involvement—no. (%) | 0 (0) | 4 (12.1) | 0.4105 |
Skin involvement—no. (%) | 0 (0) | 6 (18.2) | 0.2988 |
ANCA subtype MPO/PR3—no. (%) | 3 (60) | 19 (57.6) | 0.9185 |
Median serum creatinine (IQR)—mg/dL | 3.74 (2.27–6.235) | 3.14 (1.385–5.095) | 0.4777 |
Median eGFR (IQR)—mL/min/1.73 m2 | 16.9 (8.9–22.75) | 21.4 (8.65–50.25) | 0.5252 |
Median CRP (IQR)—mg/L | 57.4 (30.05–112.2) | 63.6 (19.1–96.3) | 0.7337 |
Median C4 (IQR)—g/L | 0.17 (0.115–0.295) | 0.27 (0.205–0.305) | 0.1087 |
Median uPCR (IQR)—mg/g | 556.9 (428.6–5860) | 1157 (550.7–1641) | 0.9999 |
Median uACR (IQR)—mg/g | 362.3 (81.12–2644) | 445.2 (231.6–854.6) | 0.9999 |
Median α1-microglobulin (IQR)—mg/g | 125.9 (61.9–258.7) | 69.7 (31.6–173.8) | 0.2707 |
Median α2-macroglobulin (IQR)—mg/g | 7.38 (4.325–27.03) | 5.14 (2.868–12.25) | 0.4211 |
Median IgG (IQR)—mg/g | 149 (9.555–259.1) | 48.61 (25.85–190.8) | 0.8464 |
Acanthocytes—no. (%) | 0 (0) | 6 (18.2) | 0.2988 |
Crescentic class—no. (%) | 1 (20) | 13 (39.4) | |
Focal class—no. (%) | 3 (60) | 16 (48.5) | |
Sclerotic class—no. (%) | 1 (20) | 1 (3) | |
Mixed class—no. (%) | 0 (0) | 3 (9.1) | 0.3355 |
ARRS high risk—no. (%) | 1 (20) | 5 (15.2) | |
ARRS medium risk—no. (%) | 2 (40) | 14 (42.4) | |
ARRS low risk—no. (%) | 2 (40) | 14 (42.4) | 0.9623 |
Parameter | Decreased C4 | Normal C4 | p Value |
---|---|---|---|
No. of patients | 5 | 33 | |
Median age (IQR)—years | 65 (46.75–74.25) | 66.5 (50.75–74) | 0.9358 |
Female sex—no. (%) | 3 (75) | 14 (41.2) | 0.1981 |
ANCA subtype MPA/GPA—no. (%) | 2 (50) | 20 (58.8) | 0.7353 |
History of vasculitis—no. (%) | 2 (50) | 4 (11.8) | 0.0473 |
Median BVAS (IQR)—points | 19 (13.75–19.75) | 18 (15–21) | 0.8940 |
Lung involvement—no. (%) | 3 (75) | 22 (64.7) | 0.6914 |
Pulmonary hemorrhage—no. (%) | 1 (25) | 4 (11.8) | 0.4589 |
Sinus involvement—no. (%) | 0 (0) | 5 (14.7) | 0.4105 |
Joint involvement—no. (%) | 1 (25) | 5 (14.7) | 0.5933 |
Ear involvement—no. (%) | 0 (0) | 2 (5.9) | 0.6182 |
Eye involvement—no. (%) | 0 (0) | 1 (2.9) | 0.7281 |
Nerve involvement—no. (%) | 0 (0) | 4 (11.8) | 0.4683 |
Skin involvement—no. (%) | 1 (25) | 5 (14.7) | 0.4105 |
ANCA subtype MPO/PR3—no. (%) | 1 (25) | 21 (61.8) | 0.1589 |
Median serum creatinine (IQR)—mg/dL | 2.365 (1.798–2.978) | 3.49 (1.423–5.538) | 0.4788 |
Median eGFR (IQR)—mL/min/1.73 m2 | 25 (19.23–27.4) | 15.55 (8.4–49.33) | 0.5322 |
Median CRP (IQR)—mg/L | 41.8 (14.65–160.2) | 63.7 (19.5–101.2) | 0.8687 |
Median C3c (IQR)—g/L | 0.8 (0.6325–1.613) | 1.3 (1.088–1.413) | 0.1506 |
Median uPCR (IQR)—mg/g | 920.1 (408.7–1407) | 1027 (508.9–2222) | 0.5351 |
Median uACR (IQR)—mg/g | 560.9 (129–831.8) | 430.8 (211.2–1028) | 0.8725 |
Median α1-microglobulin (IQR)—mg/g | 53.45 (24.07–95.5) | 88 (33.2–194.5) | 0.3680 |
Median α2-macroglobulin (IQR)—mg/g | 4.94 (2.92–7.61) | 5.22 (2.915–13.37) | 0.7050 |
Median IgG (IQR)—mg/g | 22.71 (6.563–84.23) | 57.85 (26.74–214.3) | 0.1267 |
Acanthocytes—no. (%) | 0 (0) | 6 (17.6) | 0.3599 |
Crescentic class—no. (%) | 2 (50) | 12 (35.3) | |
Focal class—no. (%) | 2 (50) | 17 (50) | |
Sclerotic class—no. (%) | 0 (0) | 2 (5.9) | |
Mixed class—no. (%) | 0 (0) | 3 (8.8) | 0.8499 |
ARRS high risk—no. (%) | 0 (0) | 6 (17.6) | |
ARRS medium risk—no. (%) | 1 (25) | 15 (44.1) | |
ARRS low risk—no. (%) | 3 (75) | 13 (38.2) | 0.3387 |
Renal Pathology | No. of Patients | Median C3c (IQR)—g/L | p Value vs. ANCA GN |
---|---|---|---|
ANCA GN | 38 | 1.295 (0.9925–1.413) | 0.9999 |
Acute tubular injury | 11 | 1.18 (0.93–1.35) | 0.9999 |
Thrombotic microangiopathy | 3 | 1.35 (0.9–1.54) | 0.9999 |
Diabetic kidney disease | 13 | 1.32 (1.04–1.45) | 0.9999 |
FSGS | 18 | 1.115 (0.9575–1.243) | 0.9999 |
IgAN | 13 | 1.17 (1.01–1.395) | 0.9999 |
IgA vasculitis | 4 | 1.24 (0.9975–1.64) | 0.9999 |
Hypertensive nephropathy | 8 | 1.21 (0.8325–1.543) | 0.9999 |
Lupus nephritis | 16 | 0.665 (0.545–1.043) | 0.0002 |
Membranous GN | 5 | 0.32 (1.28–1.405) | 0.9999 |
Minimal change disease | 3 | 1.28 (1.04–1.45) | 0.9999 |
Postinfectious GN | 4 | 0.91 (0.4175–1.463) | 0.9999 |
Tubulointerstitial nephritis | 12 | 1.205 (1.08–1.293) | 0.9999 |
Renal Pathology | No. of Patients | Median C4 (IQR)—g/L | p Value vs. ANCA GN |
---|---|---|---|
ANCA GN | 38 | 0.26 (0.195–0.2035) | 0.9999 |
Acute tubular injury | 11 | 0.23 (0.18–0.4) | 0.9999 |
Thrombotic microangiopathy | 3 | 0.32 (0.2–0.45) | 0.9999 |
Diabetic kidney disease | 13 | 0.34 (0.2425–0.415) | 0.2124 |
FSGS | 18 | 0.24 (0.2175–0.3275) | 0.9999 |
IgAN | 13 | 0.29 (0.21–0.355) | 0.9999 |
IgA vasculitis | 4 | 0.235 (0.16–0.2875) | 0.9999 |
Hypertensive nephropathy | 8 | 0.32 (0.1975–0.37) | 0.9999 |
Lupus nephritis | 16 | 0.095 (0.0725–0.1825) | 0.0145 |
Membranous GN | 5 | 0.25 (0.2–0.335) | 0.9999 |
Minimal change disease | 3 | 0.26 (0.24–0.42) | 0.9999 |
Postinfectious GN | 4 | 0.31 (0.095–0.39) | 0.9999 |
Tubulointerstitial nephritis | 12 | 0.32 (0.275–0.36) | 0.9999 |
Parameter | ß | SE | p Value |
---|---|---|---|
Glomerular necrosis—% | 0.2611 | 0.1528 | 0.1208 |
Glomerular sclerosis—% | −0.3401 | 0.2093 | 0.0485 |
Arteritis: v—lesion score | −0.3974 | 0.0425 | 0.0171 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hakroush, S.; Tampe, D.; Korsten, P.; Ströbel, P.; Tampe, B. Complement Components C3 and C4 Indicate Vasculitis Manifestations to Distinct Renal Compartments in ANCA-Associated Glomerulonephritis. Int. J. Mol. Sci. 2021, 22, 6588. https://doi.org/10.3390/ijms22126588
Hakroush S, Tampe D, Korsten P, Ströbel P, Tampe B. Complement Components C3 and C4 Indicate Vasculitis Manifestations to Distinct Renal Compartments in ANCA-Associated Glomerulonephritis. International Journal of Molecular Sciences. 2021; 22(12):6588. https://doi.org/10.3390/ijms22126588
Chicago/Turabian StyleHakroush, Samy, Désirée Tampe, Peter Korsten, Philipp Ströbel, and Björn Tampe. 2021. "Complement Components C3 and C4 Indicate Vasculitis Manifestations to Distinct Renal Compartments in ANCA-Associated Glomerulonephritis" International Journal of Molecular Sciences 22, no. 12: 6588. https://doi.org/10.3390/ijms22126588
APA StyleHakroush, S., Tampe, D., Korsten, P., Ströbel, P., & Tampe, B. (2021). Complement Components C3 and C4 Indicate Vasculitis Manifestations to Distinct Renal Compartments in ANCA-Associated Glomerulonephritis. International Journal of Molecular Sciences, 22(12), 6588. https://doi.org/10.3390/ijms22126588