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Abstract: Chronic diseases represent a major challenge in world health. Metabolic syndrome is a
constellation of disturbances affecting several organs, and it has been proposed to be a liver-centered
condition. Fructose overconsumption may result in insulin resistance, oxidative stress, inflammation,
elevated uric acid levels, increased blood pressure, and increased triglyceride concentrations in both
the blood and liver. Non-alcoholic fatty liver disease (NAFLD) is a term widely used to describe
excessive fatty infiltration in the liver in the absence of alcohol, autoimmune disorders, or viral
hepatitis; it is attributed to obesity, high sugar and fat consumption, and sedentarism. If untreated,
NAFLD can progress to nonalcoholic steatohepatitis (NASH), characterized by inflammation and
mild fibrosis in addition to fat infiltration and, eventually, advanced scar tissue deposition, cirrhosis,
and finally liver cancer, which constitutes the culmination of the disease. Notably, fructose is
recognized as a major mediator of NAFLD, as a significant correlation between fructose intake and
the degree of inflammation and fibrosis has been found in preclinical and clinical studies. Moreover,
fructose is a risk factor for liver cancer development. Interestingly, fructose induces a number of
proinflammatory, fibrogenic, and oncogenic signaling pathways that explain its deleterious effects in
the body, especially in the liver.
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1. Introduction

Chronic diseases represent a major challenge in world health. Metabolic syndrome is a
constellation of disturbances that includes dyslipidemia, type II diabetes, insulin resistance,
visceral obesity, microalbuminuria, and hypertension [1,2]. The prevalence of metabolic
syndrome is difficult to establish because there is no consensus on its definition [1], but
estimations are 27.93% in North America, 27.65% in South America, 21.27% in Asia, 16.04%
in Africa, and 10.47% in Europe [3], affecting a quarter of the world’s population [4]. The
most important risk factors for developing metabolic syndrome are related to obesity, a
complex disease associated with an imbalance between physical activity and calorie intake,
and excessive consumption of fats and simple carbohydrates; the obesogenic environment
also plays an important role [5]. Approximately one-third of adults, children, or adolescents
worldwide are obese or overweight [1,2,6].

Metabolic syndrome affects several organs, and it has been proposed to be a liver-
centered condition [7]. Non-alcoholic fatty liver disease (NAFLD) is a term widely used
to describe excessive fat infiltration in the liver in the absence of alcohol, autoimmune
disorders, and viral hepatitis [6]. NAFLD now constitutes the main cause of hepatic
disorders. It is usually asymptomatic, bidirectionally linked with metabolic syndrome, and
difficult to diagnose, affecting about a third of the global population, and it is the prevailing
cause of hepatocellular carcinoma (HCC) development [8,9]. Thirty percent of NAFLD
patients develop necroinflammation and fibrosis, indicating the presence of nonalcoholic
steatohepatitis (NASH), which in turn may predispose patients to HCC [10–13]. Moreover,
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NASH is a risk factor for liver cancer development [2,14–18]. HCC is the dominant form of
primary liver cancer, which represents 75–90% of the total liver cancer burden [19,20]. In the
early stages, HCC lacks symptoms and exhibits a rapid growth of malignant cells, resulting
in the late diagnosis of the disease, and, therefore, at least one-quarter of HCC cases remain
idiopathic and can be attributed to NAFLD [21–23]. Unfortunately, no effective therapy for
NAFLD is currently available, and there is no scientific evidence to recommend specific
diets for this group of patients. This paper provides a review of fructose deleterious effects
on the liver and describes the molecular mechanisms involved.

Based on animal model experiments and clinical studies, fructose is recognized as
a major mediator of NAFLD [24–26]. A significant correlation between fructose intake
and the degree of fibrosis has been found [24,27]. Fructose is present in fruits and table
sugar (sucrose, which is 50% glucose and 50% fructose), and has a sweeter taste and lower
glycemic index than glucose. Its consumption has recently increased in many parts of the
world because of the growing use of high-fructose corn syrup in beverages and processed
food [21]. Studies on ancestral diets have shown that the average intake of fructose per
capita was around 2 kg per year, while the current global average consumption of fructose
per capita is 25 kg per year [28]. High-fructose corn syrup is made from corn using caustic
soda, hydrochloric acid, and enzymes and is classified according to the percentage of
fructose content (90, 55, and 42%). This powerful and cheap sweetener provides a long
shelf life and maintains long-lasting hydration in industrial bakeries [29]. In developing
countries, such as Mexico, its importation from the United States has significantly increased
recently, indicating a larger demand for added sugars in these emerging markets. Sugar-
sweetened beverages provide 60% of the daily sugar intake in the United States. Mexico
has the largest number of sugar-sweetened beverage consumers worldwide, where such
beverages provide 69% of the total added sugar in the daily diet [30,31]. Additionally,
NAFLD patients consume twice as many calories from beverages sweetened with high-
fructose corn syrup as healthy patients [32]. The World Health Organization recommends
reducing the intake of free sugars to less than 10% of the total daily energy intake because
of its association with metabolic diseases and cancer [32–34]. Furthermore, elevated
consumption of fructose represents a great metabolic risk for not only obese but also lean
individuals who have a high consumption of fructose-sweetened beverages [7,24,35].

2. Deleterious Metabolic Effects of Fructose
2.1. The Initial Physiological Impact of High Fructose Consumption

Fructose possesses an open-chain chemical conformation and is therefore much more
reactive than glucose [36]. Experimental studies have shown that a high fructose intake pro-
motes oxidative stress, inflammation, higher serum uric acid levels, hypertriglyceridemia,
higher systolic blood pressure, and insulin resistance [37,38] (Figure 1). In humans, the
physiological impact depends on the formulation in which the fructose is consumed; con-
sumption via solids and liquids differently affects microbiota composition, gut integrity,
and liver toxicity [39,40].

Sensory stimulation is the adaptive response to food intake through rapid physiolog-
ical processes, and one of the most studied is the cephalic-phase insulin response. Oral
fructose stimulates autonomic and endocrine responses, which downregulate the cephalic
phase of the insulin pathway in taste cells, reducing pancreatic insulin production [41].
Additionally, eating fructose, in contrast to glucose consumption, leads to increased hunger
and desire to eat because fructose decreases leptin and glucagon-like peptide 1 and in-
creases ghrelin levels in the serum [42]. Ghrelin activates the neuronal activity of neuropep-
tide Y, increasing food intake, and glucagon-like peptide 1 inhibition causes a decrease
in insulin secretion [43]. Increased dietary fructose intake significantly accelerated the
half-emptying time in the stomach compared to a similar intake of glucose [44]. Fructose, in
the mouth and gut, may impact eating behavior by sweet-tasting mechanisms [45]. Sweet
foods have powerful reinforcing effects mediated, in part, by dopamine receptors and,
on vulnerable individuals, may overwhelm the homeostatic control mechanisms of the
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brain, possibly inducing behavioral alterations observed in addiction, such as anxiety or
craving [46–48]. Regarding the hedonic value of fructose and the sum of all these events
that affect appetite control, more studies are required to understand the role of fructose in
the reward system.
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blood pressure, and insulin resistance, which are associated with the development or worsening of
liver diseases.

2.2. Fructose in the Intestine

The intestinal epithelium is the cell layer closest to the intestinal lumen and is com-
posed by 70–80% of enterocytes, Paneth cells, goblet cells, and intestinal stem cells. Studies
attribute the metabolic effects of fructose to enterocytes, cells specialized in absorption [49].

2.2.1. Intestinal Absorption of Fructose

The human small intestine expresses all the fructose-metabolizing enzymes; glucose
transporter protein member 5 (Glut5) is the main protein responsible for the absorption of
fructose into the cytosol [50,51]. Glut5, which mediates the active transport of fructose in
mice, is mainly found in the small intestine [52]. Glut2 (SLC2A2) is a non-specific glucose
transporter expressed in the intestinal basolateral membrane, which transports fructose
by a facilitated passive mechanism from the gut into the hepatic portal circulation [53].
In humans, fructose is converted to glucose when the intake is moderate (≤1 g/kg of
body weight), while high fructose consumption leads to the strong induction of Glut5
but not Glut2, thus increasing the fructose concentration and catabolism in the cytosol
of intestinal epithelial cells [36,54–56]. The deletion of Glut5 in mice has been shown
to reduce fructose absorption [57]. Glut5 is a transceptor, a transporter that binds to
its substrate and activates intracellular signaling that triggers multiple responses [58].
Thioredoxin-interacting protein (TXNIP) is a multifunctional intracellular protein that
coordinates signaling pathways during oxidative stress and inflammation [59]. TXNIP is
also a regulator of carbohydrate metabolism [60]. Glut5 binds to TXNIP, which leads to
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increased Glut5 gene expression and protein synthesis, facilitating its migration to the apical
membrane, thus improving fructose absorption [59]. In the cytoplasm of intestinal cells,
the ketohexokinase (KHK) enzyme, also called fructokinase, which has a high affinity for
fructose, phosphorylates fructose to fructose-1-phosphate, a toxic metabolite [61]. Excess
phosphorylated fructose is conducted to the hexosamine pathway, which increases O-
glucosamine-N-acetyl transferase activity and consequently upregulates the expression of
transforming growth factor-beta (TGF-β) [62]. There are two isoforms of KHK, KHK-C and
KHK-A; the latter has a ten-times-lower affinity for fructose than KHK-C and therefore
consumes ATP more slowly [7,63]. KHK-A may decrease fructose metabolism in the liver
and, thus, may inhibit the development of metabolic syndrome [36]. By contrast, KHK-
C overexpression promotes intestinal fructose clearance and increases fructose-induced
lipogenesis in the liver [61]. However, when the capacity for intestinal fructose clearance
is exceeded, the increased activity of KHK-C exhausts adenosine triphosphate (ATP)
and induces adenosine monophosphate deaminase activation, which results in marked
ATP depletion, leading to the accumulation of adenosine monophosphate and uric acid
production [64]. Preclinical evidence using human livers, KHK inhibition to improve
steatosis, inflammation and fibrosis in NAFLD [65].

2.2.2. Intestinal Production of Uric Acid by Fructose

Uric acid, a weak organic acid end-product of purine catabolism in humans, is an
antioxidant molecule that plays an essential role in the cardiac, vascular, and central
nervous systems because it can neutralize pro-oxidant free radicals, such as hydroxyl
radicals, hydrogen peroxide, and peroxynitrite [64]. Uric acid is produced in the liver and
gut and excreted through the urine and feces [64]. According to Yun et al., the duodenum
plays an important role in the synthesis and elimination of uric acid; one-third of the
total uric acid is excreted through the gut [66]. Thirty percent of uric acid is excreted via
ATP-binding cassette subfamily 2 (breast cancer resistance protein) on the luminal surface
of the intestine, but an imbalance in its production or excretion can increase uric acid levels,
favoring nicotinamide adenine dinucleotide (NADPH) oxidase (NOX) activation in the
liver, acting as a damage-associated molecular pattern (DAMP) [67,68].

2.2.3. Fructose Induces Lipogenesis and Oxidative Stress in the Intestine

Furthermore, a high fructose intake in an experimental model can activate carbohydrate-
responsive element-binding protein (ChREBP) and sterol-responsive element-binding pro-
tein (SREBP), which induce fructolytic and lipogenic enzymes, respectively [69]. ChREBP
is a transcription factor activated by a high-fructose diet, improving the KHK and Glut5
capacity for fructose absorption [70]. SREBP is a family of transcription factors consisting
of three isoforms that regulate the homeostasis of lipids. In enterocytes, apolipoprotein in-
duces the transcription of SREBP1c, which improves the stability of ApoB-48, the structural
protein for chylomicrons, enhances microsomal triglyceride transfer protein, and augments
lipogenesis [69]. This uncontrolled lipid metabolism and lower clearance of chylomicrons
in the intestinal cells, together with uric acid overproduction, is responsible for increased
cardiometabolic risk and leads to the development of NASH [70–72].

NASH models showed that cytochrome P450 2E1 activity is linked to increased
intestinal inflammation during fructose consumption [73]. Cytochrome P450 2E1 plays a
critical role in the metabolism of fatty acids. Furthermore, NASH patients have increased
cytochrome P450-2E1 and inducible nitric oxide synthase, which cause the nitration of
intestinal tight and adherent junction proteins [74]. The disruption of tight junction proteins
and elevated apoptosis of enterocytes, evidenced by the upregulation of caspase 3 and p-
JNK after fructose exposure, contributes to endoplasmic reticulum stress, the accumulation
of unfolded or misfolded proteins, and the dysfunction of the epithelial barrier, which
result in increased gut permeability, allowing lipopolysaccharides (LPS) to translocate from
the gut lumen to the portal tract, triggering an inflammatory response in the liver [74].
Ca2+ absorption is one of the most important intestinal functions, and glutathione (GSH)
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is essential for this process [75]. γ-L-glutamyl-L-cysteinylglycine, or GSH, is the main
intracellular cofactor protecting against oxidative stress in the gut, and its biosynthesis
occurs in the cytosol through ATP-dependent reactions [76]. The antioxidant activity of
GSH is catalyzed by GSH peroxidase (GPx), which reduces hydrogen peroxide and lipid
peroxides as GSH is oxidized to GSSG [77]. In animal models that use fructose-rich diets,
the intestinal absorption of Ca2+ is decreased, and Ca2+ receptors are depleted, which
leads to decreased antioxidant defenses (GPx, catalase, superoxide dismutase, etc., are
exhausted), and endoplasmic reticulum stress occurs [75]. Similarly, increased fructose
phosphorylation triggers ATP depletion, as mentioned earlier, inhibiting GSH restoration.

2.2.4. Fructose and the Microbiota

The composition and function of the microbiota are regulated by multiple factors,
such as diet and physical activity. Recent reports show that fructose consumption alters
the gut microbiota and their bacterial metabolites, in a manner that promotes the devel-
opment and progression of NASH [78]. Excessive fructose consumption decreases the
expression of intestinal tight junction proteins, such as zonula occludens 1, junctional
adhesion molecule A, occludin, claudin, β-catenin, and E-cadherin [74,79]. This environ-
ment generates dysbiosis by increasing Bacteroides, Proteobacteria, Enterobacteria, Escherichia,
Blautia producta, and Bacteroides fragilis while decreasing Actinobacteria, Akkermansia, Ver-
rucomicrobia, Coprococcus eutactus, and Lactobacillus, increasing the loss and blebbing of
the laminar propria, which triggers inflammation in the small intestine, and, due to the
increase in gut permeability, toxic bacterial metabolites may reach the liver, contributing to
inflammation in NASH [29,36,74,80,81]. Similarly, diets enriched with fructose alter the
composition of the short-chain fatty acids in the gut, inducing a high microbial production
of butyrate, acetate or propionate by the intestinal microbiota, therefore increasing the pro-
duction of acetyl-CoA from acetate, which contributes to lipogenesis [82]. Ethanol is also
an important fructose metabolite that has been associated with NAFLD. Patients suffering
from NAFLD who abuse alcohol exhibit more severe liver injury than those with any of
these factors individually [83]. It is noteworthy that Escherichia, Bacteroides, and Clostridium
bacteria can produce ethanol. In patients with NAFLD, the activity of alcohol-metabolizing
enzymes, such as alcohol dehydrogenase, and the microbiota are dysregulated [84]. As
a consequence, increased blood ethanol concentrations and/or ethanol metabolites can
alter the host’s metabolism, generate reactive oxygen species, and active inflammatory
pathways, suggesting that microbiota that produce alcohol can have important effects on
the evolution of NAFLD [85–87]. Moreover, gut dysbiosis triggered by excessive fructose
intake leads to intestinal bacterial overgrowth, a strong decrease in microbial diversity,
and increased translocation of bacterial products and cytotoxins, stimulating inflammatory
pathways in experimental and human NAFLD [88,89] (Figure 2). These results indicate that
high fructose in the intestine plays a major role in NAFLD development. The dysregulated
microbiota, disruption of intestinal tight junction proteins, elevated uric acid production,
and toxic bacterial metabolites accelerate NASH progression. The deleterious effects of
fructose in the intestine could be ameliorated by the development of selective inhibitors of
KHK-C, the limiting enzyme in fructose metabolism.
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2.3. Fructose in the Liver

In humans, 70% of fructose is metabolized by the liver [90]. A diet rich in fructose
induces the hepatic de novo synthesis of fatty acids and triglyceride accumulation [7,38,90].
Therefore, fructose has been postulated as a key factor for the development of NASH. Once
fructose exceeds the intestinal clearance capacity, it is driven to the portal vein, where
a fructosemic state strongly and quickly induces mechanisms involved in its overflow
to the liver, which is the principal organ for fructose metabolism [7,38]. However, the
mechanisms of the hepatic cell types (hepatocytes, hepatic stellate cells (HSCs), and Kupffer
cells) that are involved in the metabolism of fructose consumed in large quantities are
poorly understood [69]. In the liver, fructose is catabolized faster and is more lipogenic than
glucose. In particular, chronic high fructose consumption induces the aldolase B enzyme,
which breaks down fructose to dihydroxyacetone phosphate and D-glyceraldehyde. Then,
triokinase stimulates the phosphorylation of D-glyceraldehyde to produce pyruvate and
acetyl-CoA, promoting lipid dysregulation [36,54,91] (Figure 3).

2.3.1. Ketohexokinase and Fructose

The liver plays the most important role in carbohydrate metabolism. The principal
isoform of KHK in the liver is KHK-C, which phosphorylates fructose rapidly and without
any negative feedback control. Similar to in mice, KHK expression is elevated in obese
patients with advanced liver disease compared to in obese subjects without fatty liver [81].
In humans, KHK inhibition has been demonstrated to improve steatosis, ballooning degen-
eration, inflammation, and fibrosis in the liver [92]. In KHK-knockout mice, ATP citrate
lyase (ACLY), acetyl-CoA carboxylase (ACC)-1, and fatty acid synthase (FASN) are de-
creased by fructose administration [81]. ACLY is an enzyme that links carbohydrate to
lipid metabolism by converting citrate to acetyl-CoA for fatty acid and cholesterol biosyn-
thesis. ACLY inhibition protects against hepatic steatosis, dyslipidemia, and associated
complications such as atherosclerosis [93]. ACC-1 coordinates the synthesis of fatty acids
in the liver and generates a pool of malonyl-CoA used by FASN to generate palmitate [94].
ACC-1 inhibition reduces lipotoxicity in hepatocytes and prevents HSC activation, which
significantly reduces fibrosis in NASH [94] (Figure 3).
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Moreover, increased KHK-C activity exhausts adenosine triphosphate (ATP), generating adenosine diphosphate (ADP),
which is converted to adenosine monophosphate (AMP). In turn, AMP is transformed to inosine monophosphate (IMP),
increasing purine production. Xanthine oxidoreductase (XO) produces oxygen reactive species (ROS), hydrogen peroxide
(H2O2), 4-hydroxynonenal (4-HNE), and xanthine. Then, xanthine is metabolized, resulting in the overproduction of uric
acid and ROS, which induce oxidative stress. Uric acid activates nuclear factor-κB (NF-κB), triggering inflammation.

2.3.2. Toll-Like Receptor-4 and Fructose

Kupffer cells play a central role in liver damage induced by fructose. The elevated
endotoxemia and oxidative stress produced by fructose intake promote hepatic Toll-like
receptor (TLR)-4 activation. The TLR-4/MyD88 signaling pathway in liver parenchymal
cells plays a pivotal role during NASH development [85,87]. As previously mentioned,
fructose causes gut-barrier deterioration through the disruption of tight-junction proteins.
Endotoxins produced by Gram-negative bacteria alter intestinal permeability and cause
bacterial translocation. Mice chronically fed fructose were found to have increased levels of
endotoxins in portal blood and unregulated inflammatory mediators in Kupffer cells [95].
LPS and other bacterial toxins cross the gut barrier and bind to TLR-4 on the macrophages or
Kupffer cells’ plasma membranes, which activates the proinflammatory signaling pathway,
with a consequent increase in the expression of proinflammatory cytokines including tumor
necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-1beta (β) [78,96]. Specifically, the
binding of LPS to TLR-4 on macrophages activates the nuclear factor kappa B (NF-κB)
signaling pathway via the adaptor protein MyD88 and induces TNF-α expression and
secretion [97]. TNF-α also stimulates fructose-driven steatosis in the human liver and
induces the expression of the SREBP1-regulated enzymes ACC-1, FASN, and SREBP1c at
the mRNA level [97]. The NF-κB/MyD88 pathway drives inflammasome activation, which
is a cytosolic regulator of inflammation that, through the caspase-2 pathway, activates
SREBP1c to induce ACC-1 and FASN, contributing to the exacerbation of hepatic steatosis
and inflammation in NAFLD [97]. The deleterious mechanism induced by the binding of
cytotoxic bacterial metabolites to TLR-4 is shown in Figure 4.
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Figure 4. Molecular mechanisms by which fructose induces nonalcoholic steatohepatitis. Increased intestinal permeability
(“leaky gut”) and dysbiosis produced by high fructose intake promote lipopolysaccharide (LPS) translocation from the
intestine to the portal blood to reach the liver. Then, LPS activates the Toll-like receptor (TLR)-4/MyD88 signaling pathway,
inducing tumor necrosis factor-alpha (TNF-α) through the nuclear translocation of transcription nuclear factor kappa
B (NF-κB), which reinforces the inflammatory process through NLRP3 inflammasome activation and the subsequent
maturation of interleukin (IL)-1 beta (β), caspase 1, and IL-18. Additionally, TNF-α and caspase 1 promote sterol-responsive
element-binding protein 1 c (SREBP1c) activation and nuclear factor E2-related factor 2 (Nrf2) inhibition, while IL-6 drives
hepatic stellate cell (HSC) activation, an orchestrated interaction of various molecular factors, leading to oxidative stress,
inflammation, steatosis, and fibrogenesis, which pave the way to nonalcoholic steatohepatitis (NASH) development.

TLR-4 promotes NF-κB signaling, and this pathway upregulates the transcription of
the NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and proin-
flammatory cytokines such as IL-1β and TNF-α [96,98]. Studies performed in mice models
have shown that fructose triggers the infiltration/activation of macrophages/Kupffer
cells, causing increased levels of ROS, and induces the necrosis of hepatocytes through
TNF-α and IL-6 upregulation (90). The factors underlying the progression from NAFLD
to NASH are multifactorial, but NLRP3 inflammasome activation is critically important.
Cytokine release causes hepatocyte death along with activation of HSCs and Kupffer cells.
The NLRP3 inflammasome, upregulated by fructose overfeeding, is a sensor of danger
signals, DAMPs, uric acid crystals, or derivatives that act like DAMP molecules and in-
duce inflammation [99–101]. The NLRP3 inflammasome recruits apoptosis-associated
speck-like protein and pro-caspase 1, leading to the maturation and secretion of IL-1β and
IL-18 [102,103]. Caspase 1 is necessary for the activation of the NLRP3 inflammasome,
as an executioner molecule; then, IL-1β is matured, triggering HSC activation, and thus,
fibrogenesis ensues [104]. Indeed, the levels of IL-1β correlate with the mRNA of collagen
1, a key profibrogenic gene [105,106]. The activation of the NLRP3 inflammasome is a syn-
chronized interaction between hepatocytes and Kupffer cells that results in dyslipidemia
and lipid accumulation in hepatocytes [107]. High fructose administration to rodents
increases TXNIP levels and malondialdehyde and decreases superoxide dismutase, trigger-
ing oxidative stress, which is sensed by TXNIP, therefore inducing NLRP3 inflammasome
activation [103]. The fructose–ROS–TXNIP–NLRP3 inflammasome axis is crucial in the
pathogenesis of uric-acid-induced inflammatory responses [108] (Figure 5).
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Figure 5. The fructose–pyroptosis axis. High fructose intake induces uric acid production in the intestine and liver,
increasing reactive oxygen species (ROS). The resulting oxidative stress promotes the intracellular translocation of the
thioredoxin-interacting protein (TXNIP) in the mitochondria; then, the interaction between TXNIP and NOD-like receptor
family pyrin domain containing 3 (NLRP3) leads to NLRP3 inflammasome activation. The assembly of the inflammasome
machinery enhances the pyroptosis of hepatocytes by the gasdermin D pathway and leads to the activation of Kupffer
cells and transforming growth factor-beta (TGF-β) secretion, which results in HSC activation, triggering fibrogenesis in
nonalcoholic steatohepatitis (NASH).

Wree et al. found that NLRP3 inflammasome activation results in severe liver inflam-
mation and fibrosis via the pyroptotic signaling pathway in hepatocytes [109]. Pyroptosis
is a unique form of programed cell death where a plasma membrane pore formed by
gasdermin D allows the release of the cellular content, leading to the upregulation of proin-
flammatory cytokines and profibrogenic factors such as IL-1β, connective tissue growth
factor, and TGF-β, triggering the activation of HSCs, leading to the increased production
and secretion of scar tissue proteins [109]; as a result, inflammation is exacerbated and
liver fibrosis ensues [103,110]. Inflammasome activation by fructose could also be the
result of increased Glut5 activity, which induces TXNIP to form the activated complex of
ASC with NLRP3, consequently inducing dyslipidemia, hepatic inflammation, and lipid
accumulation [111]. In addition, there is evidence indicating that TXNIP is upregulated in
the liver by the master nutritional regulator ChREBP [112].

2.3.3. Nuclear Factor E2-Related Factor 2 and Fructose

Increasing evidence indicates that nuclear factor E2-related factor 2 (Nrf2) plays a
complex, multicellular role within the processes of liver inflammation and fibrosis through
the induction of its target genes [113,114]. Nrf2 is considered to act as the first line of
defense against cellular damage due to oxidative stress [115]. It upregulates the expression
of protective and antioxidant genes, upregulating the GSH biosynthesis and thioredoxin
systems, to maintain cellular redox homeostasis in response to oxidative stress and other
insults; therefore, its inactivation can exacerbate oxidant, inflammatory, and profibrotic
processes [113,116,117]. Interestingly, oxidative stress, inflammation, and fibrosis are linked
by several molecular signaling pathways that have been recently reviewed elsewhere [110].
The cytoplasmic protein repressor Kelch-like ECH-associated protein-1 (Keap1) regulates
Nrf2′s function [110]. Keap1 acts as a sensor for oxidative stress, and under stress condi-
tions, the sequestration complex dissociates, allowing Nrf2 to translocate to the nucleus,
where it binds to the antioxidant response element and induces the expression of a battery
of antioxidant genes [110]. In the liver, the activation of Nrf2 attenuates injuries of diverse
etiologies, including chronic diseases such as NAFLD, by inducing heme oxygenase-1 (HO-
1) expression and improving GSH efficacy [116,117]. Nrf2 activation prevents metabolic
dysregulation and insulin resistance in mice through the repression of hepatic enzymes
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such as FASN and ACC and protects against hypertriglyceridemia and fatty liver disease;
this protection is abolished when Nrf2 is deleted [118]. Acute fructose intake upregulates
the expression of Nrf2 pathways, but excessive consumption through high-fructose diets in-
creases reactive species and oxidative damage and downregulates Nrf2 and GSH [119,120].
MiRNAs are non-coding RNAs that regulate genes, silencing or promoting their expression
through modulating mRNA transcription. MicroRNA (miRNA)-200a is reported to target
Keap1, thereby activating Nrf2, and high fructose decreases miRNA-200a, which inhibits
the Nrf2 antioxidant response [121]. The inhibition of KHK in the presence of fructose is
accompanied by an increase in Nrf2 and the cytoprotective expression of HO-1, NAD(P)H
dehydrogenase (quinone) 1 (NQO-1), and thioredoxin reductase 1 [92,117]. Mice deficient
in Glut8 (SLC2A8), a member of the facilitated hexose transporter superfamily, have im-
paired hepatic first-pass fructose metabolism [122]. Transcriptomic analysis reveals that the
excessive consumption of fructose induces mechanisms that increase oxidative stress, such
as aryl hydrocarbon receptor downregulation. The aryl hydrocarbon receptor modulates
the expression of various biotransformation enzymes classified as phase I and II enzymes;
this receptor also has crosstalk with NF-κB [123]. Therefore, fructose intake, which causes
the downregulation of xenobiotic-metabolizing enzymes and Nrf2 transcription, also leads
to the upregulation of NF-κB [124–126].

2.3.4. Carbohydrate Responsive Element-Binding Protein and Fructose

ChREBP is an essential transcription factor involved in hepatic stress that upregu-
lates the ACLY, ACC-1, and FASN enzymes involved in hepatic de novo lipogenesis and,
therefore, is a central factor in NAFLD [127,128]. However, the liver-specific deletion of
ACLY fails to suppress fructose-induced lipogenesis [82]. By contrast, ACC-1 inhibition
was associated with a decrease in hepatic de novo lipogenesis and insulin resistance and
increased fatty acid β-oxidation [94]. Moreover, the inhibition of ACC-1 reduced the acti-
vation of TGF-β and fibrogenesis because HSC activation requires this factor and de novo
lipogenesis [94]. The liver-specific ablation of ChREBP in rodents fed an elevated-fructose
diet causes severe transaminitis and hepatomegaly with glycogen accumulation [129]. In
addition, ChREBP induces the expression of fibroblast growth factor 21 (FGF21), which
ameliorates dyslipidemia in humans [129]. FGF21 activates lipolysis and increases fatty
acid oxidation in the liver through the activation of peroxisome proliferator-activated
receptor alpha (PPAR-α). At the molecular level, these changes were associated with
increases in the liver X receptor, which increases SREBP and decreases PPAR-α activa-
tion [130]. In humans, the expression of PPAR-α negatively correlates with the presence of
NAFLD and the severity of steatosis [131]. PPAR-α, which is mainly activated during the
fasted state and regulates the metabolism of lipids and inflammation, is primarily found
in hepatocytes, and fatty acids resulting from the metabolism of fructose are oxidized to
produce acetyl-CoA by peroxisomes and mitochondria through PPAR-α [76]. PPAR-α also
stimulates the mitochondrial β-oxidation pathway and induces inhibitor kappa B (IκB)α
in hepatocytes, which prevents the translocation of nuclear transcription factor kappa B
(NF-κB) to the nucleus, a well-known proinflammatory signaler [78,96]. IκBα upregulates
lipid metabolism and reduces inflammation, which improves NASH pathology [132]. By
contrast, in FGF21-knockout mice, the activation of HSCs and fibrogenesis were increased,
evidenced by increased levels of TGF-β, matrix metalloproteinases, and tissue inhibitors of
metalloproteinases [129].

The respiratory chain of the mitochondria produces ROS, but ROS are decreased
by antioxidant enzymes to prevent the deleterious effects of free radicals on important
biological molecules. Long-term elevated fructose intake produces oxidative alterations in
liver cells, particularly in the lipid components of mitochondria, and diminished super-
oxide dismutase and catalase activities, which are important enzymes for counteracting
mitochondrially produced ROS [133,134]. Fructose intake diminishes the antioxidant ma-
chinery of mitochondria, increasing oxidative stress, which causes the lipid peroxidation of
polyunsaturated fatty acids, and allows the attack of free radicals on mitochondrial DNA;
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as a result, mitochondrial biogenesis is also affected [133]. Mitochondrial dysfunction
results in low fatty acid oxidation, decreased hepatic ATP levels, and increased hepatic
oxidative stress [135,136]. All these effects are, at least in part, regulated through PPAR-α
inhibition. On the other hand, fructose oxidation also produces carbonyl compounds such
as glycolaldehyde, a metabolite of glyceraldehyde, and glyoxal, the major product of glyco-
laldehyde oxidation, which is associated with cellular injury and dysfunction, including
the inhibition of mitochondrial respiration and induction of mitochondrial permeability
transition, leading to cell death [33,67,137].

Additionally, the consumption of fructose but not glucose increases apolipoprotein
CIII through the ChREBP pathway, increasing triglyceride and low-density lipoprotein
levels upon fructose metabolism, and represents a significant contributor to cardiometabolic
risk [138,139]. These observations suggest that ChREBP plays an important role in the
pathogenesis of NASH; however, the suggested protective role of ChREBP deserves further
investigation [127].

2.3.5. Sterol-Responsive Element-Binding Protein and Fructose

The SREBP protein is generated in the endoplasmic reticulum as a complex with
SREBP cleavage-activating protein (SCAP). SREBP1c is mainly produced in the liver and
is activated by changes in nutritional status [140]. As in the intestine, fructose in the liver
also contributes to increasing SREBP1c expression, which plays a pivotal role in lipid
metabolism [138,141]. The deleterious effects on lipid metabolism of excessive fructose
consumption are fasting and postprandial hypertriglyceridemia, and increased hepatic syn-
thesis of lipids, very-low-density lipoproteins (VLDLs), and cholesterol [138,139,142,143].
It has been shown that the elevated levels of plasma triacylglycerol during high fructose
feeding may be due to the overproduction and impaired clearance of VLDL, and chronic
oxidative stress potentiates the effects of high fructose on the export of newly synthesized
VLDL [144]. Moreover, in humans diets high in fructose have been observed to reduce
postprandial serum insulin concentration; therefore, there is less stimulation of lipoprotein
lipase, which causes a greater accumulation of chylomicrons and VLDL because lipopro-
tein lipase is an enzyme that hydrolyzes triglycerides in plasma lipoproteins [145]. High
fructose consumption induces the hepatic transcription of hepatocyte nuclear factor 1,
which upregulates aldolase B and cholesterol esterification 2, triggering the assembly and
secretion of VLDL, resulting in the overproduction of free fatty acids [146]. These free fatty
acids increase acetyl-CoA formation and maintain NADPH levels and NOX activation [146].
NOX, which uses NADPH to oxidize molecular oxygen to the superoxide anion [140], and
xanthine oxidoreductase (XO), which catalyzes the oxidative hydroxylation of hypoxan-
thine to xanthine and xanthine to uric acid, are the main intracellular sources of ROS in the
liver [147,148]. NOX reduces the bioavailability of nitric oxide and thus impairs the hepatic
microcirculation and promotes the proliferation of HSCs, accelerating the development
of liver fibrosis [147,148]. ROS derived from NOX lead to the accumulation of unfolded
proteins in the endoplasmic reticulum lumen, which increases oxidative stress [146].

In hepatocytes, cytoplasmic Ca2+ is an important regulator of lipid metabolism. An
increased Ca2+ concentration stimulates exacerbated lipid synthesis [145]. A high fruc-
tose intake induces lipid accumulation, leading to protein kinase C phosphorylation,
stressing the endoplasmic reticulum [149]. Elevated activity of the protein kinase C path-
way has been reported to stimulate ROS-generating enzymes such as lipoxygenases. A
prolonged endoplasmic reticulum stress response activates SREBP1c and leads to insulin re-
sistance [140,150]. Calcium signaling is also important for liver regeneration, and increased
intracellular calcium homeostasis is known to be involved in tumor initiation, progres-
sion, and metastasis; therefore, the alteration of calcium homeostasis by high fructose
consumption could be an important mechanism in the development of cancer [151,152].

Some evidence indicates that there is a synergy between SREBP activation with
the stimulation of the inflammatory pathway mediated by NF-κB and cholesterol home-
ostasis. Activated NF-κB increases SCAP expression, resulting in the activation of the
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SCAP–SREBP complex, triggering an exacerbated inflammatory response and cholesterol
accumulation [153]. Furthermore, some reports indicate that fructose supplementation
leads to insulin receptor downregulation because protein-tyrosine phosphatase 1B activity
decreases the phosphorylation of the insulin receptor and induces protein phosphatase
2A, increasing SREBP1c, aggravating hepatic insulin resistance via intricate metabolic
pathways [88]. Extensive reviews have been published on the lipogenic effect of fruc-
tose [70,135,154]; however, the deleterious effects of fructose in the liver go beyond the
steatotic effect. Hepatic cholesterol accumulation is associated with inflammatory cell
infiltration [155]. Dietary fructose induces strong SREBP1c activation, and the consequent
palmitate production causes lipotoxicity in the endoplasmic reticulum; these events are
the leading factors responsible for the greater Nrf2 inhibition and more intense hepatic
inflammatory response driven by NLRP3 inflammasome activation [107,156].

Some authors have proposed “multiple parallel hit” theories to explain the develop-
ment of the metabolic disease NAFLD, the first hit being the accumulation of fat in the liver
(mainly triglycerides), followed by multifactorial processes that involve oxidative stress,
inflammation, and hyperuricemia as the main factors [157,158]. DNA methylation is an
epigenetic mechanism that decreases gene expression. Accumulating evidence suggests
that excessive fructose intake drives epigenetic alterations, including the hypermethy-
lation of the carnitine palmitoyl transferase 1A and PPAR-α genes [159,160]. Increased
malonyl-CoA, which is synthesized by the enzyme acetyl-CoA carboxylase, inhibits carni-
tine palmitoyl transferase 1A, which is the rate-limiting step of the oxidation of lipids in
the mitochondria, leading to the disruption of β-oxidation and accumulation of hepatic
lipids, particularly fatty acids such as diacylglycerols and ceramides, which inhibit the
insulin signaling pathway through protein kinase C activation and the inhibition of the
protein kinase AKT, respectively [102,160] (Figure 3).

This scenario can be worsened because high-glycemic diets induce the conversion
of glucose to fructose by the aldose reductase enzyme. Fructose can be endogenously
synthesized in the body via the polyol pathway, a two-step conversion of glucose to
fructose, which is relatively inactive under physiological conditions [161,162]. In addition,
in high-glycemic diets, glucose is metabolized by fructose-3-phosphokinase to a highly
reactive molecule, fructose-3-phosphate, causing the formation of advanced glycation end
products, which can trigger inflammatory pathways through the activation of signaling
pathways such as NF-κB and mitogen-activated protein kinases, aside from increasing
lipogenesis and the disruption of β-oxidation, independently of caloric intake and weight
gain [135,163,164]. On the other hand, fructose can be released from the liver to the systemic
circulation and filtered and excreted by the kidneys, a decisive organ for fructose disposal,
increasing metabolic abnormalities [165,166].

2.3.6. Uric Acid and Fructose

KHK utilizes ATP to phosphorylate fructose to form fructose-1-phosphate, leading
to intracellular phosphate exhaustion, which in turn activates the enzyme adenosine
monophosphate (AMP) deaminase, which converts AMP to inosine monophosphate (IMP)
(Figure 3). Consequently, xanthine is formed by the XO enzyme, which is associated with
the production of large amounts of highly cytotoxic ROS as well as hydrogen peroxide [72].
Chronic fructose consumption stimulates purine nucleotide turnover, which culminates
in the synthesis of uric acid from xanthine by XO, leading to uric acid accumulation
within hepatic cells [167]. 4-Hydroxynonenal, which is formed by the attack of ROS on
biological membranes, induces XO, a key enzyme in purine and free radical metabolism;
in turn, high activity of XO may further promote oxidative stress in the liver [168,169].
Increased systemic oxidative stress is recognized as an essential cause of elevated uric acid
and inflammation [170]. Uric acid is a potent inducer of the inflammatory response by
activating NF-κB through inducing the phosphorylation of IKK and IκBα, followed by the
subsequent stimulation of NF-κB activity [108,171,172]. The systemic effects of uric acid
are related to endothelial injury and dysfunction. Uric acid directly inhibits endothelial
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nitric oxide synthase; the impairment of nitric oxide synthesis decreases vascular smooth
muscle relaxation and increases systolic blood pressure, leading to hypertension [173].

Uric acid also promotes fat synthesis within hepatocytes through the translocation of
the NADPH oxidase subunit 4 to the mitochondria, increasing superoxide formation [174].
In turn, this increase in ROS inhibits the enzyme aconitase, which catalyzes the conver-
sion of citrate to isocitrate in the mitochondrial matrix in the Krebs cycle and promotes
citrate accumulation; then, citrate is converted to acetyl-CoA for de novo lipogenesis by
FASN [174]. Oxidative stress and uric acid are amplifying actors that activate the nuclear
factor of activated T cells, which plays a role in the regulation of inflammation and up-
regulates aldose reductase via the polyol pathway, leading to hepatic steatosis [162]. Oral
and coworkers (2019) found a positive correlation between the degree of liver damage and
uric acid concentration in non-obese and young patients with NAFLD, who had higher
uric acid concentrations than the healthy control group [175]. Some reports showed that
uric acid in the liver promotes oxidative stress and inflammation through the inhibition
of Nrf2 and overproduction of thioredoxin, which results in NLRP3 inflammasome acti-
vation [103,176,177]. In NAFLD patients who have fatty liver but no inflammation, the
expression of NLRP3 components is increased, but the inflammasome is not activated;
however, in patients with fatty liver and inflammation, the NLRP3 inflammasome complex
is assembled and functional [106]. Therefore, the activation of the NLRP3 inflammasome
is associated with liver disease progression from simple fatty liver to NASH with inflam-
mation and fibrosis [106]. Additionally, increased serum uric acid levels are indicative of
a greater probability of elevated serum alanine aminotransferase and gamma-glutamyl
transferase, two markers of hepatic necroinflammation, and are associated with a greater
risk of cirrhosis-related hospitalization or death [64]. These studies support the role of
uric acid as a risk marker of liver damage via NLRP3 inflammasome activation; moreover,
it represents a non-invasive marker and a possible predictor of NASH. These findings
suggest that activation of NLRP3 inflammasome induces a fibrogenic micro-environment
in the liver. Therefore, the inhibition of NLRP3 inflammasome is a promising therapeutic
tool to ameliorate hepatic fibrosis. In addition, some antioxidants have been shown to
block the NRLP3 inflammasome signaling pathway and thus may be helpful to decrease
NASH development.

2.3.7. MicroRNAs and Fructose

Novel evidence suggests that miRNAs play an important role in liver health and
disease. The expression of miRNAs can be modified by increasing fructose intake and/or
uric acid production. Rats fed a high-fructose diet have decreased miRNA-122, miRNA-
451, and miRNA-27a compared to control-fed rats [178]. Additionally, miRNAs in mice
such as miRNA-34a, miRNA-335, miRNA-221, and miRNA-9 are upregulated in the liver
by high fructose intake [179]. There is cumulative evidence that some miRNAs regulate
several signaling pathways, leading to oxidative stress and inflammation in the liver. For
example, in humans the elevation of miR-214 levels decreases glutathione reductase and
cytochrome P450 activities; consequently, hepatic oxidative stress is augmented [180]. The
attenuation of miRNA-199a-5p produces apoptosis associated with endoplasmic reticulum
stress [181]. miRNA-223 is expressed in the liver and prevents inflammation, the activation
of HSCs, and fibrosis through disrupting the activation of the NLRP3 inflammasome [182].
In addition, it has been observed through an in vitro transfection assay that miRNA-33 is re-
sponsible for the regulation of SREBP1 after fructose ingestion [183]. Mice with miRNA-29a
overexpression show decreased DNA oxidative damage in an NAFLD model, suggesting
its role in neutralizing oxidative stress [184]. Furthermore, miRNA-29a contributes to a
reduction in NF-κB activity, which leads to a decrease in the inflammatory process and
provides protection against fibrosis by suppressing TGF-β and SMAD3, the canonical sig-
naling pathway for HSC activation. MiRNA-149-5p is induced by uric acid in hepatocytes,
causing lipid accumulation via the upregulation of FGF21, a protein implicated in lipid
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metabolism that is considered an anti-metabolic-syndrome hormone, therefore playing an
important role in the prevention of NAFLD development [57].

2.3.8. Cancer and Fructose

In 1924, Otto Warburg described that cancer cells could obtain energy by fermenting
glucose into lactate, and this is called the “Warburg effect” [185]. Fructose promotes the
Warburg effect, increasing glycolysis and suppressing fat oxidation, which may promote
mitochondrial dysfunction, tumor growth, and metastasis [185]. Fructose-rich diets can
increase HCC incidence because it was found that fructokinase and Glut5 are highly
expressed in diverse types of cancer, and that the upregulation of Glut5 correlates with a
poor prognosis in HCC [186,187]. Importantly, several investigators have suggested that
high fructose intake not only promotes cancer development in various tissues but also
proposed that endogenously produced fructose in cancer cells could potentially stimulate
cancer growth [185]. The key enzyme that stimulates endogenous fructose production is
aldose reductase in the polyol pathway. Fructose also induces metabolic changes via KHK-
A, promoting the pentose phosphate pathway, the development of HCC [188], and the
serine-to-glycine synthesis pathway for HCC growth [189]. Notably, fructose can be utilized
by cancer cells as an energy source and, subsequently, for the synthesis of nucleic acids
through the pentose phosphate pathway. Fructose also promotes colon cancer metastasis
to the liver via the KHK–aldolase B pathway, and a high-fructose diet increases colorectal
liver metastasis [190]. The silencing of aldolase B or the restriction of fructose in the
diet suppresses liver metastasis from colorectal cancer [190,191]. Moreover, as mentioned
above, uric acid is a by-product of fructose metabolism that stimulates the production
of mitochondrial ROS and aldolase. In clinical studies, high uric acid is considered a
significant risk factor for active hepatocarcinogenesis [191]. Fructose metabolism during
carcinogenesis elevates oxidative stress and inflammation [192]. However, the effects of
endogenous or exogenous fructose in cancer need to be investigated in more detail.

3. Conclusions and Perspectives

Research on the impact of human nutrition on health and disease is vast. However,
the molecular mechanisms involved in nutrition’s effects on human diseases are far from
being fully understood. Plenty of evidence indicates that fructose and its metabolites
play a significant role in the development of liver disease. The multiple mechanisms that
fructose triggers have placed it in the eye of the hurricane in metabolic disorders of the
liver. Although direct extrapolation from animal findings to humans is not recommended,
basic research has illuminated some of the cellular and molecular mechanisms that are
involved in the deleterious effects of the overconsumption of fructose, including oxidative
stress, inflammation, higher serum uric acid levels, hypertriglyceridemia, higher systolic
blood pressure, insulin resistance, fibrosis, cirrhosis, and HCC. Fructose-induced hepatic
injury depends strongly on the activation of lipogenesis and inflammatory signaling
pathways, which, in turn, trigger fibrosis and HCC development. Free radical and uric acid
overproduction induced by excessive fructose consumption also play pivotal roles in fatty
liver, inflammation, fibrosis, and HCC progression through a variety of signaling pathways.
These observations provide mechanistic information on NASH development and may
be used for the development of new drugs and therapies. Several anti-inflammatory,
antifibrotic, and anticancer targets are now known in the pathogenic pathways involved
in fructose overconsumption. However, more in-depth studies dealing with the involved
molecular mechanisms of fructose-driven fibrogenesis are required to find new therapeutic
targets for drug development to prevent hepatic fibrosis.

The alarming increase in metabolic syndrome and comorbidities can only be atten-
uated if the consumption of fructose, mainly in soft beverages, is significantly reduced
worldwide. In addition, an active lifestyle incorporating the practice of sports seems to be
useful for fighting the sedentarism associated with obesity. Patients suffering from hepatic
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maladies should be recommended to reduce fructose consumption to prevent aggravation
of their condition because fructose may act as a conjoint pathological agent.
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