Investigation of the Detailed AMPylated Reaction Mechanism for the Huntingtin Yeast-Interacting Protein E Enzyme HYPE
Abstract
:1. Introduction
2. Results
2.1. AMPylation Mechanism of HYPE Complexed with BiP
2.2. The Exact Role of Glu234 in AMPlation
3. Discussion
4. Computational Details
4.1. Models
4.2. Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Casey, A.K.; Orth, K. Enzymes Involved in AMPylation and deAMPylation. Chem. Rev. 2018, 118, 1199–1215. [Google Scholar] [CrossRef] [PubMed]
- Ham, H.; Woolery, A.R.; Tracy, C.; Stenesen, D.; Krämer, H.; Orth, K. Unfolded protein response-regulated Drosophila Fic (dFic) protein reversibly AMPylates BiP chaperone during endoplasmic reticulum homeostasis. J. Biol. Chem. 2014, 289, 36059–36069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanyal, A.; Chen, A.J.; Nakayasu, E.S.; Lazar, C.S.; Zbornik, E.A.; Worby, C.A.; Koller, A.; Mattoo, S. A novel link between fic (filamentation induced by cAMP)-mediated adenylylation/AMPylation and the unfolded protein response. J. Biol. Chem. 2015, 290, 8482–8499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preissler, S.; Rato, C.; Chen, R.; Antrobus, R.; Ding, S.; Fearnley, I.M.; Ron, D. AMPylation matches BiP activity to client protein load in the endoplasmic reticulum. eLife 2015, 4, 1–33. [Google Scholar] [CrossRef] [PubMed]
- Preissler, S.; Rato, C.; Perera, L.A.; Saudek, V.; Ron, D. FICD acts bifunctionally to AMPylate and de-AMPylate the endoplasmic reticulum chaperone BiP. Nat. Struct. Mol. Biol. 2017, 24, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, M.S.; Segal, A.; Stadtman, E.R. Modulation of glutamine synthetase adenylylation and deadenylylation is mediated by metabolic transformation of the P II -regulatory protein. Proc. Natl. Acad. Sci. USA 1971, 68, 2949–2953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Shea, J.J.; Holland, S.M.; Staudt, L.M. JAKs and STATs in Immunity, Immunodeficiency, and Cancer. N. Engl. J. Med. 2013, 368, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Kingdon, H.S.; Shapiro, B.M.; Stadtman, E.R. Regulation of glutamine synthetase. 8. ATP: Glutamine synthetase adenylyltransferase, an enzyme that catalyzes alterations in the regulatory properties of glutamine synthetase. Proc. Natl. Acad. Sci. USA 1967, 58, 1703–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vops, V.; Effector, D. AMPylation of Rho GTPases by. Science 2009, 323, 269–272. [Google Scholar]
- Worby, C.A.; Mattoo, S.; Kruger, R.P.; Corbeil, L.B.; Koller, A.; Mendez, J.C.; Zekarias, B.; Lazar, C.; Dixon, J.E. The Fic Domain: Regulation of Cell Signaling by Adenylylation. Mol. Cell 2009, 34, 93–103. [Google Scholar] [CrossRef] [Green Version]
- Woolery, A.R.; Luong, P.; Broberg, C.A.; Orth, K. Ampylation: Something old is new again. Front. Microbiol. 2010, 1, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Kawamukai, M.; Matsuda, H.; Fujii, W.; Nishida, T.; Izumoto, Y.; Himeno, M.; Utsumi, R.; Komano, T. Cloning of the fic-1 gene involved in cell filamentation induced by cyclic AMP and construction of a delta fic Escherichia coli strain. J. Bacteriol. 1988, 170, 3864–3869. [Google Scholar] [CrossRef] [Green Version]
- Komano, T.; Utsumi, R.; Kawamukai, M. Functional analysis of the fic gene involved in regulation of cell division. Res. Microbiol. 1991, 142, 269–277. [Google Scholar] [CrossRef]
- Garcia-Pino, A.; Zenkin, N.; Loris, R. The many faces of Fic: Structural and functional aspects of Fic enzymes. Trends Biochem. Sci. 2014, 39, 121–129. [Google Scholar] [CrossRef]
- Harms, A.; Stanger, F.V.; Dehio, C. Biological Diversity and Molecular Plasticity of FIC Domain Proteins. Annu. Rev. Microbiol. 2016, 70, 341–360. [Google Scholar] [CrossRef]
- Hedberg, C.; Itzen, A. Molecular perspectives on protein adenylylation. ACS Chem. Biol. 2015, 10, 12–21. [Google Scholar] [CrossRef]
- Faber, P.W.; Barnes, G.T.; Srinidhi, J.; Chen, J.; Gusella, J.F.; MacDonald, M.E. Huntingtin interacts with a family of WW domain proteins. Hum. Mol. Genet. 1998, 7, 1463–1474. [Google Scholar] [CrossRef] [Green Version]
- Engel, P.; Goepfert, A.; Stanger, F.V.; Harms, A.; Schmidt, A.; Schirmer, T.; Dehio, C. Adenylylation control by intra-or intermolecular active-site obstruction in Fic proteins. Nature 2012, 482, 107–110. [Google Scholar] [CrossRef]
- Khater, S.; Mohanty, D. In silico identification of AMPylating enzymes and study of their divergent evolution. Sci. Rep. 2015, 5, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Bunney, T.D.; Cole, A.R.; Broncel, M.; Esposito, D.; Tate, E.W.; Katan, M. Crystal structure of the human, FIC-domain containing protein HYPE and implications for its functions. Structure 2014, 22, 1831–1843. [Google Scholar] [CrossRef] [Green Version]
- Goehler, H.; Lalowski, M.; Stelzl, U.; Waelter, S.; Stroedicke, M.; Worm, U.; Droege, A.; Lindenberg, K.S.; Knoblich, M.; Haenig, C.; et al. A protein interaction network links GIT1, an enhancer of huntingtin aggregation, to Huntington’s disease. Mol. Cell 2004, 15, 853–865. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Worby, C.A.; Mattoo, S.; Sankaran, B.; Dixon, J.E. Structural basis of Fic-mediated adenylylation. Nat. Struct. Mol. Biol. 2010, 17, 1004–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muller, M.P.; Peters, H.; Blümer, J.; Blankenfeldt, W.; Goody, R.S.; Itzen, A. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 2010, 329, 946–949. [Google Scholar] [CrossRef] [PubMed]
- Roy, C.R.; Mukherjee, S. Bacterial FIC proteins AMP up infection. Sci. Signal. 2009, 2, 15–18. [Google Scholar] [CrossRef]
- Lewallen, D.M.; Sreelatha, A.; Dharmarajan, V.; Madoux, F.; Chase, P.; Griffin, P.R.; Orth, K.; Hodder, P.; Thompson, P.R. Inhibiting AMPylation: A novel screen to identify the first small molecule inhibitors of protein AMPylation. ACS Chem. Biol. 2014, 9, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Luong, P.; Kinch, L.N.; Brautigam, C.A.; Grishin, N.V.; Tomchick, D.R.; Orth, K. Kinetic and structural insights into the mechanism of AMPylation by VopS Fic domain. J. Biol. Chem. 2010, 285, 20155–20163. [Google Scholar] [CrossRef] [Green Version]
- Gavriljuk, K.; Schartner, J.; Seidel, H.; Dickhut, C.; Zahedi, R.P.; Hedberg, C.; Kötting, C.; Gerwert, K. Unraveling the Phosphocholination Mechanism of the Legionella pneumophila Enzyme AnkX. Biochemistry 2016, 55, 4375–4385. [Google Scholar] [CrossRef]
- Mattoo, S.; Durrant, E.; Chen, M.J.; Xiao, J.; Lazar, C.S.; Manning, G.; Dixon, J.E.; Worby, C.A. Comparative analysis of Histophilus somni immunoglobulin-binding protein A (IbpA) with other Fic domain-containing enzymes reveals differences in substrate and nucleotide specificities. J. Biol. Chem. 2011, 286, 32834–32842. [Google Scholar] [CrossRef] [Green Version]
- Truttmann, M.C.; Wu, Q.; Stiegeler, S.; Duarte, J.N.; Ingram, J.; Ploegh, H.L. HypE-specific nanobodies as tools to modulate HypE-mediated target AMPylation. J. Biol. Chem. 2015, 290, 9087–9100. [Google Scholar] [CrossRef] [Green Version]
- Goody, P.R.; Heller, K.; Oesterlin, L.K.; Müller, M.P.; Itzen, A.; Goody, R.S. Reversible phosphocholination of Rab proteins by Legionella pneumophila effector proteins. EMBO J. 2012, 31, 1774–1784. [Google Scholar] [CrossRef] [Green Version]
- Lascu, I.; Gonin, P. The catalytic mechanism of nucleoside diphosphate kinases. J. Bioenerg. Biomembr. 2000, 32, 237–246. [Google Scholar] [CrossRef]
- Becke, A.D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef] [Green Version]
- Truttmann, M.C.; Ploegh, H.L. rAMPing Up Stress Signaling: Protein AMPylation in Metazoans. Trends Cell Biol. 2017, 27, 608–620. [Google Scholar] [CrossRef]
- Roy, C.R.; Cherfils, J. Structure and function of Fic proteins. Nat. Rev. Microbiol. 2015, 13, 631–640. [Google Scholar] [CrossRef]
- Murray, J.S.; Politzer, P. The electrostatic potential: An overview. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 153–163. [Google Scholar] [CrossRef]
- Preissler, S.; Rohland, L.; Yan, Y.; Chen, R.; Read, R.J.; Ron, D. AMPylation targets the rate-limiting step of BiP’s ATPase cycle for its functional inactivation. eLife 2017, 6, 1–28. [Google Scholar] [CrossRef]
- Chen, R.; Li, L.; Weng, Z. ZDOCK: An Initial-stage Protein Docking Algorithm. Proteins Struct. Funct. Bioinform. 2003, 52, 80–87. [Google Scholar] [CrossRef]
- Broncel, M.; Serwa, R.A.; Bunney, T.D.; Katan, M.; Tate, E.W. Global profiling of huntingtin-Associated protein e (HYPE)-mediated Ampylation through a chemical proteomic approach. Mol. Cell. Proteomics 2016, 15, 715–725. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, A.; Zbornik, E.A.; Watson, B.G.; Christoffer, C.; Ma, J.; Kihara, D.; Mattoo, S. Kinetic and structural parameters governing Fic-mediated adenylylation/AMPylation of the Hsp70 chaperone, BiP/GRP78. Cell Stress Chaperon 2021, 1–18. [Google Scholar] [CrossRef]
- Li, H.; Robertson, A.D.; Jensen, J.H. Very fast empirical prediction and rationalization of protein pK a values. Proteins Struct. Funct. Genet. 2005, 61, 704–721. [Google Scholar] [CrossRef]
- Průša, J.; Cifra, M. Dataset of molecular dynamics simualtion trajectories of amino-acid solutions with various force fields, water models and modified force field parameters. Data Brief 2020, 20, 105483. [Google Scholar] [CrossRef]
- Case, D.A.; Berryman, J.T.; Betz, R.M.; Cerutti, D.S.; Cheattham, T.E.; Darden, T.A.; Duke, R.E.; Giese, T.J.; Gohlke, H.; Goetz, A.W.; et al. AMBER 14, University of California, San Francisco. 2014. Available online: http://ambermd.org/doc12/Amber14.pdf (accessed on 20 June 2021).
- Perez, A.; MacCallum, J.L.; Brini, E.; Simmerling, C.; Dill, K.A. Grid-Based Backbone Correction to the ff12SB Protein Force Field for Implicit-Solvent Simulations. J. Chem. Theory Comput. 2015, 11, 4770–4779. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Shen, Q.; Chen, G.; Zheng, J.; Tan, H.; Jia, Z. The phosphatase mechanism of bifunctional kinase/phosphatase AceK. Chem. Commun. 2014, 50, 14117–14120. [Google Scholar] [CrossRef]
- Zheng, X.; Chen, L.; Li, M.; Lou, Q.; Xia, H.; Wang, P.; Li, T.; Liu, H.; Luo, L. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS ONE 2013, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Kiani, F.; Fischer, S. Stabilization of the ADP/Metaphosphate Intermediate during ATP Hydrolysis in Pre-power Stroke Myosin. J. Biol. Chem. 2013, 288, 35569–35580. [Google Scholar] [CrossRef] [Green Version]
- Buchachenko, A.L.; Breslavskaya, N.; Chekhonin, V.P.; Arkhangelsky, S.E.; Orlov, A.P.; Kuznetsov, D.A. Phosphate Transfer Enzymes as the Nuclear Spin Selective Nanoreactors. Int. Res. J. Pure Appl. Chem. 2011, 1, 1–15. [Google Scholar]
- Pérez-Gallegos, A.; Garcia-Viloca, M.; González-Lafont, À.; Lluch, J.M. A QM/MM study of Kemptide phosphorylation catalyzed by protein kinase A. The role of Asp166 as a general acid/base catalyst. Phys. Chem. Chem. Phys. 2014, 17, 3497–3511. [Google Scholar] [CrossRef]
- Francl, M.M.; Pietro, W.J.; Hehre, W.J.; Binkley, J.S.; Gordon, M.S.; DeFrees, D.J.; Pople, J.A. Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 1982, 77, 3654–3665. [Google Scholar] [CrossRef] [Green Version]
- Hariharan, P.C.; Pople, J.A. The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 1973, 28, 213–222. [Google Scholar] [CrossRef]
- Fukui, K. A formulation of the reaction coordinate. J. Phys. Chem. 1970, 74, 4161. [Google Scholar] [CrossRef]
- Fukui, K. The Path of Chemical Reactions—The IRC Approach. Acc. Chem. Res. 1981, 14, 363–368. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, Y.; Mao, J.; Gunner, M.R. Calculation of proton transfers in bacteriorhodopsin bR and M intermediates. Biochemistry 2003, 42, 9875–9888. [Google Scholar] [CrossRef] [PubMed]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Menucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision B.02; Gaussian Inc.: Wallingford, CT, USA, 2010. [Google Scholar]
- Maier, J.A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K.E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11, 3696–3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Götz, A.W.; Williamson, M.J.; Xu, D.; Poole, D.; Le Grand, S.; Walker, R.C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. generalized born. J. Chem. Theory Comput. 2012, 8, 1542–1555. [Google Scholar] [CrossRef] [PubMed]
- Le Grand, S.; Götz, A.W.; Walker, R.C. SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations. Comput. Phys. Commun. 2013, 184, 374–380. [Google Scholar] [CrossRef]
Model_1 (Coord-6) | Model_2 (Coord-5) | Model_3 (Coord-4) | |||||||
---|---|---|---|---|---|---|---|---|---|
R1 | TS1 | P1 | R2 | TS2 | P2 | R3 | TS3 | P3 | |
r1 | 1.00 | 1.74 | 2.10 | 1.00 | 1.90 | 2.10 | 0.98 | 1.02 | 1.83 |
r2 | 1.82 | 1.07 | 1.02 | 1.82 | 1.05 | 1.02 | 1.87 | 1.68 | 1.03 |
r3 | 4.43 | 2.20 | 1.71 | 4.40 | 2.03 | 1.70 | 3.82 | 2.02 | 1.66 |
r4 | 1.50 | 1.49 | 1.49 | 1.50 | 1.51 | 1.49 | 1.51 | 1.51 | 1.51 |
r5 | 1.52 | 1.51 | 1.52 | 1.53 | 1.56 | 1.53 | 1.52 | 1.51 | 1.52 |
r6 | 1.62 | 1.62 | 1.64 | 1.61 | 1.66 | 1.63 | 1.59 | 1.60 | 1.63 |
r7 | 1.65 | 2.13 | 3.20 | 1.64 | 1.89 | 2.96 | 1.66 | 2.10 | 3.25 |
r8 | 1.64 | 1.55 | 1.52 | 1.67 | 1.57 | 1.51 | 1.65 | 1.57 | 1.54 |
r9 | 1.53 | 1.56 | 1.57 | 1.54 | 1.56 | 1.59 | 1.54 | 1.55 | 1.55 |
r10 | 1.49 | 1.51 | 1.52 | 1.49 | 1.50 | 1.52 | 1.50 | 1.52 | 1.53 |
r11 | 1.64 | 1.70 | 1.72 | 1.62 | 1.65 | 1.69 | 1.60 | 1.63 | 1.64 |
r12 | 1.67 | 1.62 | 1.62 | 1.69 | 1.66 | 1.63 | 1.70 | 1.67 | 1.65 |
r13 | 1.53 | 1.55 | 1.55 | 1.55 | 1.56 | 1.57 | 1.53 | 1.53 | 1.54 |
r14 | 1.55 | 1.56 | 1.56 | 1.54 | 1.55 | 1.56 | 1.53 | 1.53 | 1.53 |
r15 | 1.55 | 1.55 | 1.55 | 1.52 | 1.53 | 1.53 | 1.53 | 1.53 | 1.54 |
r16 | 2.14 | 2.04 | 2.05 | 2.06 | 2.02 | 1.98 | 1.97 | 1.94 | 1.94 |
r17 | 2.05 | 2.10 | 2.17 | 2.04 | 2.04 | 2.09 | 1.96 | 1.97 | 1.96 |
r18 | 2.08 | 2.05 | 2.06 | 1.95 | 2.00 | 1.98 | 1.92 | 1.93 | 1.94 |
r19 | 2.14 | 2.11 | 2.16 | 2.11 | 2.12 | 2.12 | 2.00 | 2.01 | 2.01 |
r20 | 2.04 | 2.06 | 2.12 | 2.02 | 2.06 | 2.05 | - | - | - |
r21 | 1.55 | 2.12 | 2.12 | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Huai, Z.; Tan, H.; Chen, G. Investigation of the Detailed AMPylated Reaction Mechanism for the Huntingtin Yeast-Interacting Protein E Enzyme HYPE. Int. J. Mol. Sci. 2021, 22, 6999. https://doi.org/10.3390/ijms22136999
Liu M, Huai Z, Tan H, Chen G. Investigation of the Detailed AMPylated Reaction Mechanism for the Huntingtin Yeast-Interacting Protein E Enzyme HYPE. International Journal of Molecular Sciences. 2021; 22(13):6999. https://doi.org/10.3390/ijms22136999
Chicago/Turabian StyleLiu, Meili, Zhe Huai, Hongwei Tan, and Guangju Chen. 2021. "Investigation of the Detailed AMPylated Reaction Mechanism for the Huntingtin Yeast-Interacting Protein E Enzyme HYPE" International Journal of Molecular Sciences 22, no. 13: 6999. https://doi.org/10.3390/ijms22136999
APA StyleLiu, M., Huai, Z., Tan, H., & Chen, G. (2021). Investigation of the Detailed AMPylated Reaction Mechanism for the Huntingtin Yeast-Interacting Protein E Enzyme HYPE. International Journal of Molecular Sciences, 22(13), 6999. https://doi.org/10.3390/ijms22136999