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Abstract: The small intestine has a high rate of cell turnover under homeostatic conditions, and this
increases further in response to infection or damage. Epithelial cells mostly die by apoptosis, but
recent studies indicate that this may also involve pro-inflammatory pathways of programmed cell
death, such as pyroptosis and necroptosis. Celiac disease (CD), the most prevalent immune-based
enteropathy, is caused by loss of oral tolerance to peptides derived from wheat, rye, and barley in
genetically predisposed individuals. Although cytotoxic cells and gluten-specific CD4* Th1 cells are
the central players in the pathology, inflammatory pathways induced by cell death may participate
in driving and sustaining the disease through the release of alarmins. In this review, we summarize
the recent literature addressing the role of programmed cell death pathways in the small intestine,
describing how these mechanisms may contribute to CD and discussing their potential implications.
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1. Introduction
1.1. Programmed Cell Death (PCD)

Many new cell death pathways have been discovered in recent years. From the orig-
inal concept of apoptosis as a unique form of immunologically silent programmed cell
death, to proinflammatory necrosis, a broad spectrum of different pathways is known to
develop in specific conditions. Apoptosis is characterized by cell shrinkage and chromatin
condensation, followed by fragmentation of the entire cell into small apoptotic bodies,
which are cleared away by macrophages without initiating an inflammatory response.
Unlike apoptosis, other forms of PCD are not immunologically silent and are involved in
driving and maintaining a variety of metabolic and inflammatory disorders. These path-
ways include necroptosis, pyroptosis and ferroptosis and they can result in the release of
proinflammatory molecules such as alarmins (IL-33, HMGB1, IL-1«) and proinflammatory
cytokines (IL-1f3 and IL-18) [1-3]. Importantly, inflammatory PCD enables the release of
molecules such as IL-13 without cell death occurring [4]. Studying the molecular pathways
involved in these processes is important in order to gain insight into the pathogenesis of
inflammatory disorders and for the development of therapeutic interventions.

1.2. Celiac Disease: A Complex Small Intestine Pathology
1.2.1. Antigen-Specific CD4" T Cells

Celiac disease (CD) is a highly prevalent chronic inflammatory enteropathy which
occurs in genetically susceptible individuals as a consequence of an immune response to
gluten proteins derived from wheat, barley and rye [5,6]. It affects the proximal small
intestine, leading to villus atrophy and crypt hyperplasia, together with increased numbers
of lamina propria and intraepithelial lymphocytes (IELs). However, the histological changes
and clinical presentation are variable, and many cases remain asymptomatic, leading to
a large number of undiagnosed patients [7]. The histological changes are caused by an
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immune response to dietary gluten in the small intestine mucosa. As gluten peptides are
resistant to proteolysis by gastrointestinal enzymes, long peptides remain in the lumen of
the intestine. After crossing the epithelial layer [8], some of these peptides are deamidated
by the enzymatic activity of transglutaminase 2 (TG2), generating epitopes with the ability
to bind to the disease specifying MHC molecules HLA-DQ2 and DQS8. In the lamina
propria, native and deamidated gluten derived peptides are taken up and presented in
HLA molecules by dendritic cells (DC). Based on studies in mice, it is believed that lamina
propria DC migrate to the draining mesenteric lymph nodes where they encounter naive,
antigen-specific CD4" T cells and induce their differentiation into Th1 CD4" T cells, which
migrate back to the lamina propria [9]. However, this has not been shown directly in
humans with CD. In the lamina propria, gluten-specific CD4* cells produce IFNY, the
dominant cytokine in the chronic inflammatory process [6,10,11].

1.2.2. Cytotoxic Mechanisms

Several gluten peptides have been found that can bind to the class I HLA molecules:
HLA-A2 and HLA-A*0101 and B*0801 and HLA-A2* CD patients have an increased
number of specific gluten-specific, CD8" cytotoxic T lymphocytes (CTLs) in lamina propria
which express IFNy, CD95 and granzyme B (GZMB) when stimulated with gliadin [12-14].
However, it should be noted that there is little direct association between CD and specific
HLA class I alleles [15], suggesting that antigen-specific CTL activity is not part of the
genetic susceptibility to CD.

A hallmark of active CD is an increased number of IELs in the small intestine, even
when pathology is not severe [16]. These IELs comprise cytotoxic CD8" T lymphocytes
(CTL), v/8 T cells and NK cells. Similar cells are found in the lamina propria of the small
intestine of CD patients [11,13,17] and the mucosa of untreated CD contains high levels of
cytokines that can potentiate cytotoxic lymphocyte activity such as IL-15, IL-21, type I and
II Interferons (IFNs) [18-21].

IELs constitute the largest T cell compartment in the body with one IEL being found
for every 10 epithelial cells in the human small intestine [16,22]. Two main populations of
IEL are present, adaptive (or conventional) and innate-like or unconventional IELs [23].
Adaptive IELs are TCRaf* T cells with a memory phenotype and consist of CD8xf3*
(~80%) and CD4* (~10%) subsets, all of which are derived from naive T cells that have been
primed by specific peptide antigens presented by MHC on DC in secondary lymphoid
organs. In contrast, innate-like IELs are activated by cytokines (IL-15) and NK receptors,
in a TCR-independent manner, and can represent 5-30% of human IELs [22]. Innate-like
IELs include both TCRxf* CD8xx* and TCRy/&" T cells. A hallmark of untreated CD is
an expanded population of TCRy /5" IELs that recognise the non-classical class I MHC
molecules, butyrophilin-like (BTNL) molecules BTNL3/8, and whose numbers remain
high even after long period on a gluten-free diet (GFD) [24].

As with NK cells, innate-like IELs can be activated in CD via recognition of non-
classical class | MHC molecules such as MIC-A on stressed epithelial cells by the NK cell
receptor NKG2D on IELs [24-28]. NKG2C/CD% is a further NK cell receptor, which
interacts with the non-classical class I MHC molecule HLA-E present on epithelial cells
exposed to IFNs and other inflammatory cytokines [29,30]. The NKG2C/CD94-HLA-E
interaction is thought to induce IFNy production by CTLs and enhance their cytotoxic
activity in CD patients [17,31,32]. Type I IFNs may also potentiate the non-antigen-specific
cytotoxic activity of CTLs against epithelial cells [21].

1.2.3. Innate Immunity

In addition to antigen-specific CD4* T cell mediated immunity, several other aspects
of the immune response are involved in CD. Recent studies have underlined the critical
importance of external factors triggering innate immunity in the pathogenesis of CD. These
include viral infections [9], dysbiosis of the microbiota [33], amylase-trypsin inhibitors [34]
and a non-T cell epitope peptide of gliadin (known as p31-43) [35]. Innate immunity
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and chronic inflammation have a direct impact on potentiating the activation of both
gluten-specific CD4* T cell and IELs in CD [9,24,36].

Several proinflammatory effects have been described for p31-43 peptide in vitro and
in vivo [35]. It does not bind to the HLA-DQ2 or DQ8 molecules [37], and a specific surface
receptor has not been identified [38]. However, it has been shown that p31-43, binds to
the nucleotide-binding domain 1 (NBD1) subunit of the cystic fibrosis transmembrane
conductance regulator (CFTR), reducing its ATPase activity and causing an increase in
reactive oxygen species (ROS) generation and a persistent activation of TG2, leading to
increased nuclear translocation of NF«kB. Activation of the NF«B pathway induces the
transcription of pro-inflammatory cytokines such as IL-17A, IL-21 and IL-15, together with
production of active IL-1f3 [39]. Some of these effects may reflect the fact that p31-43 has a
poly-proline II structure and forms oligomers stable in solution with pH ranging from 4
to 8 [40,41], resulting in endoplasmic reticulum-stress (ER-stress), the production of ROS,
release of proinflammatory mediators such as IL-1f3, and the induction of cell death [35,42].

2. Apoptosis and Cell Shedding from the Epithelium

Under homeostatic conditions, the epithelial layer of the human small intestine is
almost completely renewed every week, with a balance between extrusion of effete en-
terocytes at the tip of the villi and the production of new cells in the transit-amplifying
zone of the crypts [43]. As in other epithelial tissues, the loss of enterocytes from the
crowded villus tip is triggered by the stretch-activated channel protein Piezo 1 [44] which
leads to the release of sphingosine-1-phosphate (S1P) that drives the release of the cells
from integrin-dependent anchoring to the extracellular matrix. This leads to a form of
apoptotic cell death known as anoikis and extrusion of cells from the epithelium [44,45].
Inflammatory mediators such as TNFx and IFNY, as well as microbial associated molecular
patterns (MAMPs) and pathogens may increase the speed of this process.

Although this mechanism has not been assessed in CD patients, the presence of high
concentrations of IFNYy in celiac mucosa is likely to result in the loosening of the tight
junctions between epithelial cells and defective closing over of the extrusion area left
by shedding of dying cells. In support of this idea, the junctional protein E-cadherin is
essential for closing these exposed spots by elongating neighboring cells, which avoids
the formation of transient epithelial gaps [46,47] and its expression is downregulated in
epithelial cells exposed to IFNy and TNF« in vitro [48], as well as in CD [49] and IBD
in vivo [44,50].

Apoptosis can occur by intrinsic and extrinsic pathways which trigger a common
executioner mechanism (summarized in Figure 1).

2.1. Intrinsic Apoptosis

The intrinsic pathway involves permeabilization of the mitochondria outer membrane
(MOMP) due to activation of the pore forming proteins BAK (BCL2 antagonist/killer 1)
and BAX (BCL2 associated X, apoptosis regulator). This pore facilitates the release of
cytochrome-c that binds and activates apoptotic peptidase activating factor (APAF-1) and
the initiator caspase-9, together forming the apoptosome which promotes activation of the
executioner caspase-3. Caspase-3 activates other procaspases (e.g., caspase-2, -6, -8, and
-10), creating an apoptosis-amplifying cascade, which ends in the alteration of the nuclear
membrane, the cleavage of intracellular proteins (e.g., PARP), membrane blebbing, and
the breakdown of genomic DNA into nucleosomal structures. Release of SMAC (second
mitochondria-derived activator of caspases) and the HtrA serine protease 2 (HTRA2) from
the mitochondrial membrane also leads to inhibition of the caspase inhibitor X-linked
inhibitor of apoptosis protein (XIAP), thus enhancing and sustaining activation of caspase-
3. The mitochondrial events in apoptosis are regulated by a balance between pro- and
anti-apoptotic proteins of the BCL family. The “BH3-only” domain, t-BID, BIM, NOXA, and
PUMA are pro-apoptotic, as they interact with BAK and BAX and promote their membrane
permeabilizing actions. On the other hand, proteins belonging to BCL-2 family (BCL-2,
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BCL-XL, BCL-W, BFL1, MCL1) inhibit apoptosis by competing with the binding of the

BH3-only family members to BAX and BAK [51,52].
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Figure 1. Extrinsic and intrinsic mechanisms of apoptosis playing a role in celiac disease mucosae. On the left side of

the picture, there is the scheme of the extrinsic apoptosis mechanism triggered by a CTL. As shown in the picture, in

the celiac disease mucosae, the CTLs could trigger apoptosis directly by recognizing stressed-related membrane proteins
(MICA, HLA-E) with specific NK receptors (NKG2D, CD94:NKG2C). This event promotes the degranulation of CTLs
which release Granzyme B (GZMB) and Perforin-1 (PRF1) in the extracellular medium. PRF1 leads to GZMB entry into the
cell cytoplasm which leads to the activation of executioner caspase-3, caspase-8, and MOMP formation. CTLs could also

engage death receptor ligands (CD95, TNFq, etc.) to trigger the caspase-8 activation which activates caspase-3. Ultimately,

cleaved caspase-3 (CC3) activates the DNA and cytoskeleton protein fragmentation (i.e., dCCK18) and promotes the

phosphatidylserine translocation into the outer cell membrane. The last event is recognized as an “eat-me” signal by local

phagocytes, which eliminated the apoptotic bodies. The right side of the picture describes different intrinsic apoptotic

mechanisms playing a part in celiac disease pathology. Inflammatory cytokines related to CD (IFNy, TNF«, IFNs type I)
and specific gliadin peptides (i.e., p31-43) induce a proapoptotic balance between the BCL-2 family of proteins by increasing
pro-apoptotic BAK and repressing BCL-2. This renders a cell prone to induce apoptosis when new stressing conditions

appear. Potential stressors are the unfolded protein response (UPR), stressed vesicle traffic (i.e., associated with p31-43

toxicity), and in particular the production of ROS. These stressors induce p53 activation and feed a positive loop back

to a proapoptotic BCL-2 family protein balance. If these stressful conditions worsen, the MOMP is formed releasing

cytochrome-c into the cytoplasm. This event activates APAF-1 and induces the apoptosome formation which subsequently

leads to caspase-3 activation initiating the apoptosis execution phase.
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The intrinsic pathway is triggered by factors such as damage to genomic or mitochon-
drial DNA, signals derived from damaged organelles (e.g., ER or mitochondrial stress),
the inhibition or reduction of growth factors, and the inhibition of intracellular signaling
pathways [51]. One of the core mediators of intrinsic apoptosis is the p53 protein, which
is activated upon DNA damage induced by oxidants, alkylating agents, or radiation, and
it promotes the expression of the pro-apoptotic factors BAX, PUMA and NOXA, while
downregulating the expression of anti-apoptotic BCL-2.

One of the most potent immunological triggers for intrinsic apoptosis is the lethal hit
delivered by cytotoxic T lymphocytes and NK cells. These cells release granules containing
GZMB and Perforin-1 (PRF1), with PRF1 inducing uptake of GZMB via membrane pores
and GZMB, inducing apoptosis by cleaving and activating caspases-3, -7, -8 and -10
and BID [53]. That intrinsic apoptosis may take place in CD is suggested by findings of
decreased expression of BCL-2 and increased expression of cytoplasmic tumor protein p53
in the crypts of duodenal tissue from untreated CD patients [54]. Moreover, mRNA levels
for BAK (but not BAX) are increased in the duodenum of CD patients, while BAK protein
is upregulated in the intestinal epithelium of untreated CD patients and its expression
correlates with IFNYy levels [55]. By promoting upregulation of BAK and downregulation
of BCL-2, IFNYy has a pro-apoptotic role in epithelial cells in CD [56].

As noted above, an increased number of gliadin-specific, HLA-A2 restricted CTLs has
been found in the lamina propria during CD [13], and CTLs of this kind have been shown
to cause apoptosis in a model of intestinal epithelial cells in vitro. In addition, an increase
in apoptotic enterocytes has been found to correlate with higher cytotoxic activity of IELs
in CD and may be associated with higher levels of type I IFNs [21].

2.2. Extrinsic Apoptosis

The extrinsic apoptotic pathway is initiated by receptors containing death domains
(DD), specifically the TNF family receptors TNFR1, TNFRS10A /B, death receptor 3 (DR3,
known as TLIA), and CD95 (also known as FAS). Signals from outside the cells, TNF¢,
TRAIL, CD95-Ligand (known as FAS-L), bind to these receptors and trigger the assembly
of several intracellular multi-protein complexes which ultimately leads to the activation
of caspase-8 and caspase-3. In the case of TNFR1, an initial complex named “Complex
I”, comprises the adaptor protein TRADD (TNFRSF1A associated via DD) and several
additional proteins (TRAF2, TRAF6, c-IAP1, c-IAP2, RIPK1, LUBAC, SHARPIN, HOIL-1
and HOIP). Ligand binding of FAS, DR3, induces the complex named DISC (death-inducing
signal complex), made up by the adaptor protein FAS associated via DD (FADD), caspase-8
or 10 (depending on the cell type) and cFLIP (CASP8 and FADD-like apoptosis regulator).
These signaling pathways are regulated by the anti-apoptotic factors such as the long
isoform of cFLIP (cFLIP-L) and c-IAPs, the trimerization level of the death receptors, as
well as by post translational modification of the protein complexes [57]. Caspase-8 is
activated by these pathways via autoproteolysis, leading to the generation of cleaved
caspase-8 (CC8), which then activates caspase-3, either directly, or indirectly by cleaving
BID and promoting MOMP [57].

Activated CTL and NK cells can trigger the extrinsic pathway of apoptosis via the
expression of CD95L and TRAIL [58-60]. Furthermore, increased expression of CD95 and
CD95L has been found in epithelial cells of untreated CD patients [61] and this can be
upregulated further by treatment of duodenal biopsies from CD patients with gliadin
peptides [62]. In addition, type I and II IFNs may play a role in sensitizing epithelial cells
to the extrinsic apoptotic pathway by inducing the expression of both the death receptors
and their ligands [63,64].

2.3. Common Executioner Pathway of Apoptosis

Key molecules in the apoptosis process can be detected in the small intestine of
untreated CD patients, as well as in a mouse model of gliadin-driven innate immunity.
Activation of capase-3 is a key event in the common pathway of apoptosis [57] and in-
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creased levels of cleaved caspase-3 (CC3) have been found in epithelial cells from intestinal
biopsies of untreated CD patients [54]. Recently, we have confirmed these findings and
have found that levels of activated caspases-8 and -3 are also increased in newly diagnosed
CD patients [65]. In addition, M30, which marks a CC3-degraded form of cytokeratin-18,
correlates with CC3* epithelial cells and both M30 and CC3 co-stain with Terminal de-
oxynucleotidyl transferase dUTP nick end labeling (TUNEL)* apoptotic epithelial cells at
the villus tip in CD [55,61,66]. Increased numbers of M30* epithelial cells have also been
observed after incubating duodenal biopsies of CD patients with type I IFNs [21].

Studies by our group have shown that oral administration of the innate active p31-43
peptide of gliadin induces upregulation of IFNYy, and increases cell death in the small
intestine of wild-type mice, paralleled by an increase in the proapoptotic Bax:Bcl-2 ratio
at mRNA level [67]. In parallel, administration of p31-43 leads to increased numbers of
TUNEL™ cells and increased expression of CC3 by both epithelial and lamina propria
cells [42].

3. Non-Apoptotic Forms of Programmed Cell Death and Their Implications for CD

Other programed cell death mechanisms have been described in recent years which
have necrosis-like phenotypes and lead to the release of inflammatory mediators [1] such
as IL-1B3, IL-18, and alarmins, even before cell death occurs [68,69]. Some of these non-
apoptotic PCD pathways are potentially involved in the pathogenesis of CD.

3.1. Pyroptosis

Pyroptosis is a lytic form of programmed cell which leads to rapid clearance of dam-
aged cells during infection. Pyroptotic cells exhibit cell swelling and membrane blebbing,
associated with the formation of pores in the cell membrane induced by polymerization
of N-terminal fragments of Gasdermin-D (GSDMD). These processes are triggered by
a canonical pathway involving the activation of inflammasomes, or by a non-canonical
pathway driven by the activation of caspases-4 or -5 (caspase-11 in mouse) [1].

Inflammasomes are a cytosolic multiprotein complex comprising either nod-like
receptors (NLRs) (NLR family pyrin domain containing proteins NLRP1, 2, 3, 6, and
NLRC4), or non-NLRs (absent in melanoma 2 “AIM2”, and IFNy-inducible protein 16
“IF116”) [1,70]. Upon activation, these proteins oligomerize with the apoptosis-associated
speck-like protein containing a CARD (ASC), which acts as an adaptor protein that binds
and induces autoactivation of caspase-1. When activated, caspase-1 cleaves immature pro-
IL-1 and pro-IL-18 into their active forms. In addition, active caspase-1 cleaves GSDMD,
producing N-terminal fragments which multimerize and bind to the inner cell membrane,
leading to the formation of ~20 nm pores that allow the release of mature IL-1f and IL-18,
as well as alarmins such as IL-33, IL-1oc and HMGBI1 [1,70,71]. GSDMD can also be cleaved
by a caspases-4/5 (caspase-11 in mouse)-dependent mechanism in the presence of cytosolic
LPS. In this case, caspase-4/5 (or caspase-11) oligomerize and auto-activate, leading to the
cleavage of IL-1f3, IL-18 and GSDMD [1,72]. There is a balance between pore formation
and cell membrane repair, and if the number of pores exceeds the capacity of repair, the
cell will die by the process of pyroptosis [1].

Activation of the inflammasome requires two signals. First, a “priming signal” such
as TLR ligands, IFNs or alarmins are needed to activate the intracellular NF-kB pathway.
The second signal can be produced by a broad arrange of stimuli, whose nature depends
on the sensor which has been primed (i.e., members of NLR family, AIM2 or IFI16). These
can include MAMPs derived from pathogens, particulate materials (silica and asbestos)
or DAMPs such as extracellular ATP, uric acid, and cholesterol crystals, or it may involve
additional cellular events, including K* efflux, mitochondrial damage and ROS generation
and lysosomal rupture [70,73,74]. Higher levels of ROS [75-77], DAMPs such as IL-33 [78]
and HMGBI1 [79], have been found in increased in CD patients. Interestingly, HMGB1 can
promote the activation of pyroptosis by enhancing the delivery of LPS to caspases-4/5 or
-11 in the cell cytosol [72].
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Components of the local inflammatory response in CD, such as type I and II IFNs can
induce the expression of pyroptosis-associated caspase-4 via Interferon Regulatory Factor 1
(IRF1) activation [80], and of the AIM2 inflammasome and IL-18 production via STAT1 [81].
IL-17A, a cytokine upregulated in some CD cases can also induce the expression of NLRP2
and caspase-5 [80].

That these pathways may be participating in CD is suggested by the findings that
IL-18 production is increased in small intestinal crypt cells in CD [82] and that there are
high levels of circulating IL-18 in untreated CD patients [83]. IL-1f is also found in the
supernatants of Peripheral blood mononuclear cells (PBMC) from CD patients upon pepsin-
trypsin-treated gliadins exposure [84] and serum levels of IL-1f3 fall in CD patients after 1
year on a GFD [85].

Similarly, studies using PBMC from CD patients treated with pepsin digested gliadins
have shown higher production of IL-1f3 and IL-18 in cells from CD patients compared with
healthy controls. Release of these cytokines was inhibited by blocking K* efflux, suggesting
the role of inflammasome in response to digested gliadins in PBMC from CD patients [86].

In vitro work shows that IFN« stimulates caspase-dependent inflammasome activa-
tion and IL-18 production in duodenal biopsies from CD patients in vitro, leading to IL-18
dependent IFNYy production [21]. IFNY itself has also been shown to induce increased
expression of NLRP6, and caspases-1 and -5 in enterocytes isolated from CD patients [80].

As noted above, the p31-43 gliadin peptide induces type I IFN production and local
inflammation in the small intestine of wild-type mice when given orally, and we have
shown that the resulting pathology is dependent on NLRP3 signaling, leading to activation
of caspase-1 and IL-13 [42]. Oligomerization of the p31-43 peptide may be responsible for
providing signal 2 for inflammasome activation in this context [40].

Interestingly, a group of CD patients share an SNP (rs 12150220 A/ A) located in the
coding region of NLRP1. This SNP is also found in other inflammatory conditions and is
associated with increased IL-18 levels in serum, perhaps accounting for the increased levels
of IL-18 seen in some CD patients [87]. A SNP in the IL-1f3 gene (rs16944 C > T, also known
as IL1B -511T) has also been found to be associated with osteopenia/osteoporosis and lower
mineral density in CD patients [88]. This SNP is thought to influence the expression levels of
IL-1$ and is also associated with higher risk of other chronic inflammatory conditions such
as Alzheimer’s disease [89], gastric cancer [90], keratoconus [91] and Grave’s disease [92].

Thus, there is evidence in both humans and mice that inflammasome activation and
pyroptosis may occur in the small intestine in CD (summarized in Figure 2). As well as
potentially explaining some of the epithelial cell death, this mechanism may contribute
to other aspects of CD pathogenesis, including the increased production and release of
IL-18 and IL-1f3, both of which can produce inflammation directly and can activate other
immune cells, including Th1, Th17 and CTLs [93-95]. IL-1f can also induce expression
of a FOXP3 splice variant (FOXP3A2A7) which is associated with poor regulatory T cell
function [96,97] and is associated with CD [98]. The alarmins HMGB1 [79], IL-1x [85] and
IL-33 [78,99] are also released during pyroptosis and have been associated with CD, where
they may play a number of roles (see below).

3.2. Necroptosis

Necroptosis is a necrotic PCD mechanism, which involves the phosphorylation and
activation of the membrane pore protein mixed lineage kinase domain-like pseudokinase
(MLKL) by activated receptor interacting serine/threonine kinase 3 (RIPK3) [1]. RIPK3
phosphorylation and subsequent activation can be triggered by a broad range of stimuli,
including the death receptor ligands that trigger extrinsic apoptosis (TNFx, CD95L, TRAIL).
Their ability to induce necroptosis is dependent on apoptosis being blocked, for instance
by the presence of caspase-8 inhibitors, or when its activation is prevented by inhibition of
the adaptor protein FADD [57,100,101]. When enzymatic activity of caspase-8 is deficient,
phospho-RIPK1 binds RIPK3, producing an intracellular protein complex (the necrosome)
that recruits and activates MLKL. This leads to the vesicular transport of phospho-MLKL
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(PMLKL) to the plasma membrane, where it binds to the inner cellular membrane and
forms a pore [102]. When MLKL activation exceeds the membrane repair capacity, the loss
of membrane integrity triggers necrosis and the release of alarmins such as ATP, HMGBI,
IL-1x and IL-33. RIPK1-independent necroptosis can also occur when RIPK3 is activated
by viral dsRNA-mediated activation of the TLR3-TRIM pathway [103] and by activation of
Z-DNA Binding Protein 1 (ZBP1) [104,105].
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Figure 2. Pyroptosis a new potential PCD mechanism feeding the inflammatory response in celiac disease patients. IFNs
which are upregulated in untreated CD induce the expression of inflammasome sensor components such as AIM2, IFI16,
NRLP2, NLRCS5, transcription factor IRF1, and cytokine IL-18. At the same time, IRF1, a key factor in CD pathology, can
enhance the expression of other inflammasome components whose expression is induced by IL17A and TLRs (caspases-4
and -5, NLRP3 and cytokine IL-1$). This process sensitizes the targeted cells to different inflammasome activating agents.
Among them, gliadin peptides, such as p31-43, can activate NLRP3 inflammasome (i.e., p31-43). Additionally, the activation
of caspases-4 and -5 could be triggered by potential intracellular LPS release, not currently studied in CD. Ultimately, these
events activate caspases-1, -4, and -5 which process pro-IL-1f3 and pro-IL-18 into their mature bioactive forms. Importantly,
during this process, Gasdermin-D is cleaved into N-terminal fragments (GSDMD N-Term) which form oligomers in the cell
membrane leading to the release of IL-13 and IL-18 and eventually to pyroptotic cell death. The release of these proteins, as
well as other alarmins, activates the local immune cells feeding the local inflammatory response by interacting with its cell
receptors (IL-18R and IL-1R).
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Untreated CD patients showed significantly higher mRNA expression of RIPK3, ZBP1
and MLKL, suggesting that necroptosis may account in part for the increased cell death
found in active CD [65]. Furthermore, oral administration of gliadin p31-43 led to increased
cell death and RIPK3 expression in small intestinal epithelial and lamina propria cells
in wild-type mice [42]. Necroptosis was also observed in Paneth cells in inflamed ileal
tissues from patients with Crohn’s disease, and experiments in mice demonstrated that
Paneth cells follow a necroptosis pathway, via IFNs/STAT1 and MLKL, controlled by
caspase-8 [106].

After necrosome formation, pMLKL is transported inside vesicles to the plasma
membrane escorted by proteins involved in the structure of tight junctions, and among
them is Zonula occludens-1 (ZO-1), which can inhibit pore formation by pMLKL [102].
Deposition of MLKL pores and necroptosis in enterocytes due to downregulation of ZO-1
in untreated CD is thought to contribute to the loosening of tight junctions and loss of the
integrity of the epithelial barrier [107,108].

Although some of the pro-necroptotic factors and positive modulators of necroptosis
have been found in CD (summarized in Figure 3, Top Image), further investigation is
needed to determine the role of necroptosis in this pathology.

3.3. Ferroptosis

Ferroptosis is a non-apoptotic-like PCD, with exclusive biochemical and morphologi-
cal changes [109] where iron ions catalyze oxidative reactions on poly-unsaturated fatty
acids (PUFA) mainly found in the mitochondrial and plasma membrane. The phenotype of
these cells differs from classical necrotic or apoptotic cells with a characteristic dysmorphic
permeabilized outer membrane of mitochondria and damaged plasma membrane occur-
ring due to excessive oxidation of membrane lipids [1,110-112]. This new form of PCD
leads to the release of DAMPs into the extracellular space (summarized in Figure 3, Bottom
Image) [113]. Ferroptosis is induced upon inhibition of the phospholipid peroxidase and
oxidoreductase glutathione peroxidase 4 (GPX4) enzyme and reduction of GPX4 substrate,
glutathione (GSH) [1,114]. GPX4 is a selenium-enzyme which is part of the major protec-
tive mechanism against lipid peroxidation, it uses GSH to reduce H,O,, organic and lipid
peroxides. Thus, GPX4 protects cell membranes from the hazards of oxidants molecules,
and as a result, the inhibition of GPX4 increases lipid peroxidation. Ferroptosis can also
occur secondary to an increase in the intracellular free iron pool (iron overload) which
leads to increased H,O, levels via a series of Fenton reactions [1,69,110].

Increases of ROS, total lipid hydro-peroxides (LOOH) and reduced antioxidant pro-
cesses have been reported in the peripheral blood and duodenal mucosa of CD patients and
these changes are reverted by a GFD [76,77]. In parallel, ROS and nitric oxide production
are increased in circulating erythrocytes and the small intestine of untreated CD patients,
together with reduced levels of GSH, the principal substrate of GPX4 [75-77]. Increases
in other markers of oxidation, including catalase, superoxide dismutase, myeloperoxi-
dase and DNA instability have also been detected in peripheral blood of untreated CD
patients [115]. A further factor which could lead to reduced GPX4 activity in untreated CD
may be the deficiency in selenium uptake which occurs in these patients [116]. Since IFNy
and p53 inhibit the expression of membrane cellular cysteine transporters (SLC3A2 and
SLC7A11) [117,118], it may potentiate the induction of ferroptosis in CD.



Int. . Mol. Sci. 2021, 22, 7426 10 of 21

Necroptotic cell

Glu Cys-Cys Alarmins, Oxidized Lipids

IFNGR

SLC7A11/
SLC3A2

W
e o AN .
Fenton
Cys-Cys Cys reactions | ALOX
Lipid (PUFA) LPCAT3
Peroxidation ACSL4

l
@@ m.msu\ e
@ 2\ gp

) GSSG H20 Stressed

/ \ Mitochondria

Ferroptotic cell

Figure 3. Other potential PCD mechanisms in CD pathology. (Top Image): Necroptosis. IFNs are a hallmark of CD
patients, and they can stimulate the expression of necroptotic factors such as MLKL and ZBP1 and stimulate the cytoplasmic
localization of HMGBI1. At the same time, ZBP1 is fundamental for the direct activation of necroptosis by IFNs when
caspase-8 is inhibited, by an IFNs/STAT1/ZBP1/RIPK3 mechanism. Additionally, activation of TLRs/TRIF, death receptors
(TNFR1, CD95)/TRADD/FADD can induce necroptosis by activating RIPK3 in presence of caspase-8 inhibition. RIPK3
activation leads to MLKL phosphorylation (pMLKL) and migration to the cell membrane in vesicle co-transported with
a regulatory factor, ZO-1. As ZO-1 is downregulated in epithelial cells of untreated CD patients, it may indicate a pro-
necroptotic phenotype of this cell type. When pMLKL monomers are oligomerized in the plasma membrane, this creates a
pore, which leads to necroptosis cell death and the alarmins (IL-1¢, IL-33, HMGB1) release. (Bottom Image): Ferroptosis.
CD patients show a dramatic increase in ROS production and oxidative stress markers which could be related to a new form
of inflammatory PCD called ferroptosis. This PCD could be triggered by inhibiting GPX4 through a reduction of GSH. Both
facts have been found in untreated CD patients’ cells. Additionally, IFNy and p53, both factors related to CD pathology, can
reduce the transport of cystine (Cys-Cys) a critical precursor of GSH biosynthesis by inhibiting its membrane transporter
(SLC3A2 and SLC7A11). Moreover, the GPX4 downregulation could be a response to the ROS increase if other reductive
systems failed (i.e., TRX1). The massive increase in ROS could be triggered by stressed organelles such as mitochondria and
the free iron pool. Ultimately, the reduced activity of GPX4 leads to ALOXs, LPCAT3, and ACSL4 increase in membrane
PUFA peroxidation and cell death, with the release of alarmins and inflammatory oxidized lipids.
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4. Alarmins and DAMPs

DAMPs (damage-associated molecular patterns) are a set of highly immunogenic molecules
which are associated with cell damage, including Type I IFNs, IL-15, which have been linked
to CD [17,69,119,120]. Alarmins, a subgroup of DAMPs, are endogenous molecules released
upon cell damage (during spontaneous necrosis, necrosis PCD or necrosis-like PCD) that trigger
a response on different immune and non-immune cells [2,121]. The release of DAMPs may
potentiate and expand the inflammatory process even at distant sites [122] (summarized in
Figure 4). Here, we are going to describe HMGB1 and IL-33, which are released under necrotic
cell death and have been already associated with CD.
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Figure 4. A new complex hypothetic scenario for CD pathology. (Top Image): Coexistence of different PCD in CD mucosae.

Conclusions. Extrinsic apoptosis is primarily triggered by NK-like CTLs in the epithelium and stressed target cells (MICA*,



Int. . Mol. Sci. 2021, 22, 7426

HLA-E") in the epithelial compartment. At the same time, inflammatory cytokines released by Th1, CTLs (IFNy, TNF«),
activated dendritic cells and other antigen presenting cells (APC) (Type I IFNs) and activated macrophages (ROS) sensitize
different cells, especially epithelial cells, to trigger intrinsic apoptosis. After induction of apoptosis, these cells are detached
from the epithelium and are reduced to apoptotic bodies in the lumen. In the end, the excessive death is answered with
an increased proliferation rate of transit-amplifying cells. However, the presence of these inflammatory cytokines (IFNvy,
TNF«) deteriorates the epithelium capacity to efficiently close the gaps left by apoptotic cells. This may create a series of
“epithelial gaps” where microbial components (MAMPs) and gliadin peptides could be introduced in the lumen, triggering
a new wave of the inflammatory response by gluten-specific T cells. As previously described, this scenario is appropriate to
trigger pyroptosis and necroptosis on sensitized cells. In the end, all the new PCDs could trigger the release of inflammatory
factors, such as alarmins and IL-13 and IL-18, which may feed the inflammatory process. (Bottom Image): Potential effect of
alarmins and IL-1f3 /IL-18 in CD mucosae. The different immunogenic factors released from necrotic PCD induce different
immune and cell responses. IL-33 and IL-18 have a protective effect on epithelium by increasing epithelial proliferation and
AMPs released into the lumen. At the same time, IL-33 has a pro-Th2 and pro-Treg action, which is specifically inhibited by
inflammatory cytokines such as IFNg and IL-23. Additionally, IL-1oc and IL-1f (IL-1) inhibit Treg phenotypes, potentiating
the Th17 polarization and the inflammatory response. Additionally, pro-cytotoxic capacity of CTLs can be enhanced
by the presence of IL-33, IL-1, HMGBI1 but especially IL-18. Furthermore, IL-1 and HMGB1 enhance the inflammatory
capacity of macrophages, but HMGB1 may lead to an eventual pyroptotic cell death acting as a lysosomal LPS carrier.
Additionally, HMGB1 promotes T cell proliferation on different T cell populations, and similarly to IL-18, potentiates Th1
polarization during antigen presentation. All this information suggests an exciting future in the study of CD pathology,
and the very likely involvement of different PCD mechanisms in the overall pathogeny process and new animal models of
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CD-triggering events.

4.1. HMGB1

The high-mobility group box 1 protein (HMGB1) is normally found in the nucleus of a
variety of cells where it acts in different DNA repair mechanisms and increases the affinity
of several transcription factors to its cognate DNA sequences [123]. However, under certain
inflammatory situations, HMGB1 can be relocated in the cytoplasm and then secreted by
lysosomal traffic or during necrosis or necrosis-like PCDs [124,125]. Free HMGB1 binds
to TLR4 and induces inflammatory reactions depending in the redox state of its cysteine
residues [126]. Interestingly, HMGB1 can also bind to LPS and serves as a carrier to trigger
TLR4 activation. On the other hand, the receptor for advanced glycation end products
(RAGE) is a HMGBI receptor, which triggers activation of endothelial cell and smooth
muscle cell proliferation [127,128]. HMGBI1 can also have chemotactic activity, and immune
cell activation through TLR4, RAGE and other immune-related receptors [129]. HMGB1
can activate pyroptosis by its capacity to permeabilize endo-lysosomal membranes at
low pH and releasing LPS and cathepsin-B into the cytoplasm. This process leads to the
activation of several inflammasome sensors by cathepsin-B or caspases-4 or -5 (caspase-11
in mice) by direct binding with LPS (summarized in Figures 2 and 4) [72,130].

Increased levels of HMGB1 have been found in the serum and feces of untreated CD
patients [131-133], as well as in the blood during autoimmune disorders associated with CD,
such as type I diabetes mellitus, Sjogren’s syndrome, and autoimmune thyroiditis [134-139].
Moreover, HMGB1 was found to be associated with an increased capacity of dendritic cells
to promote a pro-Th1l phenotype in T cells during antigen presentation, to expand CTLs cell
populations, and to promote M1 polarization of macrophages (Figure 4) [140-142], all this
highlights HMGB1's role in driving inflammation. Thus, these findings suggest that HMGB1
could play a role in the inflammatory response in CD, and this needs further investigation.

4.2. IL-33

IL-33 is a member of the IL-1 family which is normally located in the nucleus of
mesenchymal and epithelial cells, but it can be actively released from viable cells or
passively from cells undergoing inflammatory PCD; this mechanism is enhanced if IL-33 is
translocated to the cytoplasm by unknown mechanisms [143-145]. Normally, IL-33 release
is prevented during apoptosis by cleavage of IL-33 into inactive fragments by caspases-3
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and -7 [146]. By acting via its specific receptor IL-33R« (also known as ST2L) [147], has a
variety of effects on immune cells (summarized in Figure 4) and is known particularly for
its role in allergy and parasite infections because of its ability to activate ILC2, Th2 and
mast cells [148-150]. However, IL-33 can also promote Th1 and importantly, pro-cytotoxic
CD8" T cell activity during viral infections and immune responses to tumors [151,152],
and can maintain survival of regulatory T cells [153]. Notably, IL-33 also has an effect on
intestinal epithelial cells, inducing their proliferation and stimulating secretion of protective
antimicrobial peptides from enterocytes [154,155]. We and others have shown an increase
in IL-33 expression in the serum of untreated CD patients [78,99]. Moreover, we have
found a large number of different cells associated with microvasculature (characterized by
the expression of SMA, CD31 and CD90), with nuclear IL-33 location and others with a
cytoplasmic accumulation of this cytokine. Western blot analysis of duodenal mucosa from
CD patients also revealed increased levels of the 18-21 kDa sized fragments of IL-33 [78]
that are produced by the action of enzymes released by activated neutrophils and mast cells
and which have increased affinity for the IL-33R [156-158]. In parallel, increased numbers
of CD8*IL-33R* cells are found in duodenal mucosa in untreated CD, suggesting that these
free IL-33 fragments could potentiate the cytotoxic actions of CTLs in CD patients [78].
Additionally, IL1RL1, the gene that codes for ST2, has been linked with CD disease SNP
(rs1420106) [159]. Moreover, isolated gluten-specific T cells clones overexpressed IL1RL1
after proper gluten challenge [159]. These findings highlight a potential role of IL-33 axis
in CD patients.

5. Potential Interplay between Different PCDs

As we have discussed, untreated CD patients have increased numbers of cells dying
via apoptosis and by other pro-inflammatory PCD pathways.

Cell death pathways also are interconnected and influence each other. For instance,
there is evidence that lipid peroxidation changes associated with ferroptosis may occur
in CD [75-77,115] and it has been shown that these mediators can induce apoptosis in the
presence of a competent antioxidant system (GSH and thioredoxin systems). However,
when the antioxidant system is deficient, both apoptosis and pro-inflammatory PCDs
may occur because oxidative conditions activate factors such as MLKL, RIPK1/3, NLRP3,
caspase-1 and GSDMD. In contrast, the activation of pro-apoptotic caspases-3 and -7
requires effective antioxidant mechanisms [160]. Thus, CD patients that have a deficit
in antioxidant capacity [76,77] may develop a greater activation of pro-inflammatory
PCDs. On the other hand, CD patients have been shown to have enhanced IFNy-mediated
induction of thioredoxin (Trx1)-dependent antioxidant systems [161], and Trx1 is thought
to support the activation of TG2 activity [162]. Further studies on the oxidative mechanism
are needed to assess its relevance in modulating PCDs in CD patients.

The co-existence of multiple cell death pathways has been found in other inflam-
matory conditions such as Crohn’s disease [106], and in an enteropathy experimental
model induced by a single dose of p31-43 [42]. This phenomenon has been referred to
as PANoptosis and it is defined as the outcome of evolutionary conserved, interrelated
pathways of cell death, which leads to different outcomes (apoptosis, necroptosis and
pyroptosis) [163]. Furthermore, it is suggested that this process involves a unique path-
way controlled by a multiprotein complex called the “PANoptosome” based on ZBP1.
Inflammatory responses driven by activation of the PANoptosome have been postulated
in neurodegenerative diseases, cancer, infection-driven inflammation, joint inflammation,
and metabolic inflammation [163].

In turn, cytokines and alarmins may modulate PCDs pathways. IFNs are potent
modulators of different PCDs, by stimulating the expression of proapoptotic proteins such
as BAK, NOXA, caspase-8, and death receptors or death ligands (TNF«, CD95L), while
promoting also anti-apoptotic proteins such as cFLIP [64,164]. IFNs may also control the
expression of pyroptotic proteins such as caspases-4 and -5, caspase-1 and AIM2, NLRP6,
NLRCS5 [80,81]. Additionally, IFNs trigger necroptosis by the STAT1 dependent pathway
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or by increasing ZBP1 and MLKL [104,106,165]. As discussed above, the inflammatory
processes triggered in CD may enhance cell death mechanisms of different kinds, leading to
the release of HMGB1, IL-13 and IL-33, which expand the inflammation and the induction
of further proinflammatory cell death (summarized in Figure 4). Nutritional deficiencies
due to mucosal malabsorption and inflammatory process are associated with a broad
range of extraintestinal conditions (dermatological, endocrine, and reproductive disorders,
neurological and psychiatric conditions, musculoskeletal manifestations, among others)
in CD patients [166]. Therefore, inflammation beyond the small intestine deserves further
investigation, in order to gain insight into the mechanisms playing a role in proximal small
intestines from CD patients, which may be involved in driving systemic disorders.

6. Conclusions

The past few years have seen an expansion in the knowledge about programmed
cell death, not only in a detailed description of the molecular mechanisms, but also in
the discovery of new pathways occurring under specific conditions. This broad field has
an immense impact in health and disease. Particularly, different programmed cell death
pathways may occur in enterocytes and lamina propria cells from the small intestine. In
addition to silent apoptosis driven by cytotoxic lymphocytes, proinflammatory processes
such as pyroptosis, ferroptosis and necroptosis can also be induced. The alarmins and
other pro-inflammatory mediators released by these PCD pathways may play a role in
expanding the local inflammatory reaction and, by sustaining the T cell-driven tissue
damage, help to the loss of tolerance to gluten-derived peptides in the small intestine of CD
patients. Release of inflammatory mediators by proinflammatory PCD may have also a role
in potentiating and expanding the tissue damage locally and at distant sites, which may
favor the development of chronic inflammatory processes and autoimmunity in susceptible
individuals. Control of these PCD pathways may have a therapeutic benefit. However,
further efforts will need to validate findings from animal models to human diseases.
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