Placental Villous Explant Culture 2.0: Flow Culture Allows Studies Closer to the In Vivo Situation
Abstract
:1. Introduction
2. Results
2.1. Establishment of the Flow System
2.2. Morphological Analysis
2.2.1. β-Actin
2.2.2. H&E Staining
2.2.3. CD34 Class II
2.2.4. Cytokeratin 7
2.2.5. Active Caspase 8
2.2.6. Ki67
2.3. LDH Assay and hCG Measurement
2.4. Ultrastructural Analysis
2.4.1. Scanning Electron Microscopy
2.4.2. Transmission Electron Microscopy
3. Discussion
4. Materials and Methods
4.1. Human Placental Samples
4.2. General Culture of Villous Explants
Flow and Static Culture of Villous Explants
4.3. Histology and Immunohistochemistry
4.4. Ultrastructural Analysis
4.4.1. Transmission Electron Microscopy (TEM)
4.4.2. Scanning Electron Microscopy (SEM)
4.5. LDH Assay and hCG Measurement
4.6. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burton, G.J.; Jauniaux, E. What is the placenta? Am. J. Obstet. Gynecol. 2015, 213, S6.e1–S6.e4. [Google Scholar] [CrossRef] [Green Version]
- Gude, N.M.; Roberts, C.T.; Kalionis, B.; King, R.G. Growth and function of the normal human placenta. Thromb. Res. 2004, 114, 397–407. [Google Scholar] [CrossRef]
- Kupper, N.; Huppertz, B. The endogenous exposome of the pregnant mother: Placental extracellular vesicles and their effect on the maternal system. Mol. Asp. Med. 2021, 100955. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.K.; Genbacev, O.; Turner, M.A.; Aplin, J.D.; Caniggia, I.; Huppertz, B. Human placental explants in culture: Approaches and assessments. Placenta 2005, 26, 439–448. [Google Scholar] [CrossRef]
- Villee, C.A. The metabolism of the human placenta in vitro. J. Biol. Chem. 1953, 205, 113–123. [Google Scholar] [CrossRef]
- Siwetz, M.; Blaschitz, A.; El-Heliebi, A.; Hiden, U.; Desoye, G.; Huppertz, B.; Gauster, M. TNF-α alters the inflammatory secretion profile of human first trimester placenta. Lab. Investig. 2016, 96, 428–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forstner, D.; Maninger, S.; Nonn, O.; Guettler, J.; Moser, G.; Leitinger, G.; Pritz, E.; Strunk, D.; Schallmoser, K.; Marsche, G.; et al. Platelet-derived factors impair placental chorionic gonadotropin beta-subunit synthesis. J. Mol. Med. 2020, 98, 193–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brew, O.; Sullivan, M.H.F. Oxygen and tissue culture affect placental gene expression. Placenta 2017, 55, 13–20. [Google Scholar] [CrossRef]
- Reti, N.G.; Lappas, M.; Huppertz, B.; Riley, C.; Wlodek, M.E.; Henschke, P.; Permezel, M.; Rice, G.E. Effect of high oxygen on placental function in short-term explant cultures. Cell Tissue Res. 2007, 328, 607–616. [Google Scholar] [CrossRef]
- Tong, M.; Chamley, L.W. Isolation and characterization of extracellular vesicles from ex vivo cultured human placental explants. Methods Mol. Biol. 2018, 1710, 117–129. [Google Scholar] [CrossRef]
- Sooranna, S.R.; Oteng-Ntim, E.; Meah, R.; Ryder, T.A.; Bajoria, R. Characterization of human placental explants: Morphological, biochemical and physiological studies using first and third trimester placenta. Hum. Reprod. 1999, 14, 536–541. [Google Scholar] [CrossRef] [Green Version]
- Simán, C.M.; Sibley, C.P.; Jones, C.J.P.; Turner, M.A.; Greenwood, S.L. The functional regeneration of syncytiotrophoblast in cultured explants of term placent. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 280, 1116–1122. [Google Scholar] [CrossRef] [Green Version]
- Toro, A.R.; Maymó, J.L.; Ibarbalz, F.M.; Pérez, A.P.; Maskin, B.; Faletti, A.G.; Margalet, V.S.; Varone, C.L. Leptin Is an Anti-Apoptotic Effector in Placental Cells Involving p53 Downregulation. PLoS ONE 2014, 9, e99187. [Google Scholar] [CrossRef]
- Weiss, G.; Sundl, M.; Glasner, A.; Huppertz, B.; Moser, G. The trophoblast plug during early pregnancy: A deeper insight, Histochem. Cell Biol. 2016, 146, 749–756. [Google Scholar] [CrossRef] [Green Version]
- Moser, G.; Gauster, M.; Orendi, K.; Glasner, A.; Theuerkauf, R.; Huppertz, B. Endoglandular trophoblast, an alternative route of trophoblast invasion? Analysis with novel confrontation co-culture models. Hum. Reprod. 2010, 25, 1127–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huppertz, B.; Weiss, G.; Moser, G. Trophoblast invasion and oxygenation of the placenta: Measurements versus presumptions. J. Reprod. Immunol. 2014, 101–102, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Burton, G.J.; Woods, A.W.; Jauniaux, E.; Kingdom, J.C.P. Rheological and Physiological Consequences of Conversion of the Maternal Spiral Arteries for Uteroplacental Blood Flow during Human Pregnancy. Placenta 2009, 30, 473–482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y. Vascular Biology of the Placenta. Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease. Morgan & Claypool Life Sci. 2010, 2, 1–98. [Google Scholar] [CrossRef]
- Miura, S.; Sato, K.; Kato-Negishi, M.; Teshima, T.; Takeuchi, S. Fluid shear triggers microvilli formation via mechanosensitive activation of TRPV6. Nat. Commun. 2015, 6, 8871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ringler, G.E.; Strauss, J.F. In Vitro Systems for the Study of Human Placental Endocrine Function. Endocr. Rev. 1990, 11, 105–123. [Google Scholar] [CrossRef]
- Pastuschek, J.; Nonn, O.; Gutiérrez-Samudio, R.N.; Murrieta-Coxca, J.M.; Müller, J.; Sanft, J.; Huppertz, B.; Markert, U.R.; Groten, T.; Morales-Prieto, D.M. Molecular characteristics of established trophoblast-derived cell lines. Placenta 2021, 108, 122–133. [Google Scholar] [CrossRef] [PubMed]
- Sodha, R.J.; Proegler, M.; Schneider, H. Transfer and metabolism of norepinephrine studied from maternal-to-fetal and fetal-to-maternal sides in the in vitro perfused human placental lobe. Am. J. Obstet. Gynecol. 1984, 148, 474–481. [Google Scholar] [CrossRef]
- Hutson, J.R.; Garcia-Bournissen, F.; Davis, A.; Koren, G. The Human Placental Perfusion Model: A Systematic Review and Development of a Model to Predict In Vivo Transfer of Therapeutic Drugs. Clin. Pharmacol. Ther. 2011, 90, 67–76. [Google Scholar] [CrossRef]
- Watson, A.L.; Palmer, M.E.; Burton, G. Human chorionic gonadotrophin release and tissue viability in placental organ culture. Hum. Reprod. 1995, 10, 2159–2164. [Google Scholar] [CrossRef]
- Huppertz, B. IFPA Award in Placentology Lecture: Biology of the placental syncytiotrophoblast—Myths and facts. Placenta 2010, 31, S75–S81. [Google Scholar] [CrossRef] [PubMed]
- Huppertz, B. Trophoblast differentiation, fetal growth restriction and preeclampsia. Pregnancy Hypertens. Int. J. Women’s Cardiovasc. Health 2011, 1, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Brugger, B.A.; Guettler, J.; Gauster, M. Go with the Flow—Trophoblasts in Flow Culture. Int. J. Mol. Sci. 2020, 21, 4666. [Google Scholar] [CrossRef]
- Lecarpentier, E.; Atallah, A.; Guibourdenche, J.; Hebert-Schuster, M.; Vieillefosse, S.; Chissey, A.; Haddad, B.; Pidoux, G.; Evain-Brion, D.; Barakat, A.; et al. Fluid Shear Stress Promotes Placental Growth Factor Upregulation in Human Syncytiotrophoblast Through the cAMP-PKA Signaling Pathway. Hypertension 2016, 68, 1438–1446. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnea, E.R.; Shurtz-Swirski, R.; Kaplan, M. Factors controlling spontaneous human chorionic gonadotrophin in superfused first trimester placental explants. Hum. Reprod. 1992, 7, 1022–1026. [Google Scholar] [CrossRef]
- Barnea, E.R.; Kaplan, M. Spontaneous, gonadotropin-releasing hormone-induced, and progesterone-inhibited pulsatile secretion of human chorionic gonadotropin in the first trimester placenta in vitro. J. Clin. Endocrinol. Metab. 1989, 69, 215–217. [Google Scholar] [CrossRef] [PubMed]
- Lambot, N.; Lebrun, P.; Cirelli, N.; Vanbellinghen, A.; Delogne-Desnoeck, J.; Graff, G.; Meuris, S. Colloidal effect of albumin on the placental lactogen and chorionic gonadotrophin releases from human term placental explants. Biochem. Biophys. Res. Commun. 2004, 315, 342–348. [Google Scholar] [CrossRef]
- Cole, L.A. hCG, the wonder of today’s science. Reprod. Biol. Endocrinol. 2012, 10, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Q.J.; Lei, Z.M.; Lin, J.; Carolina, N. Novel role of human chorionic gonadotropin in differentiation of human cytotrophoblasts. Endocrinology 1993, 132, 1387–1395. [Google Scholar] [CrossRef] [PubMed]
- Palmer, M.E.; Watson, A.L.; Burton, G.J. Morphological analysis of degeneration and regeneration of syncytiotrophoblast in first trimester placental villi during organ culture. Hum. Reprod. 1997, 12, 379–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huppertz, B.; Frank, H.-G.; Kingdom, J.C.P.; Reister, F.; Kaufmann, P. Villous cytotrophoblast regulation of the syncytial apoptotic cascade in the human placenta. Histochem. Cell Biol. 1998, 110, 495. [Google Scholar] [CrossRef]
- Boren, J.; Brindle, K.M. Apoptosis-induced mitochondrial dysfunction causes cytoplasmic lipid droplet formation. Cell Death Differ. 2012, 19, 1561–1570. [Google Scholar] [CrossRef] [Green Version]
- Bildirici, I.; Schaiff, W.T.; Chen, B.; Morizane, M.; Oh, S.-Y.; O’Brien, M.; Sonnenberg-Hirche, C.; Chu, T.; Barak, Y.; Nelson, D.M.; et al. PLIN2 Is Essential for Trophoblastic Lipid Droplet Accumulation and Cell Survival During Hypoxia. Endocrinology 2018, 159, 3937–3949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, S.G.; Zechner, R. Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev. 2013, 27, 459–484. [Google Scholar] [CrossRef] [Green Version]
- Jarc, E.; Petan, T. Lipid Droplets and the Management of Cellular Stress. Yale J. Biol. Med. 2019, 92, 435–452. Available online: http://www.ncbi.nlm.nih.gov/pubmed/31543707 (accessed on 4 February 2021).
- Li, H.; Ouyang, Y.; Sadovsky, E.; Parks, W.T.; Chu, T.; Sadovsky, Y. Unique microRNA Signals in Plasma Exosomes from Pregnancies Complicated by Preeclampsia. Hypertension 2020, 75, 762–771. [Google Scholar] [CrossRef]
- Shahgheibi, S.; Mardani, R.; Babaei, E.; Mardani, P.; Rezaie, M.; Farhadifar, F.; Roshani, D.; Naqshbandi, M.; Jalili, A. Platelet indices and CXCL12 levels in patients with intrauterine growth restriction. Int. J. Women’s Health 2020, 12, 307–312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallarek, A.-C.; Huppertz, B.; Stepan, H. Preeclampsia-Aetiology, Current Diagnostics and Clinical Management, New Therapy Options and Future Perspectives. Geburtshilfe Frauenheilkd 2012, 72, 1107–1116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huppertz, B. Biology of preeclampsia: Combined actions of angiogenic factors, their receptors and placental proteins. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1866, 165349. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kupper, N.; Pritz, E.; Siwetz, M.; Guettler, J.; Huppertz, B. Placental Villous Explant Culture 2.0: Flow Culture Allows Studies Closer to the In Vivo Situation. Int. J. Mol. Sci. 2021, 22, 7464. https://doi.org/10.3390/ijms22147464
Kupper N, Pritz E, Siwetz M, Guettler J, Huppertz B. Placental Villous Explant Culture 2.0: Flow Culture Allows Studies Closer to the In Vivo Situation. International Journal of Molecular Sciences. 2021; 22(14):7464. https://doi.org/10.3390/ijms22147464
Chicago/Turabian StyleKupper, Nadja, Elisabeth Pritz, Monika Siwetz, Jacqueline Guettler, and Berthold Huppertz. 2021. "Placental Villous Explant Culture 2.0: Flow Culture Allows Studies Closer to the In Vivo Situation" International Journal of Molecular Sciences 22, no. 14: 7464. https://doi.org/10.3390/ijms22147464
APA StyleKupper, N., Pritz, E., Siwetz, M., Guettler, J., & Huppertz, B. (2021). Placental Villous Explant Culture 2.0: Flow Culture Allows Studies Closer to the In Vivo Situation. International Journal of Molecular Sciences, 22(14), 7464. https://doi.org/10.3390/ijms22147464