PLEKHA8P1 Promotes Tumor Progression and Indicates Poor Prognosis of Liver Cancer
Abstract
:1. Introduction
2. Results
2.1. PLEKHA8P1 Is Up-Regulated in HCC Samples and Predicts Unfavorable Prognosis in Patients from the TCGA-LIHC Dataset
2.2. Selection of Antisense Oligonucleotide (ASOs) for Precise Knock-Down of PLEKHA8P1 in HCC Cell Line
2.3. PLEKHA8P1 Promotes Proliferation in HCC Cells
2.4. PLEKHA8P1 Promotes Invasion and Migration in HCC Cells
2.5. PLEKHA8P1 as a Positive Regulator of PLEKHA8
2.6. PLEKHA8P1 Confers 5-FU Resistance to HCC Cells
3. Discussion
4. Methods and Materials
4.1. Raw Data Acquisition
4.2. Differential Gene Expression Analysis
4.3. Correlation Analysis
4.4. Survival Analysis
4.5. Cell Culture and Transfection
4.6. Cell Viability Assay
4.7. Colony Formation Assay
4.8. Flow Cytometry for Apoptosis
4.9. Cell Cycle Analysis
4.10. Invasion and Migration Assays
4.11. Wound-Healing Assay
4.12. RNA Isolation and Quantitative Real-Time PCR
4.13. Western Blot Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Projections of Mortality and Causes of Death, 2016 to 2060. Available online: http://www.who.int/healthinfo/global_burden_disease/projections/en/ (accessed on 12 May 2021).
- European Association for the Study of the Liver. EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev. Clin. Oncol. 2018, 15, 599–616. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, A. Hepatocellular Carcinoma. N. Engl. J. Med. 2019, 380, 1450–1462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raoul, J.L.; Forner, A.; Bolondi, L.; Cheung, T.T.; Kloeckner, R.; de Baere, T. Updated use of TACE for hepatocellular carcinoma treatment: How and when to use it based on clinical evidence. Cancer Treat. Rev. 2019, 72, 28–36. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 2021, 71, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Lohitesh, K.; Chowdhury, R.; Mukherjee, S. Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: An insight. Cancer Cell Int. 2018, 18, 44. [Google Scholar] [CrossRef]
- Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; et al. Landscape of transcription in human cells. Nature 2012, 489, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Kopp, F.; Mendell, J.T. Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell 2018, 172, 393–407. [Google Scholar] [CrossRef] [Green Version]
- Statello, L.; Guo, C.J.; Chen, L.L.; Huarte, M. Gene regulation by long non-coding RNAs and its biological functions. Nat. Rev. Mol. Cell Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef]
- St Laurent, G.; Wahlestedt, C.; Kapranov, P. The Landscape of long noncoding RNA classification. Trends Genet. 2015, 31, 239–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prince, D.; Liu, K.; Xu, W.; Chen, M.; Sun, J.-Y.; Lu, X.-J.; Ji, J. Management of patients with intermediate stage hepatocellular carcinoma. Ther. Adv. Med. Oncol. 2020, 12, 1758835920970840. [Google Scholar] [CrossRef] [PubMed]
- Jacq, C.; Miller, J.R.; Brownlee, G.G. A pseudogene structure in 5S DNA of Xenopus laevis. Cell 1977, 12, 109–120. [Google Scholar] [CrossRef]
- Poliseno, L.; Salmena, L.; Zhang, J.; Carver, B.; Haveman, W.J.; Pandolfi, P.P. A coding-independent function of gene and pseudogene mRNAs regulates tumour biology. Nature 2010, 465, 1033–1038. [Google Scholar] [CrossRef] [Green Version]
- Lou, W.Y.; Ding, B.S.; Fu, P.F. Pseudogene-Derived lncRNAs and Their miRNA Sponging Mechanism in Human Cancer. Front. Cell Dev. Biol. 2020, 8, 85. [Google Scholar] [CrossRef] [Green Version]
- Johnsson, P.; Morris, K.V.; Grandér, D. Pseudogenes: A Novel Source of trans-Acting Antisense RNAs. In Pseudogenes: Functions and Protocols; Poliseno, L., Ed.; Springer: New York, NY, USA, 2014; pp. 213–226. [Google Scholar]
- Guo, X.; Lin, M.; Rockowitz, S.; Lachman, H.M.; Zheng, D. Characterization of Human Pseudogene-Derived Non-Coding RNAs for Functional Potential. PLoS ONE 2014, 9, e93972. [Google Scholar] [CrossRef]
- Marchese, F.P.; Raimondi, I.; Huarte, M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017, 18, 206. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.L.; Yang, L.; Mo, Y.Y. Role of Pseudogenes in Tumorigenesis. Cancers 2018, 10, 256. [Google Scholar] [CrossRef] [Green Version]
- Tay, Y.; Rinn, J.; Pandolfi, P.P. The multilayered complexity of ceRNA crosstalk and competition. Nature 2014, 505, 344–352. [Google Scholar] [CrossRef] [Green Version]
- Thomson, D.W.; Dinger, M.E. Endogenous microRNA sponges: Evidence and controversy. Nat. Rev. Genet. 2016, 17, 272–283. [Google Scholar] [CrossRef]
- Bossi, L.; Figueroa-Bossi, N. Competing endogenous RNAs: A target-centric view of small RNA regulation in bacteria. Nat. Rev. Microbiol. 2016, 14, 775–784. [Google Scholar] [CrossRef] [Green Version]
- Frankish, A.; Diekhans, M.; Jungreis, I.; Lagarde, J.; Loveland, J.E.; Mudge, J.M.; Sisu, C.; Wright, J.C.; Armstrong, J.; Barnes, I.; et al. GENCODE 2021. Nucleic Acids Res. 2021, 49, D916–D923. [Google Scholar] [CrossRef]
- Wang, M.; Yu, F.; Chen, X.; Li, P.; Wang, K. The Underlying Mechanisms of Noncoding RNAs in the Chemoresistance of Hepatocellular Carcinoma. Mol. Nucleic Acids 2020, 21, 13–27. [Google Scholar] [CrossRef]
- Huang, Z.; Zhou, J.K.; Peng, Y.; He, W.; Huang, C. The role of long noncoding RNAs in hepatocellular carcinoma. Mol. Cancer 2020, 19, 77. [Google Scholar] [CrossRef] [Green Version]
- Iwatsuki, M.; Mimori, K.; Yokobori, T.; Ishi, H.; Beppu, T.; Nakamori, S.; Baba, H.; Mori, M. Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci. 2010, 101, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.Y.; Yang, K.; Liu, F.G.; Sun, X.G.; Chen, L.; Xiu, H.; Liu, X.S. Long noncoding RNA CASC2c inhibited cell proliferation in hepatocellular carcinoma by inactivated ERK1/2 and Wnt/beta-catenin signaling pathway. Clin. Transl. Oncol. 2020, 22, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.T.; Cao, J.L.; Yan, C.Q.; Wang, Y.; An, C.J.; Lv, H.T. Effects of LncRNA-HOST2 on cell proliferation, migration, invasion and apoptosis of human hepatocellular carcinoma cell line SMMC-7721. Biosci. Rep. 2017, 37. [Google Scholar] [CrossRef] [Green Version]
- Mo, M.; Liu, S.; Ma, X.; Tan, C.; Wei, L.; Sheng, Y.; Song, Y.; Zeng, X.; Huang, D.; Qiu, X. A liver-specific lncRNA, FAM99B, suppresses hepatocellular carcinoma progression through inhibition of cell proliferation, migration, and invasion. J. Cancer Res. Clin. Oncol. 2019, 145, 2027–2038. [Google Scholar] [CrossRef]
- Godi, A.; Di Campli, A.; Konstantakopoulos, A.; Di Tullio, G.; Alessi, D.R.; Kular, G.S.; Daniele, T.; Marra, P.; Lucocq, J.M.; De Matteis, M.A. FAPPs control Golgi-to-cell-surface membrane traffic by binding to ARF and PtdIns(4)P. Nat. Cell Biol. 2004, 6, 393–404. [Google Scholar] [CrossRef] [PubMed]
- D’Angelo, G.; Polishchuk, E.; Di Tullio, G.; Santoro, M.; Di Campli, A.; Godi, A.; West, G.; Bielawski, J.; Chuang, C.C.; van der Spoel, A.C.; et al. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 2007, 449, 62–67. [Google Scholar] [CrossRef] [PubMed]
- Tritz, R.; Hickey, M.J.; Lin, A.H.; Hadwiger, P.; Sah, D.W.; Neuwelt, E.A.; Mueller, B.M.; Kruse, C.A. FAPP2 gene downregulation increases tumor cell sensitivity to Fas-induced apoptosis. Biochem. Biophys. Res. Commun. 2009, 383, 167–171. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Li, L.; Zhou, Z.; Yu, S.; Li, Y.; Gao, Y. FAPP2 promotes tumor cell growth in human colon cancer through activation of Wnt signaling. Exp. Cell Res. 2019, 374, 12–18. [Google Scholar] [CrossRef]
- Fan, W.H.; Du, F.J.; Liu, X.J. Phosphatidylinositol 4-phosphate adaptor protein 2 accelerates the proliferation and invasion of hepatocellular carcinoma cells by enhancing Wnt/beta-catenin signaling. J. Bioenerg. Biomembr. 2020, 52, 301–309. [Google Scholar] [CrossRef]
- Kong, L.; Dong, L. FAPP2 Accelerates the Proliferation and Invasion of Hepatocellular Carcinoma Cells via Wnt/β-Catenin Signaling. J. Environ. Pathol. Toxicol. Oncol. 2020, 39, 309–316. [Google Scholar] [CrossRef]
- Chen, B.; Wang, C.; Zhang, J.; Zhou, Y.; Hu, W.; Guo, T. New insights into long noncoding RNAs and pseudogenes in prognosis of renal cell carcinoma. Cancer Cell Int. 2018, 18, 157. [Google Scholar] [CrossRef]
- Walder, R.Y.; Walder, J.A. Role of RNase H in hybrid-arrested translation by antisense oligonucleotides. Proc. Natl. Acad. Sci. USA 1988, 85, 5011–5015. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, M.; Morizane, C.; Ueno, M.; Okusaka, T.; Ishii, H.; Furuse, J. Chemotherapy for hepatocellular carcinoma: Current status and future perspectives. Jpn. J. Clin. Oncol. 2018, 48, 103–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, W.; Mok, T.S.; Zee, B.; Leung, T.W.; Lai, P.B.; Lau, W.Y.; Koh, J.; Mo, F.K.; Yu, S.C.; Chan, A.T.; et al. A randomized phase III study of doxorubicin versus cisplatin/interferon alpha-2b/doxorubicin/fluorouracil (PIAF) combination chemotherapy for unresectable hepatocellular carcinoma. J. Natl. Cancer Inst. 2005, 97, 1532–1538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chow, L.W.; Tung, S.Y.; Ng, T.Y.; Im, S.A.; Lee, M.H.; Yip, A.Y.; Toi, M.; Glück, S. Concurrent celecoxib with 5-fluorouracil/epirubicin/cyclophosphamide followed by docetaxel for stages II–III invasive breast cancer: The OOTR-N001 study. Expert Opin. Investig. Drugs 2013, 22, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhao, J.; Zhu, Z. Prognostic Nomogram of Prognosis-Related Genes and Clinicopathological Characteristics to Predict the 5-Year Survival Rate of Colon Cancer Patients. Front. Surg. 2021, 8, 681721. [Google Scholar] [CrossRef]
- Swamy, S.G.; Kameshwar, V.H.; Shubha, P.B.; Looi, C.Y.; Shanmugam, M.K.; Arfuso, F.; Dharmarajan, A.; Sethi, G.; Shivananju, N.S.; Bishayee, A. Targeting multiple oncogenic pathways for the treatment of hepatocellular carcinoma. Target. Oncol. 2017, 12, 1–10. [Google Scholar] [CrossRef]
- Genomic Data Commons (GDC) Data Portal. Available online: https://portal.gdc.cancer.gov (accessed on 12 May 2021).
- Colaprico, A.; Silva, T.C.; Olsen, C.; Garofano, L.; Cava, C.; Garolini, D.; Sabedot, T.S.; Malta, T.M.; Pagnotta, S.M.; Castiglioni, I.; et al. TCGAbiolinks: An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2016, 44, e71. [Google Scholar] [CrossRef] [PubMed]
- cBioPortal. Available online: https://www.cbioportal.org (accessed on 12 May 2021).
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [Green Version]
- Blighe, K.; Rana, S.; Turkes, E.; Grioni, A.; Lewis, M.; Ostendorf, B. EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling. R Package Version 1.0 2019. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef] [Green Version]
- Kolde, R. Pheatmap: Pretty Heatmaps. R Package Version 1.2. 2012. Available online: https://rdrr.io/cran/pheatmap/ (accessed on 16 May 2021).
- Terry, T.; Grambsch, P. A Package for Survival Analysis in S. R package Version. 2012. Available online: https://cran.r-project.org/web/packages/survival/survival.pdf (accessed on 12 May 2021).
- Therneau, T.M. The Cox Model. In Modeling Survival Data: Extending the Cox Model. Statistics for Biology and Health; Springer: New York, NY, USA, 2000. [Google Scholar]
- Survival Analysis. Available online: https://cran.r-project.org/web/packages/survival/index.html (accessed on 12 May 2021).
- Survminer: Drawing Survival Curves Using ‘ggplot2’. Available online: https://cran.r-project.org/web/packages/survminer/index.html (accessed on 12 May 2021).
- Littell, R.C.; Folks, J.L. Asymptotic Optimality of Fisher’s Method of Combining Independent Tests. J. Am. Stat. Assoc. 1971, 66, 802–806. [Google Scholar] [CrossRef]
- metap: Meta-Analysis of Significance Values. Available online: https://cran.r-project.org/web/packages/metap/index.html (accessed on 12 May 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Hwang, J.-H.; Chun, H.; Woo, W.; Oh, S.; Choi, J.; Kim, L.K. PLEKHA8P1 Promotes Tumor Progression and Indicates Poor Prognosis of Liver Cancer. Int. J. Mol. Sci. 2021, 22, 7614. https://doi.org/10.3390/ijms22147614
Lee J, Hwang J-H, Chun H, Woo W, Oh S, Choi J, Kim LK. PLEKHA8P1 Promotes Tumor Progression and Indicates Poor Prognosis of Liver Cancer. International Journal of Molecular Sciences. 2021; 22(14):7614. https://doi.org/10.3390/ijms22147614
Chicago/Turabian StyleLee, Jiyeon, Ji-Hyun Hwang, Harim Chun, Wonjin Woo, Sekyung Oh, Jungmin Choi, and Lark Kyun Kim. 2021. "PLEKHA8P1 Promotes Tumor Progression and Indicates Poor Prognosis of Liver Cancer" International Journal of Molecular Sciences 22, no. 14: 7614. https://doi.org/10.3390/ijms22147614
APA StyleLee, J., Hwang, J. -H., Chun, H., Woo, W., Oh, S., Choi, J., & Kim, L. K. (2021). PLEKHA8P1 Promotes Tumor Progression and Indicates Poor Prognosis of Liver Cancer. International Journal of Molecular Sciences, 22(14), 7614. https://doi.org/10.3390/ijms22147614