Supramolecular Amphiphiles Based on Pillar[5]arene and Meroterpenoids: Synthesis, Self-Association and Interaction with Floxuridine
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of Meroterpenoids Containing Pyridinium and Imidazolium Fragments Based on Terpene Alcohols
2.2. Self-Assembly of Supramolecular Amphiphiles Based on Pillar[5]Arene and Meroterpenoids Containing Pyridinium and Imidazolium Fragments
2.3. Membranotropic Activity of Supramolecular Amphiphiles Based on Pillar[5]Arene and Meroterpenoids Containing Pyridinium and Imidazolium Fragments
2.4. Interaction of FUDR with Associates 3a/5
3. Experimental
3.1. General Information
3.2. General Procedure for the Synthesis of Compounds 2a–d
3.2.1. Geranyl-2-bromoacetate (2a)
3.2.2. Farnesyl-2-bromoacetate (2b)
3.2.3. Phytyl-2-bromoacetate (2c)
3.2.4. R-Myrtenyl-2-bromoacetate (2d)
3.3. General Procedure for the Synthesis of Compounds 3a–d and 4a–d
3.3.1. 1-(2-(Geranyloxy)-2-oxoethyl)pyridinium bromide (3a)
3.3.2. 1-(2-(Farnesyloxy)-2-oxoethyl)pyridinium bromide (3b)
3.3.3. 1-(2-(Phytyloxy)-2-oxoethyl)pyridinium bromide (3c)
3.3.4. 1-(2-(R-Myrtenyloxy)-2-oxoethyl)pyridinium bromide (3d)
3.3.5. 3-(2-(Geranyloxy)-2-oxoethyl)-1-methyl-1H-imidazole-3-ium bromide (4a)
3.3.6. 3-(2-(Farnesyloxy)-2-oxoethyl)-1-methyl-1H-imidazole-3-ium bromide (4b)
3.3.7. 3-(2-(Phytoloxy)-2-oxoethyl)-1-methyl-1H-imidazole-3-ium bromide (4c)
3.3.8. 3-(2-(R-Myrtenyloxy)-2-oxoethyl)-1-methyl-1H-imidazole-3-ium bromide (4d)
3.4. Determination of the Hydrodynamic Particle Size by Dynamic Light Scattering
3.5. Measurement of the Zeta-Potential
3.6. Turbidimetry
3.7. 2D DOSY NMR Spectroscopy
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, S.K. (Ed.) Handbook of Anticancer Drugs from Marine Origin; Springer: Berlin, Germany, 2014. [Google Scholar] [CrossRef]
- Matsuda, Y.; Abe, I. Biosynthesis of fungal meroterpenoids. Nat. Prod. Rep. 2016, 33, 26–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plemenkov, V.V.; Shurpik, D.N.; Akhmedov, A.A.; Puplampu, J.B.; Stoikov, I.I. Progress in studies on meroterpenoids. In Studies in Natural Products Chemistry; Ur-Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; Volume 64, pp. 181–216. [Google Scholar] [CrossRef]
- Shurpik, D.N.; Akhmedov, A.A.; Cragg, P.J.; Plemenkov, V.V.; Stoikov, I.I. Progress in the Chemistry of Macrocyclic Meroterpenoids. Plants 2020, 9, 1582. [Google Scholar] [CrossRef]
- Woese, C.R.; Kandler, O.; Wheelis, M.L. Towards a natural system of organisms: Proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 1990, 87, 4576–4579. [Google Scholar] [CrossRef] [Green Version]
- Caforio, A.; Jain, S.; Fodran, P.; Siliakus, M.; Minnaard, A.J.; Van Der Oost, J.; Driessen, A.J. Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli. Biochem. J. 2015, 470, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Caforio, A.; Driessen, A.J.M. Biosynthesis of archaeal membrane ether lipids. Front. Microbiol. 2014, 5, 641. [Google Scholar] [CrossRef] [Green Version]
- Benvegnu, T.; Lemiègre, L.; Cammas-Marion, S. New generation of liposomes called archaeosomes based on natural or synthetic archaeal lipids as innovative formulations for drug delivery Recent. Pat. Drug. Deliv. Form. 2009, 3, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Jacquemet, A.; Barbeau, J.; Lemiègre, L.; Benvegnu, T. Archaeal tetraether bipolar lipids: Structures, functions and applications. Biochimica 2009, 91, 711–717. [Google Scholar] [CrossRef] [PubMed]
- Akhmedov, A.A.; Shurpik, D.N.; Plemenkov, V.V.; Stoikov, I.I. Water-soluble meroterpenes containing an aminoglyceride fragment with geraniol residues: Synthesis and membranotropic properties. Mendeleev Commun. 2019, 29, 29–31. [Google Scholar] [CrossRef]
- Koga, Y.; Morii, H. Recent Advances in Structural Research on Ether Lipids from Archaea Including Comparative and Physiological Aspects. Biosci. Biotechnol. Biochem. 2005, 69, 2019–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, T.; Li, F.; Tian, J.; Wang, L.; Luo, Q.; Hou, C.; Dong, Z.; Xu, J.; Liu, J. Biomimetic pulsating vesicles with both pH-tunable membrane permeability and light-triggered disassembly–re-assembly behaviors prepared by supra-amphiphilic helices. ACS Appl. Mater. Interfaces 2019, 11, 30566–30574. [Google Scholar] [CrossRef]
- Shurpik, D.N.; Sevastyanov, D.A.; Zelenikhin, P.V.; Subakaeva, E.V.; Evtugyn, V.G.; Osin, Y.N.; Cragg, P.J.; Stoikov, I.I. Hydrazides of glycine-containing decasubstituted pillar [5] arenes: Synthesis and encapsulation of Floxuridine. Tetrahedron Lett. 2018, 59, 4410–4415. [Google Scholar] [CrossRef]
- Shurpik, D.N.; Mostovaya, O.A.; Sevastyanov, D.A.; Lenina, O.A.; Sapunova, A.S.; Voloshina, A.D.; Petrov, K.A.; Kovyazina, I.V.; Cragg, P.J.; Stoikov, I.I. Supramolecular neuromuscular blocker inhibition by a pillar[5]arene through aqueous inclusion of rocuronium bromide. Org. Biomol. Chem. 2019, 17, 9951–9959. [Google Scholar] [CrossRef]
- Li, Z.; Yang, Y.-W. Functional Materials with Pillarene Struts. Accounts Mater. Res. 2021, 2, 292–305. [Google Scholar] [CrossRef]
- Fa, S.; Kakuta, T.; Yamagishi, T.-A.; Ogoshi, T. One-, Two-, and Three-Dimensional Supramolecular Assemblies Based on Tubular and Regular Polygonal Structures of Pillar[n]arenes. CCS Chem. 2019, 1, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Ogoshi, T.; Kanai, S.; Fujinami, S.; Yamagishi, T.A.; Nakamoto, Y. para-Bridged symmetrical pillar[5]arenes: Their Lewis acid catalyzed synthesis and host-guest property. J. Am. Chem. Soc. 2008, 130, 5022–5023. [Google Scholar] [CrossRef] [PubMed]
- Ogoshi, T.; Tanaka, S.; Yamagishi, T.-A.; Nakamoto, Y. Ionic Liquid Molecules (ILs) as Novel Guests for Pillar[5]arene: 1:2 Host–Guest Complexes between Pillar[5]arene and ILs in Organic Media. Chem. Lett. 2011, 40, 96–98. [Google Scholar] [CrossRef]
- Cao, D.; Meier, H. Pillar[n]arenes-a Novel, Highly Promising Class of Macrocyclic Host Molecules. Asian J. Org. Chem. 2014, 3, 244–262. [Google Scholar] [CrossRef]
- Ogoshi, T.; Masaki, K.; Shiga, R.; Kitajima, K.; Yamagishi, T.-A. Planar-Chiral Macrocyclic Host Pillar[5]arene: No Rotation of Units and Isolation of Enantiomers by Introducing Bulky Substituents. Org. Lett. 2011, 13, 1264–1266. [Google Scholar] [CrossRef]
- Ogoshi, T.; Hashizume, M.; Yamagishi, T.-A.; Nakamoto, Y. Synthesis, conformational and host–guest properties of water-soluble pillar[5]arene. Chem. Commun. 2010, 46, 3708–3710. [Google Scholar] [CrossRef] [PubMed]
- Beneteau, R.; Lebreton, J.; Denes, F. A Convenient Access to γ-Lactones from O-Allyl-α-Bromoesters using a One-Pot Ionic–Radical–Ionic Sequence. Chem. Asian J. 2012, 7, 1516–1520. [Google Scholar] [CrossRef]
- Bhadani, A.; Rane, J.; Veresmortean, C.; Banerjee, S.; John, G. Bio-inspired surfactants capable of generating plant volatiles. Soft Matter. 2015, 11, 3076–3082. [Google Scholar] [CrossRef]
- Hardy, F.E.; Struillou, A.P. Betaine esters for delivery of alcohols. WO Patent 1996038528A1, 13 May 1996. and issued 5 December 1996. [Google Scholar]
- Li, C.; Shu, X.; Li, J.; Chen, S.; Han, K.; Xu, M.; Hu, B.; Yu, Y.; Jia, X. Complexation of 1,4-Bis(pyridinium)butanes by Negatively Charged Carboxylatopillar[5]arene. J. Org. Chem. 2011, 76, 8458–8465. [Google Scholar] [CrossRef]
- Li, C.; Xu, Q.; Li, J.; Yao, F.; Jia, X. Complex interactions of pillar[5]arene with paraquats and bis(pyridinium) derivatives. Org. Biomol. Chem. 2010, 8, 1568–1576. [Google Scholar] [CrossRef] [PubMed]
- Hibbert, D.B.; Thordarson, P. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. Chem. Commun. 2016, 52, 12792–12805. [Google Scholar] [CrossRef] [Green Version]
- Eker, F.; Durmus, H.O.; Akinoglu, B.G.; Severcan, F. Application of turbidity technique on peptide-lipid and drug-lipid interactions. J. Mol. Struct. 1999, 482–483, 693–697. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Y.; Gillies, R.J. Tumor pH and Its Measurement. J. Nucl. Med. 2010, 51, 1167–1170. [Google Scholar] [CrossRef] [Green Version]
- Engin, K.; Leeper, D.B.; Cater, J.R.; Thistlethwaite, A.J.; Tupchong, L.; McFarlane, J.D. Extracellular pH distribution in human tumours. Int. J. Hyperth. 1995, 11, 211–216. [Google Scholar] [CrossRef]
- Grem, J.L. 5-Fluorouracil: Forty-Plus and Still Ticking. A Review of its Preclinical and Clinical Development. Investig. New Drugs 2000, 18, 299–313. [Google Scholar] [CrossRef]
- Guo, W.; Fung, B.M.; Christian, S.D. NMR study of cyclodextrin inclusion of fluorocarbon surfactants in solution. Langmuir 1992, 8, 446–451. [Google Scholar] [CrossRef]
- Weiss-Errico, M.J.; Ghiviriga, I.; O’Shea, K.E. 19F NMR characterization of the encapsulation of emerging perfluoroethercarboxylic acids by cyclodextrins. J. Phys. Chem. B 2017, 121, 8359–8366. [Google Scholar] [CrossRef]
- Notti, A.; Pisagatti, I.; Nastasi, F.; Patanè, S.; Parisi, M.F.; Gattuso, G. Stimuli-Responsive Internally Ion-Paired Supramolecular Polymer Based on a Bis-pillar[5]arene Dicarboxylic Acid Monomer. J. Org. Chem. 2021, 86, 1676–1684. [Google Scholar] [CrossRef] [PubMed]
- Dais, P.; Misiak, M.; Hatzakis, E. Analysis of marine dietary supplements using NMR spectroscopy. Anal. Methods 2015, 7, 5226–5238. [Google Scholar] [CrossRef]
Ratio 4/5 | 4a | 4b | 4d | |||
---|---|---|---|---|---|---|
d | PDI | d | PDI | d | PDI | |
– | 475 ± 22 | 0.24 | 420 ± 19 | 0.19 | 521 ± 25 | 0.17 |
1:0.1 | 522 ± 13 | 0.26 | 501 ± 21 | 0.19 | 607 ± 24 | 0.22 |
1:0.2 | 515 ± 12 | 0.23 | 505 ± 13 | 0.21 | 635 ± 22 | 0.20 |
1:0.5 | 532 ± 36 | 0.20 | 513 ± 29 | 0.22 | 645 ± 29 | 0.28 |
1:1 | 562 ± 43 | 0.26 | 578 ± 53 | 0.46 | 662 ± 31 | 0.29 |
1:2 | 615 ± 36 | 0.35 | 915 ± 46 | 0.65 | 1606 ± 236 | 0.56 |
1:5 | 1216 ± 267 | 0.60 | 925 ± 87 | 0.61 | 1701 ± 298 | 0.69 |
1:10 | 1597 ± 312 | 0.67 | 997 ± 312 | 0.69 | 1698 ± 309 | 0.70 |
Ratio 3/5 | 3a | 3b | 3c | 3d | ||||
---|---|---|---|---|---|---|---|---|
d | PDI | d | PDI | d | PDI | d | PDI | |
– | 129 ± 2 | 0.23 | 144 ± 4 | 0.17 | 208 ± 13 | 0.30 | 198 ± 15 | 0.41 |
1:0.1 | 162 ± 2 | 0.08 | 208 ± 16 | 0.14 | 205 ± 9 | 0.29 | 189 ± 24 | 0.44 |
1:0.2 | 164 ± 14 | 0.14 | 379 ± 10 | 0.16 | 204 ± 7 | 0.27 | 234 ± 28 | 0.42 |
1:0.5 | 157 ± 5 | 0.12 | 411 ± 12 | 0.18 | 209 ± 4 | 0.31 | 198 ± 21 | 0.41 |
1:1 | 163 ± 2 | 0.10 | 386 ± 10 | 0.20 | 202 ± 5 | 0.27 | 237 ± 40 | 0.52 |
1:2 | 162 ± 6 | 0.06 | 348 ± 13 | 0.22 | 207 ± 18 | 0.29 | 313 ± 74 | 0.55 |
1:5 | 156 ± 3 | 0.19 | 297 ± 6 | 0.22 | 205 ± 12 | 0.29 | 253 ± 46 | 0.50 |
1:10 | 166 ± 5 | 0.28 | 285 ± 27 | 0.23 | 203 ± 8 | 0.29 | 259 ± 45 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhmedov, A.A.; Shurpik, D.N.; Padnya, P.L.; Khadieva, A.I.; Gamirov, R.R.; Panina, Y.V.; Gazizova, A.F.; Grishaev, D.Y.; Plemenkov, V.V.; Stoikov, I.I. Supramolecular Amphiphiles Based on Pillar[5]arene and Meroterpenoids: Synthesis, Self-Association and Interaction with Floxuridine. Int. J. Mol. Sci. 2021, 22, 7950. https://doi.org/10.3390/ijms22157950
Akhmedov AA, Shurpik DN, Padnya PL, Khadieva AI, Gamirov RR, Panina YV, Gazizova AF, Grishaev DY, Plemenkov VV, Stoikov II. Supramolecular Amphiphiles Based on Pillar[5]arene and Meroterpenoids: Synthesis, Self-Association and Interaction with Floxuridine. International Journal of Molecular Sciences. 2021; 22(15):7950. https://doi.org/10.3390/ijms22157950
Chicago/Turabian StyleAkhmedov, Alan A., Dmitriy N. Shurpik, Pavel L. Padnya, Alena I. Khadieva, Rustem R. Gamirov, Yulia V. Panina, Asiya F. Gazizova, Denis Yu. Grishaev, Vitaliy V. Plemenkov, and Ivan I. Stoikov. 2021. "Supramolecular Amphiphiles Based on Pillar[5]arene and Meroterpenoids: Synthesis, Self-Association and Interaction with Floxuridine" International Journal of Molecular Sciences 22, no. 15: 7950. https://doi.org/10.3390/ijms22157950
APA StyleAkhmedov, A. A., Shurpik, D. N., Padnya, P. L., Khadieva, A. I., Gamirov, R. R., Panina, Y. V., Gazizova, A. F., Grishaev, D. Y., Plemenkov, V. V., & Stoikov, I. I. (2021). Supramolecular Amphiphiles Based on Pillar[5]arene and Meroterpenoids: Synthesis, Self-Association and Interaction with Floxuridine. International Journal of Molecular Sciences, 22(15), 7950. https://doi.org/10.3390/ijms22157950