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Abstract: UBR box E3 ligases, also called N-recognins, are integral components of the N-degron path-
way. Representative N-recognins include UBR1, UBR2, UBR4, and UBR5, and they bind destabilizing
N-terminal residues, termed N-degrons. Understanding the molecular bases of their substrate recog-
nition and the biological impact of the clearance of their substrates on cellular signaling pathways can
provide valuable insights into the regulation of these pathways. This review provides an overview of
the current knowledge of the binding mechanism of UBR box N-recognin/N-degron interactions and
their roles in signaling pathways linked to G-protein-coupled receptors, apoptosis, mitochondrial
quality control, inflammation, and DNA damage. The targeting of these UBR box N-recognins can
provide potential therapies to treat diseases such as cancer and neurodegenerative diseases.

Keywords: UBR Box E3 ligases; N-recognin; Arg/N-degron pathway; N-degron; G-protein signaling;
apoptosis; mitochondrial quality control; inflammatory response; DNA damage

1. Introduction

A variety of mechanisms regulate cellular signaling pathways. One such mechanism
is the control of protein degradation. Protein degradation serves as a protein homeostasis
regulatory network that removes unnecessary proteins from the cellular environment
when they are no longer needed, damaged, or misfolded. In eukaryotic cells, the ubiquitin–
proteasome system (UPS) and the autophagic–lysosomal pathway are the two major protein
degradation systems [1]. Of these, the UPS is responsible for the bulk of intracellular
protein degradation (over 80%) and plays an essential regulatory role in critical cellular
processes, including cell cycle progression, proliferation, differentiation, angiogenesis, and
apoptosis [2–6]. The dysregulation of this pathway is associated with many conditions
such as neurodegeneration, cancer, and aging [7–13].

The UPS utilizes ubiquitin, a 76-amino acid polypeptide, as a tag to mark substrates
for degradation. This process is called protein ubiquitination and is mediated by the
coordinated action of a cascade of enzymes, including ubiquitin-activating enzymes (E1s),
ubiquitin-conjugating enzymes (E2s), and E3 ubiquitin ligases (E3s) [14–17]. Protein
ubiquitination starts with an E1 enzyme which activates ubiquitin by adenylating its C-
terminus. Once activated, ubiquitin is conjugated to an E2 enzyme. Finally, an E3 ubiquitin
ligase transfers the ubiquitin from the E2 enzyme to the target protein (substrate). As a
result, this process covalently links the C-terminal glycine of ubiquitin to a lysine residue of
the target protein through the formation of an isopeptide bond. Thus, E3s are particularly
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critical players in the ubiquitination process because they determine substrate specificity.
There are more than 600 human E3 ubiquitin ligases encoded by approximately 5% of the
human genome [18–20].

One unique class of E3 ubiquitin ligases (UBR1 to UBR7) is a family that contains an
evolutionally conserved UBR box domain, a substrate recognition domain [21,22]. This
review discusses the structural features and signaling pathways mediated by these UBR
box E3 ligases.

2. N-Degrons and the UBR Box E3 Ligases

According to the N-end rule, the lifespan of a protein depends on the character of its
N-terminal residue. N-terminal residues that destabilize a protein are termed N-degrons,
classified as type 1 or type 2. Type 1 N-degrons contain positively charged amino acids
such as Arg, Lys, and His, and type 2 N-degrons include hydrophobic residues such as
Phe, Trp, Tyr, Lue, and Ile. These N-degrons can be generated directly by nonprocessive
proteases, including methionine–aminopeptidases (MetAPs), caspases, calpains, separases,
or indirectly, by enzymatic cascades that mediate the post-translational arginylation of
newly exposed Asn, Gln, Asp, Glu, and Cys in mammals [23–30]. Asn and Gln can be
converted to Asp and Glu via deamidation mediated by the protein N-terminal asparagine
amidohydrolase (NTAN1) and protein N-terminal glutamine amidohydrolase (NTAQ1),
respectively [31–33]. N-terminal Cys can be oxidized by oxygen depletion or nitric oxide
(NO) to become either Cys-sulfinic acid (CysO2H) or Cys-sulfonic acid (CysO3H) [34–36].
Recently, the formation of Cys-sulfinic acid has been shown to be mediated by cysteamine
(2-aminoethanethiol) dioxygenase (ADO) [37]. N-terminal Asp, Glu, and oxidized Cys are
conjugated with the amino acid L-Arg by arginyl-tRNA-protein transferase 1 (ATE1) to
generate a canonical N-degron, Arg (Figure 1). Recently, some evidence has shown that
stabilizing residues can also act as N-degrons in a context-dependent manner [38].

Seven UBR box E3 ligases have been identified in mammals (UBR 1-7) (Figure 2). The
UBR box of UBR1, UBR2, UBR4, and UBR5 has been shown to bind type 1 N-degrons. In
addition, UBR1 and UBR2 can bind type 2 N-degrons through an N domain present in both
proteins [39,40]. However, UBR4 can also bind type 2 N-degrons, although no defined N
domain has been identified [39,41]. The molecular mechanism by which UBR4 recognizes
type 2 N-degrons requires further investigation. These N-degron-binding UBR box E3
ligases are termed N-recognins.
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Figure 1. The classical Arg/N-degron pathway. N-degrons are classified as type 1 or type 2 according to the residues
exposed by proteases such as Endoprotease and MetAP. Asn, Gln, and Cys are tertiary destabilizing residues (in the
light-yellow box), converted into secondary destabilizing residues, Asp, Glu, and oxidized-Cys (in the light-green boxes),
respectively, and finally become type 1 Arg N-degrons through ATE1-mediated arginylation (C* denotes the oxidized
N-terminal cysteine residue). Cysteine is oxidized by typical ROSs and the recently reported ADO (ROSs, reactive oxygen
species; ADO, cysteamine (2-aminoethanethiol) dioxygenase).
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to UBR7 were identified in mammals. In addition to the UBR box, these proteins contain 
various domains and motifs seen in other E3 ubiquitin ligases such as E2 binding domains, 
RING, HECT, F-box, and PHD (Figure 2). Thus, they are classified as E3 ligases and serve 
as a platform through which ubiquitin can be transferred to the substrate. 
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Figure 2. Domains of the UBR box protein family. All UBR proteins have a UBR box (yellow ellipse) to recognize N-degrons,
and this UBR box is the signature of the UBR family. UBR1 and UBR2 also have an N-domain (green ellipse) that recognizes
the type 2 N-degrons. In addition, these UBR proteins have a RING (navy blue square), HECT (blue square), F-box (orange
box), or PHD domain (purple box) for E2 binding or ubiquitin conjugation. Other domains include the CUE domain, which
recognizes ubiquitin, and the MLLE domain, known to regulate the catalytic activity of HECT.
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3. The Structure of the Family of UBR Box Proteins

In 1990, Varshavsky and colleagues identified UBR1 (ubiquitin–protein ligase E3
component N-recognin 1) whose molecular weight is around 225 kDa as the sole N-
recognin in Saccharomyces cerevisiae [42]. Later, seven UBR box-containing proteins called
UBR1 to UBR7 were identified in mammals. In addition to the UBR box, these proteins
contain various domains and motifs seen in other E3 ubiquitin ligases such as E2 binding
domains, RING, HECT, F-box, and PHD (Figure 2). Thus, they are classified as E3 ligases
and serve as a platform through which ubiquitin can be transferred to the substrate.

3.1. UBR Box Protein Domains Associated with E3 Ubiquitin Ligases

UBR1, UBR2, and UBR3 are classified as RING-type E3s, constituting the majority
of E3s. The RING domain mediates the direct transfer of ubiquitin from the E2 enzyme
to the target protein and possesses conserved cysteine and histidine residues which bind
two zinc ions, maintaining the overall structure [43–46]. Although the RING domain is
responsible for recruiting ubiquitin-conjugating enzymes, its association with E2 does
not always correlate with its E3 ligase activity. For example, in UBR1, the RING domain
exhibits a low affinity for Ubc2 (an E2), and it is the BRR (basic rich region) domain in front
of the RING domain which is required for the tight binding of Ubc2 to UBR1. However,
the RING, not the BRR domain, is required for UBR1′s E3 ligase activity [47].

UBR5 belongs to the second-largest group of E3s, containing the HECT (homologous
to E6-AP C-terminus) domain. The HECT domain consists of two different lobes, the
N-terminal lobe (N-lobe) and C-terminal lobe (C-lobe), connected by a flexible linker.
The N-lobe is responsible for binding the E2s, whereas the C-lobe bears the catalytic
cysteine that accepts ubiquitin from the E2 to generate an E3–ubiquitin complex [48,49].
Therefore, unlike RING E3s, HECT E3s must be physically conjugated with ubiquitin
before transferring the ubiquitin to the substrate. The HECT domain of UBR5 is present in
its extreme C-terminus, and its catalytic cysteine is Cys2768 [48].

UBR6, also named FBXO11, is an F-box protein component of an SCF ubiquitin ligase
consisting of Cullin 1 (CUL1), Skp1, RBX1, and the corresponding F-box protein [50,51].
CUL1 functions as a scaffold for the binding of SKP1/F-box protein complex on its N-
terminus and binding the RBX1/E2 complex on its C-terminus. RBX1 recruits the E2
enzyme to the E3 ligase, whereas the F-box protein directly binds substrates to mediate
ubiquitylation and proteasomal degradation, thus determining substrate specificity [52].
F-box proteins contain the F-box domain, a 40-amino-acid region which is required to bind
Skp1 [53]. Accordingly, UBR6 is expected to act as an E3 ubiquitin ligase through this
SCF complex.

UBR7 possesses the plant homeodomain (PHD) finger, a 50–80 amino acid protein
domain with Cys and His residue patterns similar to that of the RING domain [45]. This
domain was first reported in the Homeobox protein HAT3.1 of Arabidopsis in 1993 and
is found in more than 100 human proteins [54]. Proteins with this domain are primarily
involved in gene regulation in the nucleus [55]. Several proteins have been reported to bind
to the methylated lysine of histone H3 through this domain [56]. Recently, UBR7’s PHD
has been demonstrated to exhibit E3 ubiquitin ligase activity to monoubiquitinate histone
H2B at lysine 120 (H2BK120Ub). The loss of UBR7 was correlated with the development of
triple-negative breast cancer and metastatic tumors [57].

3.2. Substrate Recognition Domains of UBR Box-Containing N-Recognins

UBR boxes of N-recognins, including UBR1, UBR2, UBR4, and UBR5, are responsible
for binding type-1 basic N-degrons. For the recognition of type-2 hydrophobic N-degrons,
an N-domain present in UBR1 and UBR2 is required. The N-domain is a homologue of
bacterial N-recognin, ClpS. In this section, the structural bases of substrate recognition by
these domains are discussed.
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3.2.1. UBR Box

The crystal structures of the UBR box from human UBR1, human UBR2, and yeast
UBR1 have been determined, greatly enhancing the understanding of the binding mecha-
nism between the UBR box and substrates [58–61]. The UBR box possesses two zinc fingers
that coordinate three zinc ions (Figure 3).
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Figure 3. Three-dimensional structures of the UBR box. The UBR box coordinates three zinc ions. Two cysteines (C2 and
C3) and two histidines (H1 and H2) coordinate one zinc. Six cysteines (C1, C4, C5, C6, C7, and C8) and one histidine (H3)
coordinate the other two zincs.

The UBR box has two pockets responsible for recognizing the first and the second
residues of substrate N-degrons. The first pocket consists of D118, T120, F148, D150, and
D153 of human UBR1 and forms a negatively charged surface where the first amino acid
of type 1 N-degrons (Arg, Lys, or His) can bind (Figure 4A). T120, F148, and D150 mainly
interact with the amino group of the first amino acid and the amide bond between the first
and the second amino acids through charge–charge interactions. Therefore, the selectivity
for the first amino acid is determined by the negatively charged surface formed by D118,
T120, and D153. This surface forms adequate space where various positive residues can be
bound. In this space, the ligand and a water molecule form a strong interaction through
hydrogen bonding and charge–charge interaction with surface residues. Arg, with a large
residue size and mono- and di-methylated Arg, fill the pocket with one water molecule
(Figure 4B–D), whereas Lys and His bind to the surface residues with one or two water
molecules (Figure 4E,F), respectively. However, they do not entirely fill the space; thus, they
show lower affinity than Arg or modified Arg because the residue sizes are smaller [59].

There is a significant difference in the UBR box binding affinity for N-degrons with
the same first amino acid but different second residues based on the interaction between
the second pocket of the UBR box and the second amino acid of the N-degron. This pocket
consists of five and six critical residues in the human and yeast UBR box, respectively
(Figure 5A,B). The surface of this pocket is hydrophobic; therefore, most show high bind-
ing affinity when a hydrophobic residue is located at the second amino acid position
(Figure 5C,D,J,K).
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There are some differences between the structure and sequence of human and yeast
UBR boxes. For example, R135 of yeast UBR1 corresponds to S111 of human UBR2,
although they are entirely different in character and size. Furthermore, the T171 loop of
yeast UBR1 is located close to the ligand-binding site, whereas the loop of human UBR1
is shorter and more distant from the binding site. These differences in the pocket surface
cause differences in the substrate-binding mechanism.

When the RR-peptide binds to yeast UBR1, R135 moves backward to create a space,
and the positive charge of the second Arg is stabilized together with a water molecule
and D165 (Figure 5G,H). When Glu or Asp, which are negatively charged, are bound,
the T171 loop is withdrawn, and a space for the negatively charged residue is formed
(Figure 5E,F). The negatively charged Glu and Asp residues are stabilized with a wa-
ter molecule immobilized by R135 and D165 (Figure 5I). On the other hand, in human
UBR2, the glycine loop has been retracted, thus securing enough space for the second
residue of the ligand to bind. Moreover, it is difficult to stabilize the positively charged
residue of Arg because the R135 of yeast UBR1 is substituted to S111 of human UBR2
(Figure 5L). According to previous studies, as a result of measuring the affinity of yeast
UBR1 and peptides, RRAA showed higher binding affinity (KD = 17.7 ± 0.325 µM) than
RDAA (KD = 343.2 ± 36.4 µM). However, in the case of human UBR2, RDFS showed twice
the thermal stability of RRFS, indicating that RDFS has a higher affinity than RRFS [59].
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These results show that the amino acid sequences of the primary substrates of yeast UBR
box and human UBR box are different.

3.2.2. N-Domain

The N-domain is found only in UBR1 and UBR2 and is responsible for recognizing type
2 N-degrons, including Phe, Trp, Tyr, Leu, and Ile [39,40]. This N-domain is a homologue
of ClpS that recognizes type 2 N-degrons in bacteria (Figure 6A) [62]. The structure of
ClpS is well defined and has a deep, narrow, hydrophobic pocket for N-degron binding
(Figure 6B). The entrance of this pocket has a negatively charged surface composed of
N34, D35, T38, M40, and H65 (Figure 6D). The N34 and H66 residues and oxygen atoms
of D35, T38, and M40 amide bonds form a charge–charge interaction with the ligand’s
amino group and amide bond. The inside of the pocket comprises hydrophobic residues,
consisting of hydrophobic residues V43, V65, and L109, which stabilize the first residue
of type 2 N-degrons (Figure 6F) [63,64]. Homology modeling of the human UBR1 N-
domain based on the ClpS structure of E. coli (Figure 6C) showed that the sequence identity
between ClpS and N-domain is 18%, and the similarity is 36%. Despite the low similarity,
all of the residues forming the pocket are well conserved, except D263 of the N-domain,
corresponding to H66 of ClpS (Figure 6E,G).
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Figure 6. Homology models of the human UBR1 N-domain based on ClpS of Escherichia coli. The
homology model of the N-domain of human UBR1 was generated based on the ClpS structure (PDB
ID 2W9R) using the SWISS-MODEL program [65,66]. (A) The amino acid sequences of human UBR1
and E. coli ClpS are aligned. Conserved residues are highlighted with light blue boxes. Red and
light green dots indicate the residues recognizing type 2 N-degrons. (B,C) The surface models of the
ClpS and N-domain are colored by charge. The ligand, Phe–Arg peptide, is represented as a stick.
(D,E) The residues constituting the entrance of the hydrophobic pocket interact with the backbone of
the first amino acid (Phe) by charge–charge interactions and hydrogen bonding (red dotted lines).
(F,G) The hydrophobic residue of the first amino acid is bound to the hydrophobic pocket. The red
dotted lines mark the space created by the hydrophobic residues constituting the pocket.
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4. Signaling Pathways Controlled by UBR Box N-Recognins in Mammals

The N-recognin functions of UBR1, UBR2, UBR4, and UBR5 have been well char-
acterized; however, the functions of UBR3, UBR6, and UBR7 remain largely unknown.
This section discusses the role of these UBR N-recognins in signaling pathways, including
G-protein signaling, apoptosis, mitochondrial quality control, inflammation, and DNA
damage signaling.

4.1. G-Protein Signaling Pathway

G-protein-coupled receptors (GPCRs) characterized by seven-(pass)-transmembrane
domains are the largest and the most diverse group of membrane receptors in eukary-
otes [67–69]. GPCRs are associated with G-proteins, which are heterotrimeric proteins
comprising subunits, α, β and γ [70,71]. Upon activation by extracellular ligands or
signal mediators [72,73], the GPCRs undergo a conformational change inducing guanine–
nucleotide exchange factors (GEFs) to catalyze the exchange of GDP bound to the G〈
subunit to GTP [74–76]. This results in the dissociation of the GTP-bound Gα subunit from
the Gβγ dimer (Figure 7) [77–79]. Both diffuse throughout the membrane to turn on diverse
intracellular signal transduction pathways by interacting with other membrane proteins.
Turning off G-protein signaling requires the hydrolysis of the GTP-bound G〈 subunit to
GDP via its intrinsic GTPase activity. The GTPase activity of the G〈 subunit is weak; there-
fore, augmentation by GTPase-activating proteins (GAPs), also called G-protein signaling
regulators (RGSs), is required to shut down G-protein signaling efficiently [80–83].
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Figure 7. A model describing the regulatory role of UBR1 and UBR2 in G-protein signaling pathways
via mediating RGS protein degradation. In GPCRs (G-protein-coupled receptors), heterotrimeric G-
proteins are dissociated into G〈 and G®© subunits by external ligands or signal mediators. Activated
GTP-bound G〈 and G®© stimulate the downstream signaling pathway associated with cell growth
and cardiovascular development. The proper regulation of GTP-Gα activity by GTPase-activating
RGS proteins is vital in the GPCR-related signaling pathway. Among the RGS proteins, RGS4, RGS5,
and RGS16 are cleaved by MetAP to expose a cysteine residue at the N-terminus. After which, these
RGS proteins undergo oxidation, followed by arginylation (C* denotes the oxidized N-terminal
Cysteine residue). Arginylated RGS proteins are recognized by UBR1 and UBR2 for ubiquitination
and degradation. When the Arg/N-degron pathway is genetically inhibited, metabolically stabilized
RGS proteins promote the hydrolysis of the GTP-bounded G〈 subunit, which leads to inactivation of
the GPCR signaling pathway.
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Amongst RGS family proteins, RGS4, RGS5, and RGS16 are known physiological
substrates of the Arg/N-degron pathway [34,36,84]. The first methionine residue of RGS4,
RGS5, and RGS16 is constantly removed by methionine aminopeptidases (MetAPs), expos-
ing the second cysteine residue, which can be oxidized by reactive oxygen species (ROSs) or
cysteamine (2-aminoethanethiol) dioxygenase (ADO) and, in turn, arginylated by arginyl-
transferase 1 (ATE1) under normoxia [36,37]. The N-terminal Arg of the arginylated RGS
proteins is recognized by the UBR box of UBR1/2, which results in poly-ubiquitination and
proteasomal degradation. Accordingly, knocking out UBR1/2 has been shown to stabilize
RGS4 and RGS5 and exhibited the impairment of neurodevelopment and cardiovascu-
lar development in mice, suggesting the importance of UBR1/2′s N-recognin function
in controlling G-protein signaling-mediated biological processes [34,36,85–87] (Figure 7).
Therefore, these RGS proteins have a very transient existence under normoxia due to
protein degradation mediated by UBR1/2, prolonging G-protein signaling. However,
the stabilization of RGS proteins under hypoxia or the impairment of UBR1/2 restricts
G-protein signaling [36].

4.2. Apoptosis Signaling Pathway

Apoptosis is a type of programmed cell death utilized by multicellular organisms
to selectively eliminate damaged or abnormal cells to maintain homeostasis [88,89]. The
dysregulation of apoptosis leads to various diseases such as cancer and neurodegenera-
tive diseases [90–92]. Studies have shown that UBR E3 box ligases, in their function as
N-recognins of the N-degron pathway, play a role in the negative regulation of apopto-
sis [28,93,94].

Apoptosis is characterized by the activation of numerous proteases such as caspases
and calpains, responsible for the cleavage of over 1000 cellular proteins [95–97]. This
protease activity generates numerous protein fragments, some of which, termed pro-
apoptotic fragments, promote further apoptotic activity in a positive feedback system.
Many of these pro-apoptotic fragments have acquired N-degrons (Figure 8) directly from
proteolytic cleavage or through the actions of ATE 1, which are recognized by E3 N-
recognins and removed via the UPS. Selective removal of pro-apoptotic fragments inhibits
apoptosis and promotes cell survival [28,29].
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Figure 8. A model depicting the degradation of pro-apoptotic fragments mediated by UBR1/2 in response to apoptotic
stimuli. Caspases or calpains generate pro-apoptotic fragments during the induction of apoptosis. These proteins expose
destabilizing residues at the N-terminus, which are short-lived N-degron substrates. As a result, these pro-apoptotic
fragments are selectively degraded by the Arg/N-degron pathway, contributing to cell survival. As a negative feedback
mechanism, caspases can also inhibit UBR1 function by inducing its cleavage.

The evidence for the apoptosis inhibitory effect of the UBR box E3 ligases comes from
multiple studies. Using colony-forming and TUNEL assays, it was observed that apoptotic
cell death was significantly increased in ATE1 or UBR1/2-deficient cells under apoptotic
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stimuli such as UV irradiation, staurosporine, and TNF-α [28]. According to another report,
the depletion of UBR1, UBR2, UBR4, and UBR5 using small interfering RNA (siRNA) in-
creased apoptosis in various cancer cells [98]. A study of RIPK1, a caspase-8 target, showed
that its ubiquitination promotes cell survival [99]. On the other hand, RIPK1 cleavage by
caspase-8 generates a pro-apoptotic C-terminal fragment, Cys325-RIPK1, containing the
death domain of RIPK1. However, this fragment can be degraded by the Arg/N-degron
pathway. When cysteine exposed at the N-terminus of RIPK1 is replaced with a stabilizing
residue, valine, metabolic stabilization occurs in which fragments are accumulated in the
cytoplasm without degradation. Metabolic stabilized Val325-RIPK1 promotes cell death
by significantly increasing caspase-3 activity [28]. Therefore, the metabolic stabilization
of the RIPK1 C-terminal fragment increases hypersensitivity to programmed cell death.
Interestingly, RIPK1 is one of the upstream regulators leading to necroptosis [100]. When
an N-degron pathway inhibitor called RFC11 [101] was cotreated with the anticancer drug
shikonin in CT26 colon cancer cells, RIPK1 stability was increased, thereby significantly
reducing cell viability and tumor growth through necroptosis induction [94]. ETK/BMX is
a Tec non-receptor tyrosine kinase family member, and is also a target of caspases [93]. This
kinase is involved in cell survival in response to radiation-induced apoptosis in prostate
cancer and breast cancer and modulates pro-apoptotic functions [102–105]. BMX kinase
becomes sensitive to apoptotic signaling via the C-terminal fragment generated through
caspase cleavage in prostate-cancer-derived PC3 cells. The Trp243-BMX Ct-fragment has
a destabilizing residue, tryptophan, at the N-terminus, which is recognized by UBR1/2
and rapidly removed through the UPS. However, when Trp is substituted with Val, this
fragment is stabilized, promoting apoptotic cell death in PC3 cells. Intriguingly, phosphory-
lation of Tyr566 of this fragment is known to inhibit the Arg/N-degron pathway-mediated
degradation [93].

Therefore, UBR box E3 ligases can inhibit apoptosis through the clearance of pro-
apoptotic fragments via the UPS. However, there is a report that activated caspases can
functionally inhibit ATE1 and UBR1, which both contain caspase-8 cleavage sites. In the
case of ATE1, it was confirmed that the function of R-transferase was significantly reduced
by caspase-8. Accordingly, when the caspase-8 activity was inhibited by treatment with the
pan-caspase inhibitor Z-VAD-FMK, the R-transferase function of ATE1 was restored [28].

4.3. Mitochondrial Quality Control Pathway

Neurodegenerative diseases are caused by protein aggregation and can also be gen-
erated from a failure of mitochondrial quality control [106]. Mitochondrial dysfunction
increases oxidative stress and affects various cellular signaling pathways, leading to neu-
ronal cell death, associated with neurodegenerative conditions such as Parkinson’s disease.
PINK1 and Parkin play an essential role in mitochondrial quality control, and their muta-
tions cause familial Parkinson’s disease [106–108].

PINK1 undergoes rapid and continuous degradation in normal mitochondria. Under
normal mitochondrial conditions, the N-terminus of PINK1 is inserted into the inner
mitochondrial membrane (IMM) via TOM and TIMM23 translocator complexes, where
PARL, an IMM protease, cuts PINK1 between residues Ala103 and Phe104, releasing a
C-terminal fragment of PINK1 (Phe104-PINK1) into the cytosol [109–114]. This fragment is
recognized by UBR1, UBR2, and UBR4 and removed through the UPS (Figure 9A) [112].
However, in dysfunctional mitochondria, PINK1 accumulates in the outer mitochondrial
membrane (OMM). Accumulated PINK1 recruits Parkin, an E3 ubiquitin ligase, to the
target mitochondria, where it ubiquitinates substrates present in the OMM, leading to
the removal of the dysfunctional mitochondria by mitophagy (Figure 9B) [108,115,116].
The biological consequences of UBR box N-recognin impairment on the proteasomal
degradation of the PINK1 fragment need further investigation.
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chondrial damage. (A) PINK1 is continuously imported into healthy mitochondria through TOM and TIM complexes
under steady-state conditions. After which, the precursor PINK1 is cleaved by MPP and PARL proteases, respectively.
PARL cleaves between Ala103 and Phe104 of PINK1 to expose phenylalanine, a known type-2 destabilizing residue of the
Arg/N-degron pathway, at the N-terminus. The cleaved PINK1 is released into the cytosol. Phe104-PINK is recognized by
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from the cytosol to the mitochondria, leading to the degradation of damaged mitochondria through mitophagy.

4.4. Inflammatory Signaling Pathways

Inflammation is a protective response induced by the evolutionarily conserved in-
nate immune system to fight against harmful stimuli such as pathogens, damaged cells,
or irritants [117]. The innate immune system is initiated by the recognition of pathogen-
associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs)
by pattern-recognition receptors (PRRs) as the first defense mechanism of our immune sys-
tem [118]. When PAMPs or DAMPs are recognized, several PRRs form large multiprotein
complexes called inflammasomes, which regulate the activity of caspase-1. Inflammasome-
activated caspase-1 promotes the secretion of the proinflammatory cytokines such as
IL-1β and IL-18 and activates pore-forming protein gasdermin D (GSDMD) [119–122]. In
addition, these proteins promote cell death, which is called pyroptosis.

PRRs are classified into subfamilies such as Toll-like receptor (TLR), C-type lectin
receptor (CLR), and NOD-like receptor (NLR), according to their location and domain
composition [123]. It is known that NLRP1, a member of the NLR subfamily, is regulated by
the Arg/N-degron pathway [124,125]. NLRP1 has C-terminal FIIND and CARD domains
and NACHT and LRR domains, specific domains of the NLR family [126]. When the CARD
domain of this protein is exposed, caspase-1 is activated by CARD oligomerization and
pyroptosis occurs, activating inflammasomes. The NLRP1 protein contains two cleavage
sites whose cleavage is required for the exposed CARD domain inflammatory activity.
The mechanism of NLRP1 inflammasome activation by N-terminal and C-terminal frag-
ments produced by this cleavage is well known through studies of mNLRP1B, a mouse
NLRP1 [124–127].

mNLRP1B contains an autocleavage site in the FIIND domain, which consists of the
ZU5 and UPA subdomains. N-terminal and C-terminal fragments are generated when
mNLRP1B is auto-cleaved between ZU5 and UPA (Phe983-Ser984) [128–130]. However,
this single cleavage does not result in an inflammatory response due to the autoinhibitory
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activity of the N-terminal fragment of the protein. Many pathogens utilize mechanisms
such as anthrax lethal factor (LF), a metalloprotease and component of anthrax lethal toxin
(LT), to target and destroy NLRP proteins in an attempt to evade an immune response.
However, when LF enters the cytosol and cleaves mNLRP1B between Lys44 and leu45, it
removes the autoinhibitory effect of mNLRP1B and exposes the CARD domain of the C-
terminal fragment, inducing pyroptosis and inflammation [128,130–133] by generating an
N-terminal fragment (Leu45-mNLRP1B-F983) containing an N-degron which is recognized
by N-recognins such as UBR2 and UBR4 and degraded by the UPS (Figure 10A) [124,125].
Accordingly, N-recognins UBR2 and UBR4 were identified through genome-wide CRISPR-
Cas9 screening to find proteins related to LT-induced NLRP1 inflammasome activity.
Moreover, degradation of the N-terminal fragment of mNLRP1B was significantly reduced
due to the deficiency of UBR2 and UBR4 in RAW264.8 cells, and the resistance to LT-induced
pyroptosis [124,125].
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Figure 10. Schematic diagrams describing the regulation of inflammation by UBR box N-recognins. (A) A model depicting
LT-induced mNLRPB inflammasome activation by UBR2/4. The anthrax lethal factor (LF) is known to induce mNLRP1B
inflammasome activation and pyroptosis. Although the detailed mechanism of LT-induced mNLRP1B inflammasome
activation has not been elucidated, it has recently been shown that the Arg/N-degron pathway is involved in mNLRP1B
inflammasome activation. LF directly cleaves mNLRP1B to generate an N-terminal fragment and a C-terminal fragment.
Despite cleavage into N-terminal and C-terminal fragments by LF, mNLRP1B remains autoinhibited. To activate the
inflammasome, the N-terminal fragment of mNLRP1B is degraded in an Arg/N-degron pathway-dependent manner
by UBR2 and UBR4, as identified through CRISPR-Cas9 screening. This process releases the CARD domain-containing
C-terminal fragment of mNLRP1B and induces pyroptosis through interaction with caspase-1. (B) A model depicting
the degradation of proinflammatory fragments mediated by UBR1/2/4/5. Potential proinflammatory Arg/N-degron
substrates are generated by activated inflammatory caspases and several other proteases under inflammatory stimuli such
as LPS. The resulting N-degron substrates Cys-RAB39a, Asn-CASP1, Gln-CASP4, CASP5, Ile-GRZA, and Ile-GRZM are
generated by activated caspases, autoprocessing, or by endopeptidases such as DPP1. These fragments, which can cause an
inflammatory response, expose destabilizing residues at the N-terminus. These fragments are recognized by N-recognins
and then degraded through 26S proteasome, as evidenced by the depletion of UBR1, UBR2, UBR4, and UBR5, causing a
significant reduction in LPS-induced IL-1β secretion.
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In contrast to the NLRP1 pathway, there is a report that inflammation can be alleviated
by the Arg/N-degron pathway [134]. PAMPs and DAMPs initiate inflammatory responses,
and various proinflammatory fragments are generated by activated inflammatory caspases
or other proteases involved in immune responses [118,134]. Some of these proinflammatory
fragments contain destabilizing N-terminal residues. These include caspase-generated
Asn120-CASP1, Gln81-CASP4, Gln139-CASP5, and Cys149-Rab39, as well as Ile29-GRZA
and Ile27-GRZM produced by endopeptidase DPP1 (Figure 10B). These fragments are
substrates of N-recognins, such as UBR1, UBR2, UBR4, and UBR5, and degraded via the
UPS. Indeed, when the UBR1, UBR2, UBR4, and UBR5 were knocked down using RNAi,
the secretion of IL-1β was significantly increased [134], suggesting that the degradation of
these proinflammatory fragments via the Arg/N-degron pathway plays a vital regulatory
role in inflammatory responses.

4.5. DNA Damage Response Pathway

Replication stress, defined as the slowing or stalling of replication fork progression
and DNA synthesis, can cause DNA mutations and chromosomal aberrations [135–137].
Thus, failure to counteract genotoxic threats can lead to cancer, developmental disorders,
ciliopathies, and laminopathies [136,138–140]. Various well-known endogenous and ex-
ogenous sources of DNA damage, such as oxidation, chemical mutagens, and ultraviolet
radiation, can interfere with the proper progression and completion of the replication
process, resulting in genome instability [141,142]. An essential factor of the replication
machinery is the proliferating cell nuclear antigen (PCNA) which plays an essential role in
maintaining genomic integrity and promoting DNA replication by guiding replicative DNA
polymerases at replication forks [143,144]. UV irradiation and various DNA-damaging
agents (MMS, mitomycin C, cisplatin, and H2O2) lead to the stalling of the replication fork
and the release of DNA polymerase from PCNA [142,145–149]. As part of the DNA damage
tolerance mechanism, RAD18, a ubiquitin ligase, can monoubiquitinate PCNA, prevent-
ing replication fork collapse that can trigger cell death or genome instability by enabling
the DNA replication of damaged templates through translesion synthesis (TLS) [150,151].
According to recent studies, SDE2 protein is implicated in genome instability caused by
replication stress by modulating this mechanism [152,153].

SDE2, a genome surveillance protein, is a highly conserved human protein that pos-
sesses a DNA-binding SAP (SAF-A/B, Acinus, and PIAS) domain, which is frequently
found in DNA repair proteins such as PIAS1, Ku70, and RAD18 [152,154]. In addition,
SDE2 also contains a ubiquitin-like (UBL) domain on its N-terminus, responsible for inter-
acting with PCNA. Under replication stress conditions, SDE2 is recruited to the replication
fork, where it binds to the DNA through its SAP domain and interacts with PCNA via its
PIP box in UBL domain [152]. The deubiquitinating enzyme (DUB) cleaves SDE2, resulting
in a C-terminal fragment, Lys78-SDE2, which inhibits the monoubiquitination of PCNA,
impairing S phase progression. Lys78-SDE2 at the replication fork must be degraded to
overcome the replication stress via the PCNA-dependent DNA damage bypass. Lys78-
SDE2 contains a canonical N-degron, which is recognized by UBR1/2 and ubiquitinated.
However, to be degraded, Lys78-SDE2 must also be phosphorylated by ATR kinase. The
phosphorylation of Lys78-SDE2 recruits the p97UFD1-NPL4 segregase complex, resulting in
the release of ubiquitinated Lys78-SDE2 from the chromatin and allowing for its degra-
dation via the UPS, thus promoting stalled fork recovery and S phase progression [153].
Therefore, UBR1/2 plays a crucial role in fork recovery, DNA replication, and S phase
progression under replication stress conditions (Figure 11).
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Figure 11. UBR1/2 mediated SDE2’s C-terminal fragment degradation upon replication stress, leading to recovering a
stalled replication fork. The irradiation of cells with ultraviolet C, one of the causes of DNA replication stress, results
in DNA lesions that block replication. The Arg/N-degron pathway is involved in counteracting DNA replication stress.
Monoubiquitination of PCNA plays a vital role in coordinating DNA repair against replication-blocked lesions by providing
a platform to recruit factors necessary for DNA repair. To counteract DNA replication stress, the C-terminal fragment
of SDE2 needs to be degraded (A). Under UV-induced replication stress, SDE2 is targeted to the replication fork by
interacting with PCNA through the PIP box of the UBL domain. After which, a C-terminal fragment of SDE2 (SDECt)
is generated by the cleavage of the diglycine motif by DUB. Intriguingly, SDECt inhibits UV damage-inducible PCNA
monoubiquitination by RAD18 ubiquitin E3 ligase. (B) Damage-inducible SDE2 Ct phosphorylation of Ser266 or Thr319, or
both by ATR. (C) SDE2Ct, which has an N-terminal lysine, is recognized by UBR1 and UBR2 for polyubiquitination. In
addition, phosphorylated SDE2Ct facilitates the interaction of p97UFD1-NPL4 and enables the extraction of ubiquitinated
SDE2Ct from chromatin. (D) Consequently, degradation of SDECt by the Arg/N-degron pathway-ATR- p97UFD1-NPL4 axis
promotes the monoubiquitination of PCNA by RAD18 E3 ligase, leading to DNA damage bypass, stalled fork recovery, and
S phase progression.

5. Concluding Remarks

UBR box E3 ligases including UBR1, UBR2, UBR4, and UBR5 are the primary N-
recognins of the N-degron pathways. The mechanisms through which some of these
N-recognins bind their substrates has been well characterized by structural analysis, as
detailed in this review. These N-recognins have a wide variety of physiological sub-
strates (Table 1). The interactions of these N-recognins with these substrates play essential
regulatory roles in many signaling pathways such as G-protein signaling, apoptosis, in-
flammation, mitochondrial quality control, and replication stress. The dysregulation of
these pathways often leads to disease conditions such as cancer and neurodegeneration.
Thus, understanding the mechanism mediated by these N-recognins in these pathways
may provide crucial therapeutic targets for future drugs.
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Table 1. Physiological N-degron substrates of the Arg/N-degron pathway.

Biological Function Species Substrate Pro-N-degron N-degron Modifications Ref.

G-protein signaling
Mus musculus RGS4 Cys2 Arg-Cys* MetAPs cleavage,

oxidation, arginylation [34,36,84]Mus musculus RGS5 Cys2 Arg-Cys*
Mus musculus RGS16 Cys2 Arg-Cys*

Apoptosis

Mus musculus RIPK1 Cys325 Arg-Cys* Endoproteolytic
cleavage by caspase,

oxidation,
arginylation

[28,30,93]

Mus musculus TRAF1 Cys157 Arg-Cys*

Mus musculus BRCA1 Asp1119 Arg-Asp Endoproteolytic
cleavage by caspase,

arginylationMus musculus EPHA4 Asp774 Arg-Asp

Mus musculus BIMEL - Arg12

Endoproteolytic
cleavage by caspase

Mus musculus MET - Tyr1001
Mus musculus NEDD9 - Tyr631
Homo sapiens LIMK1 - Leu241
Homo sapiens BMX - Trp243

Homo sapiens BID - Arg71 Endoproteolytic
cleavage by calpain,

arginylation
[29]

Homo sapiens Bak Glu16 Arg-Glu

Mitochondrial
quality control Homo sapiens PINK1 - Phe104 Endoproteolytic

cleavage by PARL [112]

mNLRP1B
Inflammasome Mus musculus NLRP1B - Leu45 Endoproteolytic

cleavage by anthrax lethal factor [124,125]

Inflammatory
response

Homo sapiens Caspase-1 Asn120 Arg-Asp Auto-cleavage,
deamidation,
arginylation

[134]

Homo sapiens Caspase-4 Gln81 Arg-Glu
Homo sapiens Caspase-5 Gln138 Arg-Glu

Homo sapiens RAB39a Cys149 Arg-Cys*
Endoproteolytic

cleavage by caspase-1, oxidation,
arginylation

Mus musculus Granzyme A - Ile29 Endoproteolytic
cleavage by DPP1Mus musculus Granzyme M - Ile27

Genome
stability Homo sapiens SDE2 - Lys78 Endoproteolytic

cleavage by DUB [152,153]

MetAP. Methionine aminopeptidases; Cys *, oxidized cysteine; DUB, deubiquitylating enzyme; PARL, presenilin-associated rhomboid-like
protein. N-degrons are expressed in red.

6. Methods

The homology model was generated by the SWISS-MODEL program [65,66]. The
all-3D structure models such as stick, cartoon, and surface models were generated by the
PyMol [155].
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