Chitosan–Graphene Oxide Composite Membranes for Solid-Phase Extraction of Pesticides
Abstract
:1. Introduction
2. Results and Discussion
2.1. Scanning Electron Microscopy
2.2. Fourier Transform Infrared Spectroscopy
2.3. Thermogravimetric Analysis
2.4. Mechanical Characterization
2.5. Swelling Capacity and Water Contact-Angle Measurements
2.6. Pesticide Extraction
3. Materials and Methods
3.1. Preparation of Chitosan and Chitosan Graphene Oxide Membranes
3.2. Scanning Electron Spectroscopy
3.3. Fourier Transform Infrared Spectroscopy
3.4. Thermogravimetric Analysis
3.5. Mechanical Analysis
3.6. Water-Uptake Kinetics
3.7. Static Contact-Angle Measurement
3.8. Procedure for SPE of Pesticides
3.8.1. Pesticide Mixture Preparation
3.8.2. Pesticide Extraction
3.8.3. Pesticide Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicolopoulou-Stamati, P. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 2016, 4, 148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ascenzo, G.; Gentili, A.; Marchese, S.; Perret, D. Development of a method based on liquid chromatography–electrospray mass spectrometry for analyzing imidazolinone herbicides in environmental water at part-per-trillion levels. J. Chromatogr. A 1998, 800, 109–119. [Google Scholar] [CrossRef]
- Tomai, P.; Gentili, A.; Fanali, S.; Picó, Y. Multi-residue determination of organic micro-pollutants in river sediment by stir-disc solid phase extraction based on oxidized buckypaper. J. Chromatogr. A 2020, 1621, 461080. [Google Scholar] [CrossRef]
- Gentili, A.; Marchese, S.; Perret, D. MS techniques for analyzing phenols, their metabolites and transformation products of environmental interest. TrAC Trends Anal. Chem. 2008, 27, 888–903. [Google Scholar] [CrossRef]
- Kim, K.; Kabir, E.; Ara, S. Science of the Total Environment Exposure to pesticides and the associated human health effects. Sci. Total Environ. 2017, 575, 525–535. [Google Scholar] [CrossRef] [PubMed]
- De Souza, R.M.; Seibert, D.; Quesada, H.B.; de Jesus Bassetti, F.; Fagundes-Klen, M.R.; Bergamasco, R. Occurrence, impacts and general aspects of pesticides in surface water: A review. Process. Saf. Environ. Prot. 2020, 135, 22–37. [Google Scholar] [CrossRef]
- Özer, E.T.; Osman, B.; Parlak, B. An experimental design approach for the solid phase extraction of some organophosphorus pesticides from water samples with polymeric microbeads. Microchem. J. 2020, 154, 104537. [Google Scholar] [CrossRef]
- Lin, X.; Wang, X.; Wang, J.; Yuan, Y.; Di, S. Magnetic covalent organic framework as a solid-phase extraction absorbent for sensitive determination of trace organophosphorus pesticides in fatty milk. J. Chromatogr. A 2020, 1627, 461387. [Google Scholar] [CrossRef]
- Han, Q.; Wang, Z.; Xia, J.; Xia, L.; Chen, S.; Zhang, X.; Ding, M. Graphene as an efficient sorbent for the SPE of organochlorine pesticides in water samples coupled with GC-MS. J. Sep. Sci. 2013, 36, 3586–3591. [Google Scholar] [CrossRef]
- Zhu, B.Y.; Murali, S.; Cai, W.; Li, X.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Baig, N.; Sajid, M.; Saleh, A. Graphene-based adsorbents for the removal of toxic organic pollutants: A review. J. Environ. Manag. 2019, 244, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ma, G.; Zhang, L.; Chen, H.; Zhu, L.; Wang, C.; Liu, X. Chitosan-reduced graphene oxide composites with 3D structures as effective reverse dispersed solid phase extraction adsorbents for pesticides analysis. Analyst 2019, 144, 5164–5171. [Google Scholar] [CrossRef]
- Jo, K.; Lee, T.; Choi, H.J.; Park, J.H.; Lee, D.J.; Lee, D.W.; Kim, B.S. Stable aqueous dispersion of reduced graphene nanosheets via non-covalent functionalization with conducting polymers and application in transparent electrodes. Langmuir 2011, 27, 2014–2018. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Peng, F.; Wang, H.; Huang, F.; Meng, F.; Hui, D.; Zhou, Z. Intercalation polymerization approach for preparing graphene/polymer composites. Polymers 2018, 10, 61. [Google Scholar] [CrossRef] [Green Version]
- Croisier, F.; Jérôme, C. Chitosan-based biomaterials for tissue engineering. Eur. Polym. J. 2013, 49, 780–792. [Google Scholar] [CrossRef] [Green Version]
- Pietrelli, L.; Francolini, I.; Piozzi, A.; Sighicelli, M.; Silvestro, I.; Vocciante, M. Chromium(III) removal fromwastewater by chitosan flakes. Appl. Sci. 2020, 10, 1925. [Google Scholar] [CrossRef] [Green Version]
- Islam, S.; Bhuiyan, M.A.R.; Islam, M.N. Chitin and Chitosan: Structure, Properties and Applications in Biomedical Engineering. J. Polym. Environ. 2017, 25, 854–866. [Google Scholar] [CrossRef]
- Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. [Google Scholar] [CrossRef]
- Xianmiao, C.; Yubao, L.; Yi, Z.; Li, Z.; Jidong, L.; Huanan, W. Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Mater. Sci. Eng. C 2009, 29, 29–35. [Google Scholar] [CrossRef]
- Kong, L.; Gao, Y.; Lu, G.; Gong, Y.; Zhao, N.; Zhang, X. A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering. Eur. Polym. J. 2006, 42, 3171–3179. [Google Scholar] [CrossRef]
- Wei, D.; Sun, W.; Qian, W.; Ye, Y.; Ma, X. The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr. Res. 2009, 344, 2375–2382. [Google Scholar] [CrossRef]
- da Silva Alves, D.C.; Healy, B.; Yu, T.; Breslin, C.B. Graphene-Based Materials Immobilized within Chitosan: Applications as Adsorbents for the Removal of Aquatic Pollutants. Materials 2021, 14, 3655. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhang, G.; Li, Y. Preparation of chitosan/polyacrylamide/graphene oxide composite membranes and study of their methylene blue adsorption properties. Materials 2020, 13, 4407. [Google Scholar] [CrossRef]
- Shafaati, M.; Miralinaghi, M.; Shirazi, R.H.S.M.; Moniri, E. The use of chitosan/Fe3O4 grafted graphene oxide for effective adsorption of rifampicin from water samples. Res. Chem. Intermed. 2020, 46, 5231–5254. [Google Scholar] [CrossRef]
- Sanchez-martin, M.J.; Rodriguez-cruz, M.S. Efficiency of different clay minerals modified with a cationic surfactant in the adsorption of pesticides: Influence of clay type and pesticide hydrophobicity. Appl. Clay Sci. 2006, 31, 216–228. [Google Scholar] [CrossRef]
- Carmalin Sophia, A.; Lima, E.C.; Allaudeen, N.; Rajan, S. Application of graphene based materials for adsorption of pharmaceutical traces from water and wastewater—A review. Desalin. Water Treat. 2016, 57, 27573–27586. [Google Scholar] [CrossRef]
- Wang, J.; Chen, B. Adsorption and coadsorption of organic pollutants and a heavy metal by graphene oxide and reduced graphene materials. Chem. Eng. J. 2015, 281, 379–388. [Google Scholar] [CrossRef]
- Wang, X.; Huang, S.; Zhu, L.; Tian, X.; Li, S.; Tang, H. Correlation between the adsorption ability and reduction degree of graphene oxide and tuning of adsorption of phenolic compounds. Carbon N. Y. 2014, 69, 101–112. [Google Scholar] [CrossRef]
- Thakur, K.; Kandasubramanian, B. Graphene and Graphene Oxide-Based Composites for Removal of Organic Pollutants: A Review. J. Chem. Eng. Data 2019, 64, 833–867. [Google Scholar] [CrossRef]
- Yan, H.; Yang, H.; Li, A.; Cheng, R. PH-Tunable Surface Charge of Chitosan/Graphene Oxide Composite Adsorbent for Efficient Removal of Multiple Pollutants from Water; Elsevier: Amsterdam, The Netherlands, 2016; Volume 284, ISBN 8625896812. [Google Scholar]
- Chen, Y.; Chen, L.; Bai, H.; Li, L. Graphene oxide-chitosan composite hydrogels as broad-spectrum adsorbents for water purification. J. Mater. Chem. A 2013, 1, 1992–2001. [Google Scholar] [CrossRef]
- Han Lyn, F.; Chin Peng, T.; Ruzniza, M.Z.; Nur Hanani, Z.A. Effect of oxidation degrees of graphene oxide (GO) on the structure and physical properties of chitosan/GO composite films. Food Packag. Shelf Life 2019, 21, 100373. [Google Scholar] [CrossRef]
- Kamal, M.A.; Bibi, S.; Bokhari, S.W.; Siddique, A.H.; Yasin, T. Synthesis and adsorptive characteristics of novel chitosan/graphene oxide nanocomposite for dye uptake. React. Funct. Polym. 2017, 110, 21–29. [Google Scholar] [CrossRef]
- Pandele, A.M.; Dinescu, S.; Costache, M.; Vasile, E.; Obreja, C.; Iovu, H.; Ionita, M. Preparation and in vitro, bulk, and surface investigation of chitosan/graphene oxide composite films. Polym. Compos. 2013, 34, 2116–2124. [Google Scholar] [CrossRef]
- Qian, X.; Li, N.; Wang, Q.; Ji, S. Chitosan/graphene oxide mixed matrix membrane with enhanced water permeability for high-salinity water desalination by pervaporation. Desalination 2018, 438, 83–96. [Google Scholar] [CrossRef]
- Dong, Y.; Xu, C.; Wang, J.; Wang, M.; Wu, Y.; Ruan, Y. Determination of degree of substitution for N-acylated chitosan using IR spectra. Sci. China Ser. B Chem. 2001, 44, 216–224. [Google Scholar] [CrossRef]
- Ahmed, J.; Mulla, M.; Arfat, Y.A.; Thai, T.L.A. Mechanical, thermal, structural and barrier properties of crab shell chitosan/graphene oxide composite films. Food Hydrocoll. 2017, 71, 141–148. [Google Scholar] [CrossRef]
- Rodríguez-Velázquez, E.; Silva, M.; Taboada, P.; Mano, J.F.; Suárez-Quintanilla, D.; Alatorre-Meda, M. Enhanced cell affinity of chitosan membranes mediated by superficial cross-linking: A straightforward method attainable by standard laboratory procedures. Biomacromolecules 2014, 15, 291–301. [Google Scholar] [CrossRef]
- Neto, C.G.T.; Giacometti, J.A.; Job, A.E.; Ferreira, F.C.; Fonseca, J.L.C.; Pereira, M.R. Thermal analysis of chitosan based networks. Carbohydr. Polym. 2005, 62, 97–103. [Google Scholar] [CrossRef]
- Grande, C.D.; Mangadlao, J.; Fan, J.; De Leon, A.; Delgado-Ospina, J.; Rojas, J.G.; Rodrigues, D.F.; Advincula, R. Chitosan cross-linked graphene oxide nanocomposite films with antimicrobial activity for application in food industry. Macromol. Symp. 2017, 374, 1600114. [Google Scholar] [CrossRef]
- Justin, R.; Chen, B. Characterisation and drug release performance of biodegradable chitosan-graphene oxide nanocomposites. Carbohydr. Polym. 2014, 103, 70–80. [Google Scholar] [CrossRef]
- Gea, S.; Sari, J.N.; Bulan, R.; Piliang, A.; Amaturrahim, S.A.; Hutapea, Y.A. Chitosan/graphene oxide biocomposite film from pencil rod. J. Phys. Conf. Ser. 2018, 970. [Google Scholar] [CrossRef]
- Li, J.; Ren, N.; Qiu, J.; Mou, X.; Liu, H. Graphene oxide-reinforced biodegradable genipin-cross-linked chitosan fluorescent biocomposite film and its cytocompatibility. Int. J. Nanomed. 2013, 8, 3415–3426. [Google Scholar] [CrossRef] [Green Version]
- Pan, Y.; Wu, T.; Bao, H.; Li, L. Green fabrication of chitosan films reinforced with parallel aligned graphene oxide. Carbohydr. Polym. 2011, 83, 1908–1915. [Google Scholar] [CrossRef]
- Tan, X.; Rodrigue, D. A review on porous polymeric membrane preparation. Part I: Production techniques with polysulfone and poly (vinylidene fluoride). Polymers 2019, 11, 1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, X.; Rodrigue, D. A review on porous polymeric membrane preparation. Part II: Production production techniques with polyethylene, polydimethylsiloxane, polypropylene, polyimide, and polytetrafluoroethylene. Polymers 2019, 11, 1310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tomai, P.; Martinelli, A.; Morosetti, S.; Curini, R.; Fanali, S.; Gentili, A. Oxidized buckypaper for stir-disc solid phase extraction: Evaluation for several classes of environmental pollutants recovered from surface water samples. Anal. Chem. 2018, 90, 6827–6834. [Google Scholar] [CrossRef] [PubMed]
Samples | GO/CS (w/w %) | A1640/A1540 * | Contact Angle (ϑ°) | Td (°C) ** | Weight Loss (%) | Mechanical Properties *** | |||
---|---|---|---|---|---|---|---|---|---|
25°–170° (°C) | 170°–500° (°C) | E (GPa) | TS (MPa) | EB | |||||
CS | 0 | 0.31 | 84 ± 3 | 276 | 16 | 56 | 1.4 | 60 | 0.2 |
CS_GO1 | 1 | 0.31 | 85 ± 2 | 280 | 15 | 50 | 1.4 ± 0.5 | 53 ± 8 | 0.20 ± 0.04 |
CS_GO5 | 5 | 0.34 | 86 ± 2 | 277 | 17 | 51 | 1.50 ± 0.03 | 52 ± 7 | 0.12 ± 0.06 |
CS_GO10 | 10 | 0.34 | 91 ± 1 | 276 | 15 | 51 | 1.8 ± 0.4 | 47 ± 5 | 0.10 ± 0.02 |
CS_GO20 | 20 | 0.36 | 92 ± 3 | 272 | 10 | 45 | 2.7 ± 0.2 | 63 ± 7 | 0.09 ± 0.02 |
CS_GLU | 0 | 0.49 | 94 ± 3 | 268 | 20 | 53 | - | - | - |
CS_GO1_GLU | 1 | 0.49 | 93 ± 4 | 286 | 13 | 51 | 0.18 ± 0.04 | 14 ± 4 | 0.04 ± 0.01 |
CS_GO5_GLU | 5 | 0.46 | 92 ± 1 | 281 | 11 | 52 | 0.48 ± 0.06 | 24 ± 4 | 0.04 ± 0.01 |
CS_GO10_GLU | 10 | 0.43 | 95 ± 2 | 281 | 8 | 50 | 0.51 ± 0.03 | 32 ± 2 | 0.05 ± 0.01 |
CS_GO20_GLU | 20 | 0.38 | 98 ± 2 | 279 | 9 | 46 | 0.55 ± 0.04 | 36 ± 6 | 0.17 ± 0.05 |
Pesticide | log Kow | Pesticide | log Kow * |
---|---|---|---|
(A) Acetamiprid | 0.8 | (M) Tebuconazole | 3.70 |
(B) Imidacloprid | 1.1 | (N) Penconazole | 3.72 |
(C) Dodin | 1.25 | (O) Propiconazole | 3.72 |
(D) Thiopanate-Methyl | 1.40 | (P) Methossifenozide | 3.72 |
(E) Azoxystrobin | 2.50 | (Q) Chlorpyrifos-Methyl | 4.00 |
(F) Spirotetramat | 2.51 | (R) Chlorpyrifos | 4.12 |
(G) Hexythiazox | 2.67 | (S) Buprofezin | 4.93 |
(H) Myclobutanil | 2.89 | (T) Tebufenpyrad | 4.93 |
(I) Boscalid | 2.96 | (U) Pyriproxyfen | 5.37 |
(L) Clofentezine | 3.10 | (V) Pyridaben | 6.37 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestro, I.; Ciarlantini, C.; Francolini, I.; Tomai, P.; Gentili, A.; Dal Bosco, C.; Piozzi, A. Chitosan–Graphene Oxide Composite Membranes for Solid-Phase Extraction of Pesticides. Int. J. Mol. Sci. 2021, 22, 8374. https://doi.org/10.3390/ijms22168374
Silvestro I, Ciarlantini C, Francolini I, Tomai P, Gentili A, Dal Bosco C, Piozzi A. Chitosan–Graphene Oxide Composite Membranes for Solid-Phase Extraction of Pesticides. International Journal of Molecular Sciences. 2021; 22(16):8374. https://doi.org/10.3390/ijms22168374
Chicago/Turabian StyleSilvestro, Ilaria, Clarissa Ciarlantini, Iolanda Francolini, Pierpaolo Tomai, Alessandra Gentili, Chiara Dal Bosco, and Antonella Piozzi. 2021. "Chitosan–Graphene Oxide Composite Membranes for Solid-Phase Extraction of Pesticides" International Journal of Molecular Sciences 22, no. 16: 8374. https://doi.org/10.3390/ijms22168374
APA StyleSilvestro, I., Ciarlantini, C., Francolini, I., Tomai, P., Gentili, A., Dal Bosco, C., & Piozzi, A. (2021). Chitosan–Graphene Oxide Composite Membranes for Solid-Phase Extraction of Pesticides. International Journal of Molecular Sciences, 22(16), 8374. https://doi.org/10.3390/ijms22168374