Decreased Levels of Microfibril-Associated Glycoprotein (MAGP)-1 in Patients with Colon Cancer and Obesity Are Associated with Changes in Extracellular Matrix Remodelling
Abstract
:1. Introduction
2. Results
2.1. Obesity and Colon Cancer Decrease Circulating Concentrations of MAGP-1 and Its Gene Expression Levels in VAT
2.2. Role of Inflammation-Related Factors and Hypoxia in MFAP2 mRNA Levels in Colon Adenocarcinoma HT-29 Cells
2.3. MAGP-1 Regulates the Expression of ECM- and Tumorigenesis-Related Factors in HT-29 Cells
2.4. Adipocyte-Conditioned Media Downregulates Gene Expression Levels of MFAP2 in HT-29 Cells
3. Discussion
4. Material and Methods
4.1. Patient Selection
4.2. Analytical Procedures
4.3. RNA Extraction and Real-Time PCR
4.4. Cell Cultures
4.5. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACM | adipocyte-conditioned media |
AT | adipose tissue |
BMI | body mass index |
CC | colon cancer |
COL6A3 | collagen type 6 α3 chain |
CTNNB1 | catenin β1 |
DCN | decorin |
ECM | extracellular matrix |
IL | interleukin |
LPS | lipopolysaccharide |
MAGP-1 | microfibril associated glycoprotein 1 |
MUC2 | mucin 2 |
NP | Normoponderal |
OB | obesity |
COX2/PTGS2 | prostaglandin-endoperoxide synthase 2 |
SPP1 | secreted phosphoprotein 1 |
TGF-β | transforming growth factor-β |
VAT | visceral adipose tissue |
References
- Siegel, R.L.; Mph, K.D.M.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin. 2018, 69, 7–34. [Google Scholar] [CrossRef]
- Islami, F.; Sauer, A.G.; Miller, K.D.; Siegel, R.L.; Fedewa, S.A.; Jacobs, E.J.; McCullough, M.L.; Patel, A.V.; Ma, J.; Soerjomataram, I.; et al. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin. 2017, 68, 31–54. [Google Scholar] [CrossRef]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 1289 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nat. Cell Biol. 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Lauby-Secretan, B.; Scoccianti, C.; Loomis, D.; Grosse, Y.; Bianchini, F.; Straif, K. Body Fatness and Cancer—Viewpoint of the IARC Working Group. N. Engl. J. Med. 2016, 375, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Vecchié, A.; Dallegri, F.; Carbone, F.; Bonaventura, A.; Liberale, L.; Portincasa, P.; Frühbeck, G.; Montecucco, F. Obesity phenotypes and their paradoxical association with cardiovascular diseases. Eur. J. Intern. Med. 2018, 48, 6–17. [Google Scholar] [CrossRef]
- Tao, W.; Lagergren, J. Clinical management of obese patients with cancer. Nat. Rev. Clin. Oncol. 2013, 10, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Kotas, M.E.; Medzhitov, R. Homeostasis, Inflammation, and Disease Susceptibility. Cell 2015, 160, 816–827. [Google Scholar] [CrossRef]
- Crewe, C.; An, Y.A.; Scherer, P.E. The ominous triad of adipose tissue dysfunction: Inflammation, fibrosis, and impaired angiogenesis. J. Clin. Investig. 2017, 127, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Catalán, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Ramírez, B.; Ortega, V.A.; Hernández-Lizoain, J.L.; Baixauli, J.; Becerril, S.; Rotellar, F.; Valentí, V.; et al. IL-32α-induced inflammation constitutes a link between obesity and colon cancer. OncoImmunology 2017, 6, e1328338. [Google Scholar] [CrossRef] [PubMed]
- Catalán, V.; Gómez-Ambrosi, J.; Rodríguez, A.; Ramírez, B.; Izaguirre, M.; Hernández-Lizoain, J.L.; Baixauli, J.; Marti, P.; Valentí, V.; Moncada, R.; et al. Increased Obesity-Associated Circulating Levels of the Extracellular Matrix Proteins Osteopontin, Chitinase-3 Like-1 and Tenascin C Are Associated with Colon Cancer. PLoS ONE 2016, 11, e0162189. [Google Scholar] [CrossRef]
- Divoux, A.; Clément, K. Architecture and the extracellular matrix: The still unappreciated components of the adipose tissue. Obes. Rev. 2011, 12, e494–e503. [Google Scholar] [CrossRef] [PubMed]
- Mariman, E.C.M.; Wang, P. Adipocyte extracellular matrix composition, dynamics and role in obesity. Cell. Mol. Life Sci. 2010, 67, 1277–1292. [Google Scholar] [CrossRef] [PubMed]
- Massam-Wu, T.; Chiu, M.; Choudhury, R.; Chaudhry, S.S.; Baldwin, A.; McGovern, A.; Baldock, C.; Shuttleworth, C.A.; Kielty, C.M. Assembly of fibrillin microfibrils governs extracellular deposition of latent TGFβ. J. Cell Sci. 2010, 123, 3006–3018. [Google Scholar] [CrossRef]
- Mecham, R.P.; Gibson, M.A. The microfibril-associated glycoproteins (MAGPs) and the microfibrillar niche. Matrix Biol. 2015, 47, 13–33. [Google Scholar] [CrossRef]
- Hoffmann, K.; Mattheisen, M.; Dahm, S.; Nürnberg, P.; Roe, C.; Johnson, J.; Cox, N.J.; Wichmann, H.E.; Wienker, T.F.; Schulze, J.; et al. A German genome-wide linkage scan for type 2 diabetes supports the existence of a metabolic syndrome locus on chromosome 1p36.13 and a type 2 diabetes locus on chromosome 16p12.2. Diabetologia 2007, 50, 1418–1422. [Google Scholar] [CrossRef]
- Craft, C.S. MAGP1, the extracellular matrix, and metabolism. Adipocyte 2014, 4, 60–64. [Google Scholar] [CrossRef]
- Turecamo, S.; Walji, T.; Broekelmann, T.; Williams, J.; Ivanov, S.; Wee, N.; Procknow, J.; McManus, M.; Randolph, G.; Scheller, E.; et al. Contribution of metabolic disease to bone fragility in MAGP1-deficient mice. Matrix Biol. 2018, 67, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Craft, C.S.; Broekelmann, T.J.; Mecham, R.P. Microfibril-associated glycoproteins MAGP-1 and MAGP-2 in disease. Matrix Biol. 2018, 71–72, 100–110. [Google Scholar] [CrossRef]
- Combs, M.D.; Knutsen, R.H.; Broekelmann, T.J.; Toennies, H.M.; Brett, T.J.; Miller, C.A.; Kober, D.; Craft, C.S.; Atkinson, J.J.; Shipley, J.M.; et al. Microfibril-associated Glycoprotein 2 (MAGP2) Loss of Function Has Pleiotropic Effects in vivo. J. Biol. Chem. 2013, 288, 28869–28880. [Google Scholar] [CrossRef] [PubMed]
- Craft, C.S.; Zou, W.; Watkins, M.; Grimston, S.; Brodt, M.D.; Broekelmann, T.J.; Weinbaum, J.; Teitelbaum, S.; Pierce, R.A.; Civitelli, R.; et al. Microfibril-associated Glycoprotein-1, an Extracellular Matrix Regulator of Bone Remodeling. J. Biol. Chem. 2010, 285, 23858–23867. [Google Scholar] [CrossRef]
- Craft, C.S.; Pietka, T.A.; Schappe, T.; Coleman, T.; Combs, M.D.; Klein, S.; Abumrad, N.A.; Mecham, R.P. The Extracellular Matrix Protein MAGP1 Supports Thermogenesis and Protects Against Obesity and Diabetes Through Regulation of TGF-β. Diabetes 2014, 63, 1920–1932. [Google Scholar] [CrossRef] [PubMed]
- Walji, T.A.; Turecamo, S.E.; Sanchez, A.C.; Anthony, B.A.; Abou-Ezzi, G.; Scheller, E.L.; Link, D.C.; Mecham, R.P.; Craft, C.S. Marrow Adipose Tissue Expansion Coincides with Insulin Resistance in MAGP1-Deficient Mice. Front. Endocrinol. 2016, 7. [Google Scholar] [CrossRef]
- Levin, M.C.; Borén, J. The Extracellular Matrix Protein MAGP1 Is a Key Regulator of Adipose Tissue Remodeling During Obesity. Diabetes 2014, 63, 1858–1859. [Google Scholar] [CrossRef]
- Wu, M.; Ding, Y.; Jiang, X.; Chen, Y.; Wu, N.; Li, L.; Wang, H.; Huang, Y.; Xu, N.; Teng, L. Overexpressed MAGP1 Is Associated With a Poor Prognosis and Promotes Cell Migration and Invasion in Gastric Cancer. Front. Oncol. 2020, 9, 1–13. [Google Scholar] [CrossRef]
- Zaravinos, A.; Kanellou, P.; Lambrou, G.; Spandidos, D. Gene set enrichment analysis of the NF-κB/Snail/YY1/RKIP circuitry in multiple myeloma. Tumor Biol. 2014, 35, 4987–5005. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.K.; Wang, W.J.; Cai, H.Y.; Du, B.B.; Mai, P.; Zhang, L.J.; Ma, W.; Hu, Y.G.; Feng, S.F.; Miao, G.Y. MFAP2 promotes epithelial—Mesenchymal transition in gastric cancer cells by activating TGF- β/SMAD2/3 signaling pathway. OncoTargets Ther. 2018, 11, 4001–4017. [Google Scholar] [CrossRef]
- Miyamoto, A.; Lau, R.; Hein, P.W.; Shipley, J.M.; Weinmaster, G. Microfibrillar Proteins MAGP-1 and MAGP-2 Induce Notch1 Extracellular Domain Dissociation and Receptor Activation. J. Biol. Chem. 2006, 281, 10089–10097. [Google Scholar] [CrossRef]
- Itatani, Y.; Kawada, K.; Sakai, Y. Transforming Growth Factor-β Signaling Pathway in Colorectal Cancer and Its Tumor Microenvironment. Int. J. Mol. Sci. 2019, 20, 5822. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Ye, L.; Bennett, S.; Xu, H.; He, D.; Xu, J. Molecular structure and function of microfibrillar-associated proteins in skeletal and metabolic disorders and cancers. J. Cell. Physiol. 2020, 236, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Dong, T.; Niu, M.; Liang, X.; Sun, S.; Zhang, Y.; Li, Y.; Li, D. lncRNA LCPAT1 Upregulation Promotes Breast Cancer Progression via Enhancing MFAP2 Transcription. Mol. Ther. Nucleic Acids 2020, 21, 804–813. [Google Scholar] [CrossRef]
- Yao, L.-W.; Wu, L.-L.; Zhang, L.-H.; Zhou, W.; Wu, L.; He, K.; Ren, J.-C.; Deng, Y.-C.; Yang, D.-M.; Wang, J.; et al. MFAP2 is overexpressed in gastric cancer and promotes motility via the MFAP2/integrin α5β1/FAK/ERK pathway. Oncogenesis 2020, 9, 1–17. [Google Scholar] [CrossRef]
- Dong, S.Y.; Chen, H.; Lin, L.Z.; Jin, L.; Chen, D.X.; Wang, O.C.; Ye, Z.Q. MFAP2 is a Potential Diagnostic and Prognostic Biomarker That Correlates with the Progression of Papillary Thyroid Cancer. Cancer Manag. Res. 2020, 12, 12557–12567. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Cheng, Y.; Wu, F.; Sun, H.; Zheng, W.; Jiang, W.; Shi, J.; Ma, S.; Cao, H. MFAP2 Promotes the Proliferation of Cancer Cells and Is Associated With a Poor Prognosis in Hepatocellular Carcinoma. Technol. Cancer Res. Treat. 2020, 19, 1–14. [Google Scholar] [CrossRef]
- Hoekstra, A.S.; Van den Ende, B.; Julià, X.P.; Van Breemen, L.; Scheurwater, K.; Tops, C.M.; Malinoc, A.; Devilee, P.; Neumann, H.P.; Bayley, J. Simple and rapid characterization of novel large germline deletions in SDHB, SDHC and SDHD-related paraganglioma. Clin. Genet. 2016, 91, 536–544. [Google Scholar] [CrossRef]
- Tan, C.K.; Chong, H.C.; Tan, E.H.; Tan, N.S. Getting ‘Smad’ about obesity and diabetes. Nutr. Diabetes 2012, 2, e29. [Google Scholar] [CrossRef]
- Yadav, H.; Quijano, C.; Kamaraju, A.K.; Gavrilova, O.; Malek, R.; Chen, W.; Zerfas, P.; Zhigang, D.; Wright, E.C.; Stuelten, C.; et al. Protection from Obesity and Diabetes by Blockade of TGF-β/Smad3 Signaling. Cell Metab. 2011, 14, 67–79. [Google Scholar] [CrossRef]
- Calon, A.; Lonardo, E.; Berenguer-Llergo, A.; Espinet, E.; Hernando-Momblona, X.; Iglesias, M.; Sevillano, M.; Palomo-Ponce, S.; Tauriello, D.V.F.; Byrom, D.; et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat. Genet. 2015, 47, 320–329. [Google Scholar] [CrossRef]
- Mu, L.; Katsaros, D.; Lu, L.; Preti, M.; Durando, A.; Arisio, R.; Yu, H. TGF-β1 genotype and phenotype in breast cancer and their associations with IGFs and patient survival. Br. J. Cancer 2008, 99, 1357–1363. [Google Scholar] [CrossRef]
- Figueroa, J.D.; Flanders, K.C.; Garcia-Closas, M.; Anderson, W.F.; Yang, X.R.; Matsuno, R.K.; Duggan, M.A.; Pfeiffer, R.M.; Ooshima, A.; Cornelison, R.; et al. Expression of TGF-beta signaling factors in invasive breast cancers: Relationships with age at diagnosis and tumor characteristics. Breast Cancer Res. Treat. 2009, 121, 727–735. [Google Scholar] [CrossRef]
- Ghellal, A.; Li, C.; Hayes, M.; Byrne, G.; Bundred, N.; Kumar, S. Prognostic significance of TGF beta 1 and TGF beta 3 in human breast carcinoma. Anticancer Res. 2001, 20, 4413–4418. [Google Scholar]
- Shiota, M.; Fujimoto, N.; Matsumoto, T.; Tsukahara, S.; Nagakawa, S.; Ueda, S.; Ushijima, M.; Kashiwagi, E.; Takeuchi, A.; Inokuchi, J.; et al. Differential Impact of TGFB1 Variation by Metastatic Status in Androgen-Deprivation Therapy for Prostate Cancer. Front. Oncol. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Woodward, E.; Prêle, C.M.; Nicholson, S.E.; Kolesnik, T.B.; Hart, P.H. The anti-inflammatory effects of interleukin-4 are not mediated by suppressor of cytokine signalling-1 (SOCS1). Immunology 2010, 131, 118–127. [Google Scholar] [CrossRef]
- McCulloch, L.J.; Rawling, T.J.; Sjöholm, K.; Franck, N.; Dankel, S.; Price, E.J.; Knight, B.; Liversedge, N.H.; Mellgren, G.; Nystrom, F.; et al. COL6A3 Is Regulated by Leptin in Human Adipose Tissue and Reduced in Obesity. Endocrinology 2015, 156, 134–146. [Google Scholar] [CrossRef]
- Moorman, H.R.; Poschel, D.; Klement, J.D.; Lu, C.; Redd, P.S.; Liu, K. Osteopontin: A Key Regulator of Tumor Progression and Immunomodulation. Cancers 2020, 12, 3379. [Google Scholar] [CrossRef]
- Mao, L.; Yang, J.; Yue, J.; Chen, Y.; Zhou, H.; Fan, D.; Zhang, Q.; Buraschi, S.; Iozzo, R.V.; Bi, X. Decorin deficiency promotes epithelial-mesenchymal transition and colon cancer metastasis. Matrix Biol. 2021, 95, 1–14. [Google Scholar] [CrossRef]
- Voutsadakis, I.A. Pathogenesis of colorectal carcinoma and therapeutic implications: The roles of the ubiquitin?proteasome system and Cox-2. J. Cell. Mol. Med. 2007, 11, 252–285. [Google Scholar] [CrossRef]
- Tinsley, H.; Grizzle, W.E.; Abadi, A.; Keeton, A.; Zhu, B.; Xi, Y.; Piazza, G.A. New NSAID Targets and Derivatives for Colorectal Cancer Chemoprevention. Recent Results Cancer Res. 2012, 191, 105–120. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, T.; Fang, M.; Huang, W.; Sun, Z.; Xiao, J.; Yan, W. MFAP5 promotes tumor progression and bone metastasis by regulating ERK/MMP signaling pathways in breast cancer. Biochem. Biophys. Res. Commun. 2018, 498, 495–501. [Google Scholar] [CrossRef]
- Gomez-Ambrosi, J.; Silva, C.; Catalan, V.; Rodríguez, A.; Galofre, J.C.; Escalada, J.; Valenti, V.; Rotellar, F.; Romero, S.; Ramírez, B.; et al. Clinical Usefulness of a New Equation for Estimating Body Fat. Diabetes Care 2011, 35, 383–388. [Google Scholar] [CrossRef] [PubMed]
- Catalan, V.; Gomez-Ambrosi, J.; Rotellar, F.; Silva, C.; Rodríguez, A.; Salvador, J.; Gil, M.J.; Cienfuegos, J.; Frühbeck, G. Validation of Endogenous Control Genes in Human Adipose Tissue: Relevance to Obesity and Obesity-associated Type 2 Diabetes Mellitus. Horm. Metab. Res. 2007, 39, 495–500. [Google Scholar] [CrossRef] [PubMed]
Normoponderal | Obesity | p OB | p CC | p OBxCC | |||
---|---|---|---|---|---|---|---|
Non-Colon Cancer | Colon Cancer | Non-Colon Cancer | Colon Cancer | ||||
n (male, female) | 12 (5, 7) | 17 (8, 7) | 31 (18, 13) | 19 (14, 5) | |||
Age (years) | 53 2 | 63 3 | 55 1 | 64 3 | 0.518 | <0.001 | 0.925 |
Body weight (kg) | 62.7 1.9 | 61.2 5.1 | 83.2 2.0 | 78.3 2.2 | <0.001 | 0.577 | 0.320 |
Body mass index (kg/m2) | 22.7 0.9 | 22.4 0.4 | 30.2 0.7 | 29.6 0.7 | <0.001 | 0.109 | 0.588 |
Estimated body fat (%) | 29.9 1.9 | 29.2 1.5 | 37.4 1.1 | 33.4 1.4 | <0.001 | 0.155 | 0.370 |
Waist (cm) | 83 1 | 80 1 | 99 2 | 111 2 | <0.001 | 0.241 | 0.180 |
Fasting glucose (mg/dL) | 102 4 | 141 13 | 110 5 | 128 8 | 0.730 | <0.001 | 0.143 |
Free fatty acids (mg/dL) | 12.7 1.4 | 26.5 2.4 | 15.4 1.2 | 22.2 1.7 | 0.570 | <0.001 | 0.064 |
Triglycerides (mg/dL) | 87 10 | 112 11 | 117 9 | 121 20 | 0.747 | 0.752 | 0.685 |
C-reactive protein (mg/L) | 0.20 0.13 | 1.10 0.96 | 1.17 0.08 | 8.48 1.84 *** | 0.008 | <0.001 | 0.031 |
Fibrinogen (mg/dL) | 337 27 | 277 26 | 300 17 | 451 30 ** | 0.159 | 0.418 | 0.033 |
IL-4 (pg/mL) | 11.03 1.70 | 9.22 0.31 | 9.13 0.21 | 8.64 0.17 | 0.038 | 0.046 | 0.315 |
IL-6 (pg/mL) | 3.34 0.26 | 4.45 0.45 | 5.23 1.11 | 9.26 1.34 | 0.002 | <0.001 | 0.123 |
IL-13 (pg/mL) | 0.71 0.06 | 0.79 0.09 | 0.75 0.03 | 0.57 0.03 | 0.016 | 0.900 | 0.216 |
OPN (ng/mL) | 25.30 3.30 | 38.93 4.48 | 28.76 2.42 | 70.15 10.13 | <0.001 | <0.001 | 0.098 |
VEGF (ng/mL) | 16.01 0.85 | 16.31 0.70 | 19.26 0.95 | 18.39 1.27 | 0.038 | 0.926 | 0.682 |
YKL-40 (ng/mL) | 27.00 2.19 | 37.46 8.62 | 39.20 4.17 | 63.57 7.72 | 0.006 | 0.012 | 0.309 |
CEA (ng/mL) | 1.58 0.32 | 2.55 0.44 | 1.68 0.28 | 8.41 2.60 | 0.267 | 0.021 | 0.401 |
Leucocyte (×109/L) | 6.17 0.91 | 8.19 1.14 | 6.22 0.31 | 7.73 0.83 | 0.823 | 0.024 | 0.653 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez de Segura, I.; Ahechu, P.; Gómez-Ambrosi, J.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Unamuno, X.; Mentxaka, A.; Baixauli, J.; Valentí, V.; et al. Decreased Levels of Microfibril-Associated Glycoprotein (MAGP)-1 in Patients with Colon Cancer and Obesity Are Associated with Changes in Extracellular Matrix Remodelling. Int. J. Mol. Sci. 2021, 22, 8485. https://doi.org/10.3390/ijms22168485
Gómez de Segura I, Ahechu P, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Becerril S, Unamuno X, Mentxaka A, Baixauli J, Valentí V, et al. Decreased Levels of Microfibril-Associated Glycoprotein (MAGP)-1 in Patients with Colon Cancer and Obesity Are Associated with Changes in Extracellular Matrix Remodelling. International Journal of Molecular Sciences. 2021; 22(16):8485. https://doi.org/10.3390/ijms22168485
Chicago/Turabian StyleGómez de Segura, Iranzu, Patricia Ahechu, Javier Gómez-Ambrosi, Amaia Rodríguez, Beatriz Ramírez, Sara Becerril, Xabier Unamuno, Amaia Mentxaka, Jorge Baixauli, Víctor Valentí, and et al. 2021. "Decreased Levels of Microfibril-Associated Glycoprotein (MAGP)-1 in Patients with Colon Cancer and Obesity Are Associated with Changes in Extracellular Matrix Remodelling" International Journal of Molecular Sciences 22, no. 16: 8485. https://doi.org/10.3390/ijms22168485
APA StyleGómez de Segura, I., Ahechu, P., Gómez-Ambrosi, J., Rodríguez, A., Ramírez, B., Becerril, S., Unamuno, X., Mentxaka, A., Baixauli, J., Valentí, V., Moncada, R., Silva, C., Frühbeck, G., & Catalán, V. (2021). Decreased Levels of Microfibril-Associated Glycoprotein (MAGP)-1 in Patients with Colon Cancer and Obesity Are Associated with Changes in Extracellular Matrix Remodelling. International Journal of Molecular Sciences, 22(16), 8485. https://doi.org/10.3390/ijms22168485