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Abstract: Chemokines are a small family of cytokines that were first discovered as chemotactic
factors in leukocytes during inflammation, and reports on the relationship between chemokines
and cancer progression have recently been increasing. The CCL2-CCR2 axis is one of the major
chemokine signaling pathways, and has various functions in tumor progression, such as increasing
tumor cell proliferation and invasiveness, and creating a tumor microenvironment through increased
angiogenesis and recruitment of immunosuppressive cells. This review discusses the roles of the
CCL2-CCR2 axis and the tumor microenvironment in cancer progression and their future roles in
cancer therapy.
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1. Introduction

The tumor microenvironment (TME) is an important factor in the growth and progres-
sion of cancer and comprises a wide variety of cells, including cancer cells, immune cells,
stromal cells, and epithelial cells [1]. The TME is filled with several signals, such as cy-
tokines and growth factors, especially cytokines that directly kill or activate cancer cells and
suppress or amplify the cancer immune response [1]. Chemokines are classified into CC
chemokines, CXC chemokines, C chemokines, and CXC3 chemokines, and approximately
50 types are recognized [2]. Chemokines have been widely reported in autoimmune-related
diseases, but, in recent years, more reports have linked these to the control of cancer in the
TME [3]. Although chemokines induce cytotoxic T lymphocytes into tumor tissues and
exhibit anticancer effects, they also induce cells that suppress tumor immunity, such as the
tumor-associated macrophage (TAM) and myeloid-derived suppressor cell (MDSC) [3,4].
Among these chemokines, we report on CCL2, which has been shown to play essential
roles in the TME, and its main receptor, CCR2.

1.1. Basic Information of CCL2-CCR2 Axis

CCL2, also known as monocyte chemoattractant protein-1, is a chemokine, a monomeric
polypeptide with a molecular weight of approximately 13–15 kDa, whose gene is located
on chromosome 17 (17q11.2-q21.1) [5]. CCL2 is expressed in many types of cells, such as
endothelium, epithelium, and bone marrow, and strongly recruits monocytes, T lympho-
cytes, and natural killer (NK) cells [6]. The main receptor for CCL2 is CCR2, which is a
protein-binding receptor with a 7-transmembrane structure. CCR2 is present in many parts
of the human body, including major organs, such as the kidney, liver, and lungs, as well
as organs involved in immunity, such as the spleen and thymus. CCL2 acts as an agonist
not only on CCR2, but also on CCR4 and CCR5 [7]. Many chemokines act as agonists on
their receptor, but CCL2 has been reported to act as an antagonist on CCR3 [8]. Conversely,
when viewed from the receptor side (i.e., CCR2), CCL7 and CCL8 act as agonists besides
CCL2 [9]. In other words, the relationship between CCL2 and CCR2 is not completely
one-to-one, but overlaps with multiple ligands and receptors [9].
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The major signaling pathway of the CCL2-CCR2 axis is through intracellular G-
proteins, and when CCL2 binds to CCR2, the α subunit dissociates from the intracellular
G-protein [10,11]. The α subunit then inhibits adenylyl cyclase function, leading to a
decrease in phosphate levels [10,11]. The remaining βγ-subunit-bound conjugates promote
nuclear transfer of nuclear-factor-κB (NF-κB) via Akt activation [10,11]. In addition, βγ
subunit junctional complexes act on Ras/Rac to activate p38, c-jun n-terminal kinase (JNK),
and extracellular signal-regulated kinase (ERK), and increase the expression of c-myc, c-jun,
c-fos, and cyclic adenosine monophosphate (cAMP)-response-element-binding protein
(CREB) [10,11]. Monocytes are released by the bone marrow into the circulating blood-
stream at any time, and CCL2 released from the tissues induces monocytes into the tissues,
and the induced monocytes turn into macrophages [12]. Monocytes migrate into tissues
by activating integrins on the surface of monocytes via the CCL2-CCR2 axis, which leads
to rolling and adhesion, and migration through the vascular endothelium [13]. Integrin
activation is an important process for monocyte adhesion to the vascular endothelium,
which involves the Akt and p38 pathways associated with CCL2-CCR2 axis activation [14].
The calmodulin pathway through intracellular release of Ca2+ ions associated with phos-
phatidylinositol 4,5-bisphosphate (PIP2) activation via G-protein binding also promotes
integrin activation [14].

The CCL2-CCR2 axis activates monocytes, macrophages, memory T lymphocytes,
and NK cells to stimulate the release of proinflammatory cytokines, such as interleukin
(IL)-1, IL-6, and tumor necrosis factor (TNF)-α [12]. Conversely, macrophages activated by
CCL2 also secrete tissue repair factors, such as vascular endothelial growth factor (VEGF),
platelet-derived growth factor (PDGF), and transforming growth factor (TGF)-β [12]. CCL2
promotes proinflammatory cytokine secretion in macrophages, but it also promotes M2-
type polarization in macrophages themselves [15]. TAMs secrete CCL2 to mobilize and
educate a large number of macrophages to the TME, thereby increasing their number
of associates [16].

CCL2 is associated with the development of inflammatory diseases caused by mono-
cyte infiltration, such as psoriasis, rheumatoid arthritis, and atherosclerosis, and is also
considered to be an important biomarker of cardiovascular disease [17–20]. CCL2 is also
involved in neurodegenerative diseases, such as multiple sclerosis and neuropathic pain.
Hence, it can be a potential therapeutic target for both neurodegenerative and inflammatory
diseases [20]. Besides monocytes, CCR2 expresses dendritic cells (DCs), NK cells, MDSCs,
and cancer cells; the CCL2-CCR2 pathway is also a major player in chemokine signaling in
the TME [21].

1.2. Relationship between the CCL2-CCR Axis and the Cells That Make Up the TME

Tumor growth and progression are regulated not only by internal factors, such as the
rate of cell division and metastatic potential of the tumor cells themselves, but also by many
other external factors. Cancer cells release various signals, such as cytokines, and build
an environment that promotes their own survival and growth. Normal immune cells are
known to attack and suppress cancer cells, but some immune cells in tumor tissue lose their
anticancer ability and, conversely, play a role in promoting the growth and metastasis of
cancer cells [22,23]. Thus, the TME plays an extremely important role in the development,
progression, and metastasis of cancer and is an important target in cancer treatment.

However, the TME is extremely complex because it comprises various components,
such as cancer cells, mesenchymal cells centered on fibroblasts, immune cells (e.g., T
lymphocytes), vascular endothelial cells, and the extracellular matrix (ECM) [24,25].

One of the most important effects of CCL2 on the TME is the infiltration of specific
immune cells into cancer tissues [26]. Specific immune cells mobilized into cancer tissues
by chemokines, such as CCL2, undergo various changes when stimulated by cancer cells
or stromal cells. These changes cause the growth and metastasis of cancer cells and worsen
the prognosis of many cancer patients.
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1.2.1. TAM

Macrophages can be broadly divided into those derived from bone-marrow-derived
monocyte progenitor cells circulating in the blood and those indigenous to tissues, which
are involved in immune defense against infections and tissue maintenance [27,28]. In
addition, some tissues have special macrophages, called microglia in the central nervous
system, osteoclasts in the bones, alveolar macrophages in the lungs, and Kupffer cells in
the liver, which play an important role in maintaining tissue homeostasis [28]. In many
cases, immune cells function to eliminate malignant tumors that are harmful to the host,
but, in TME, immune cells actually contribute to tumor progression [29]. Macrophages
are classified into two states with opposite functions, M1 macrophages (inflammatory)
and M2 macrophages (anti-inflammatory) [30]. M1 and M2 are altered states of one
type of macrophage, and both states can move back and forth between each other [31].
For a long time, it was thought that there was only one type of macrophage, but recent
research suggests that there are multiple subtypes of macrophages, and future research is
expected [32]. M1 macrophages are classic macrophages that are driven by interferon-γ,
lipopolysaccharide, and Toll-like receptors. These have inflammatory effects and act on
antibacterial and antiviral agents by IL-6, IL-12, and TNF-α [30]. M1 macrophages are
important cellular components involved in anticancer immunity, but their inflammatory
effects in normal tissues may indirectly underlie cancer development [33]. Conversely,
M2 macrophages are activated by IL-4 and IL-10, exert anti-inflammatory effects, and
contribute to tissue repair through angiogenesis. In the TME, however, they exert an
effect of promoting cancer progression [34]. The TAM is a macrophage that invades cancer
tissue and helps cancer progression, often expresses CD163 and CD206 (markers for M2
macrophages), and produces cancer progression factors, such as VEGF and cytokines [35].
However, recent reports indicate that some TAMs express both M1 and M2 markers, and
even M1 macrophages contribute to cancer progression. Hence, TAMs cannot be considered
the same as M2 macrophages [26].

CCL2 recruits monocytes and macrophages to expressing tissues, regardless of dis-
eases or conditions, such as inflammation and malignant tumors [21]. In human esophageal
tissue, increased CCL2 promoted canceration through the inflammation of the esophageal
mucosa and increased monocyte tissue infiltration throughout disease progression to hy-
perplasia and esophageal cancer [36]. Additionally, monocytes that infiltrate cancer tissue
are transformed into M2 macrophages and contribute to tumor progression as TAMs [37].
Macrophage recruitment by CCL2 has been reported in various malignancies, and there
is a correlation between macrophage infiltration into cancer tissues and increased CCL2
expression [38,39]. TAMs have multiple roles in the TME, including angiogenesis due to
VEGF and CCL2 secretion [40]. Additionally, TAMs induce the EMT in cancer cells by TGF-
β secretion, as well as ECM degradation by matrix metalloproteinase (MMP) secretion [41].
Furthermore, TAMs promote the development of chemotherapy resistance in cancer cells
and suppress cytotoxic T lymphocytes, a major player in anticancer immunity [42,43].
CCL2 secreted by cancer cells also has direct cancer-promoting effects. TAMs release an
enormous number of factors, and, thus, suppressing and controlling TAM infiltration is im-
portant. Blocking antibodies against CCL2 (CNTO 888) and CCR2 inhibitors (PF-04136309)
have been developed and are currently being clinically tested [44,45]. However, there are
also problems, such as a decrease in monocytes due to the inhibition of the CCL2-CCR2
axis, as well as an increase in CCL2 concentration rather than reactivity [46]. Since the
colony-stimulating factor 1 receptor is involved in the differentiation and survival of almost
all macrophages, many blocking antibodies and inhibitors have been developed for the
purpose of removing TAMs. However, the effects of these drugs alone are insufficient, and
clinical trials are currently being conducted in combination with other drugs [34].

1.2.2. MDSC

The MDSC, considered as a relative of TAM, is the first cell population proposed in
mice that inhibits the host immune response [47]. MDSCs are broadly classified into poly-
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morphonuclear MDSCs (PMN-MDSCs), which have polymorphic nuclei similar to granulo-
cytes, and monocyte MDSCs (M-MDSCs), which are derived from monocytes [48]. Among
peripheral blood mononuclear cells, PMN-MDSCs are defined as CD11b+CD14−CD15+

or CD11b+CD14−CD66b+, and M-MDSCs as CD11b+CD14+HLA-DR−/loCD15−. Lin−

(including CD3, CD14, CD15, CD19, CD56) HLA-DR−CD33+ cells contain mixed groups
of MDSC comprising more immature progenitors [48]. In the TME, monocytes, TAMs,
and MDSCs are mixed, with their proportion varying depending on the type of carcinoma
and degree of progression. These cells are heterogeneous, with PMN-MDSCs changing
to M-MDSCs and M-MDSCs changing to TAMs under hypoxic conditions [49,50]. Thus,
the MDSCs in mice were determined to be Gr1+CD11b+ cells, but, in humans, multiple
markers have been listed because of the heterogeneity and plasticity of MDSCs [48].

The main function of MDSCs is anticancer immunosuppression, which specifically
suppresses cytotoxic T lymphocytes and NK cells by arginase (ARG1), iNOS, TGF-β, IL-10,
and cyclooxygenase 2 [48]. Moreover, MDSC further suppresses anticancer immunity
by mobilizing regulatory T lymphocytes into cancerous tissue [51]. In addition to im-
munosuppressive mechanisms, MDSCs promote tumor progression by affecting the tumor
microenvironment through the production of VEGF, basic fibroblast growth factor (bFGF),
and MMP-9 [52].

A meta-analysis of studies of 442 patients with various solid tumors showed that
MDSC contributed to worse overall survival and progression-free survival [53]. Since CCL2
has an inducing effect on cancer tissues, specifically in M-MDSCs that differentiate into
TAMs, inhibiting CCL2 can help improve the TME and patient prognosis by suppressing
both M-MDSCs and TAMs. CXCL1, CXCL5, CXCL6, CXCL8, and CXCL12 have been
reported as mobilizing factors for PMN-MDSCs, although CCL2 is poorly involved [54].
In another study, the number of PMN-MDSCs in the tumor tissue of 48 RCC patients
correlated with IL-8 and CXCL5 expression [55]. In the RENCA mouse model, blocking
CXCR2, a receptor for IL-8 and CXCL5, with a combined use of an anti-PD-1 antibody
caused a decrease in tumor weight [55]. Clinical trials are also ongoing in humans, and
improvements in anticancer immunity are expected [56].

1.2.3. Treg

Tregs are a subset of T lymphocytes that regulate the autoimmune response and
express the endogenous Foxp3+, CD25+, and CD4+ phenotypes, and are present in approxi-
mately 10% of healthy human peripheral blood [57]. Tregs are involved in autoimmune tol-
erance and the maintenance of homeostasis, and their dysfunction leads to the development
of autoimmune diseases [58]. A large amount of CD25, which has a high affinity for IL-2, is
expressed on the surface of Tregs. The depletion of IL-2 inhibits the activation of antigen-
presenting cells [59]. Additionally, Treg secretes cytotoxic T-lymphocyte-related antigen-4,
IL-10, and TGF-β, thus enhancing the cancer-progressive function of the TME [60].

The chemokine receptors CCR4, CCR8, and CCR10 are expressed on Tregs [61]. CCL2
acts as an agonist on CCR4 and thus plays a role in recruiting Tregs [9]. In gliomas, Tregs are
highly dependent on the CCL2-CCR4 axis and are recruited to tumor tissue [61]. Similarly,
in esophageal cancer, the expression of IL-33 increased the secretion of CCL2 via NF-κB,
and the cancer progresses by recruiting Tregs to the cancer tissue [62]. Mogalimumab,
an antimonoclonal antibody against CCR4, is expected to restore anticancer immunity in
cancer patients by selectively depleting Treg, and clinical trials in combination with other
drugs are ongoing [63].

1.2.4. Cancer-Associated Fibroblast (CAF)

CAFs make up the main body of the TME, enhance the traits of cancer tissues, and
cause the proliferation and infiltration of cancer cells, angiogenesis, and ECM remodel-
ing [64]. CAFs are one of the most abundant mesenchymal components in the TME and are,
therefore, the subject of research and treatment in many solid tumors [65]. The population
of CAFs is complex and heterogeneous, with various sources, such as epithelium, muscle,
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and bone marrow [66]. Thus, when CAF is targeted for cancer treatment, various factors
are subject to control.

Alpha-smooth-muscle actin (αSMA) and fibroblast activation protein (FAP) are CAF
markers in the stroma of cancer tissues, and their expression intensity correlates with
tumor infiltration, lymph node metastasis, and poor prognosis [67]. In tissues rich in
αSMA and FAP, CCL2 and IL-6 secretion is increased, leading to cancer progression [67].
In advanced lung squamous cell carcinoma tissues, CAFs secrete CCL2 and recruit MDSCs
to the carcinoma tissue [68]. In hepatocellular carcinoma (HCC) tissues, CAFs secrete
CCL2 and CCL5 and induce metastasis by activating the hedgehog pathway [69]. Hence,
FAP and CCL2 can be therapeutic targets because FAP develops cancer by activating CAF
STAT3/CCL2 signaling [70]. Thus, CAFs are made up of a heterogeneous cell population
with many potential therapeutic targets and multiple clinical trials underway [66].

1.2.5. CCL2 and TME

The role of CCL2 in TME is shown in Figure 1. CCL2 secreted by cancer cells or
CAFs mobilizes monocytes, MDSCs, and Treg into TME. CCL2, secreted by cancer cells
or CAFs, recruits monocytes, MDSCs, and Treg into TME, and these monocytes and some
MDSCs are converted into TAMs, which, together with CAFs, induce angiogenesis, ECM
remodeling, and EMT of cancer cells; TAMs, MDSCs, and Treg suppress cytotoxic T cells
and reduce anti-tumor immunity. Thus, CCL2 plays an important role in cancer growth,
progression, and metastasis in TME.
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Figure 1. Overview of chemokine (C-C motif) ligand 2 (CCL2) and the tumor microenvironment (TME). (a) Cancer-cell-
derived CCL2 acts on regulatory T cells (Tregs), tumor-associated macrophages (TAMs), and myeloid-derived suppressor
cells (MDSCs) and recruits these to the TME. (b) Tregs, TAMs, and MDSCs reduce anticancer immunity by suppressing
CD8+ lymphocytes. (c) Autocrine, TAM, and cancer-related fibroblast (CAF)-derived CCL2 induces epithelial–mesenchymal
transition (EMT) in cancer cells to promote metastasis. (d) Factors from cells that occupy the TME enhance angiogenesis
and extracellular matrix (ECM) remodeling, assisting tumor growth and metastasis.

2. Relationship between Malignant Tumors and CCL2-CCR2 Axis

Chemokines are not only involved in inflammation, but also deeply involved in tumor
promotion through the TME. Chemokines are classified into several types, the majority
of which are CXC chemokines and CC chemokines, but their functions have not yet been
fully elucidated [2].

Several studies have been conducted on the CCL2-CCR2 axis, and it has been pointed
out that it functions as a major chemokine in inflammatory diseases and malignant tu-
mors [20,21]. The CCL2-CCR2 axis exerts various functions in the process of malignant
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tumor growth, infiltration, and metastasis, and is involved in the progression of several
malignant tumors [71].

2.1. Prostate Cancer

Prostate cancer is one of the most commonly diagnosed malignancies worldwide [72].
Many prostate cancers express androgen receptor (AR), and, because of this, androgen
deprivation therapy (ADT), which inhibits AR, is the standard medication for prostate
cancer treatment [73]. However, ADT is to be ineffective in many cases later, and the disease
progresses to castration-resistant prostate cancer. The therapeutic approach targeting
the androgen–AR axis is insufficient, thus making chemokines the candidates for new
therapeutic targets [74].

CCL2 expression has been confirmed in multiple human prostate cancer cell lines, such
as LNCaP, C4-2, and PC3. In vitro experiments have revealed that CCL2 directly stimulates
PC3 proliferation and migration through the activation of PI3K/Akt signaling [75]. CCL2
expression is increased in AR-silenced C4-2 cells, and when AR is suppressed by ADT,
prostate cancer-cell-derived CCL2, which mediates a local inflammatory response, plays a
major role in tumor progression [76]. The SAM pointed domain-containing ETS transcrip-
tion factor (E26 transcription factor) is expressed in prostate cancer that is regulated by AR
signaling and has a negative correlation with CCL2. Under AR suppression, CCL2 induces
epithelial–mesenchymal transition (EMT) [77]. In vivo experiments have revealed that the
administration of anti-CCL2-neutralizing antibodies to severe combined immunodeficient
mice subcutaneously injected with VCap cells suppressed tumor growth and macrophage
infiltration in tissues [75]. Another report showed that cabazitaxel-resistant prostate cancer
cell lines strongly secrete CCL2 and are thus highly involved in cabazitaxel resistance [78].
Hence, the CCL2-CCR2 axis promotes tumor progression directly by causing the castration
resistance and chemotherapy resistance of prostate cancer, as well as indirectly through
actions mediated by macrophages. Thus, the CCL2-CCR2axis has been suggested as a
target for the treatment of prostate cancer. In fact, a study showed that an antihuman CCL2
antibody with docetaxel had a superior anticancer effect than docetaxel alone [79].

2.2. Pancreatic Ductal Adenocarcinoma (PDAC)

PDAC is a malignant tumor with a very poor prognosis (5-year survival rate <5%) [72].
It progresses very quickly, often metastasizes at the time of diagnosis, and is difficult to
treat because of the inefficacy of drug therapy [80]. Thus, the search for new therapeutic
targets is extremely important, and this can be done by analyzing the TME of PDAC.

PDAC and CAF induce CCL2- and CXCL8-mediated angiogenesis and create a favor-
able environment for growth and metastasis [81]. High levels of CCL2 have been detected
in the sera of 68 pancreatic cancer patients, making it a significant poor prognostic factor,
and it can be used as a prognostic marker [82]. Nab-paclitaxel, like gemcitabine, is the
standard medication for the treatment of pancreatic cancer. This promotes the activation of
inflammatory macrophages, which are thought to be the opposite of the TAMs present in
cancer tissues, and suppresses immune avoidance in pancreatic cancer [83]. In a clinical
trial (NCT01413022), the CCR2 inhibitor CCX872 improved the prognosis of pancreatic
cancer when used in combination with FOLFIRINOX [41]. Furthermore, a clinical study
(NCT03767582) of a drug (BMS-813160) that is expected to suppress the mobilization of
TAMs in cancer tissues by suppressing both CCR2 and CCR5 is also in progress.

2.3. Breast Cancer

Breast cancer is one of the most common cancers in women [72]. Approximately
70% of breast cancers are positive for hormone receptors, and endocrine therapy with
tamoxifen is effective in drug treatment. However, there remain many clinical issues,
such as resistance to endocrine therapy and the existence of triple-negative breast cancer
(TNBC) [84]. CCL2 enhances the migration of multiple breast cancer cell lines via Smad3
and p42/44 mitogen-activated protein kinase (MAPK) signaling [85].
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Although TNBC has a very poor prognosis, CCL2 is deeply involved, and, thus, the
suppression of CCL2 expression via poly adenosine diphosphate (ADP)-ribose polymerase
may suppress the progression of TNBC [86,87]. Hence, the CCL2-CCR2 axis exerts a
direct tumor-progressive effect on breast cancer. Direct and indirect suppression of cancer
progression by suppressing the CCL2-CCR2 axis can be a therapeutic target. In fact, the
chronic hepatitis B therapeutic drug propagermanium is currently being studied as a
treatment option for breast cancer because of its inhibitory action on CCL2 [88].

2.4. Lung Cancer

Lung cancer is a deadly malignant tumor that is a major cause of cancer-related death
worldwide. Non-small-cell lung cancer (NSCLC) accounts for approximately 80% of all
lung cancers, and various drug therapies, such as anticancer drugs, molecular-targeted
drugs for VEGF and epidermal growth factor receptor, and immune checkpoint inhibitors
have been developed [89]. Because of these treatments, the prognosis of lung cancer
patients is improving, but, nonetheless, it remains poor [90]. Lung cancer cells often
express programed cell death 1 (PD-1), and anti-programed cell death ligand 1 (PD-L1)
antibodies have a good therapeutic effect on NSCLC [91]. TME is important in the treatment
of lung cancer with cytotoxic T-lymphocyte-based immune checkpoint inhibitors.

MDSCs, Tregs, and TAMs may reduce the therapeutic effect of immune checkpoint
inhibitors by reducing the activity of cytotoxic T lymphocytes [57,92]. Cancer-bearing mice
were found to have increased the expression of CCL2 in cancer cells and the infiltration of
MDSCs into cancer tissues; blocking CCL2 decreased MDSC, both in serum and in tissues,
and improved their prognosis [92].

CCL2 also acts directly on lung cancer; blocking CCL2 enhanced the susceptibility of
A549 cells of the lung cancer cell line to docetaxel [93]. Akt activation is also involved in this
phenomenon, and similar results have been reported for prostate cancer [78]. Lung cancer
cells mobilize TAMs to the cancer tissue by secreting CCL2, but the upstream of CCL2
is also actively investigated. Neddylation is a process by which neuronal-precursor-cell-
expressed developmentally down-regulated protein 8 (NEDD8) binds to a target protein,
which plays a role in cell proliferation [94]. Suppression of neddylation in mouse Lewis
lung cancer cells resulted in decreased CCL2 secretion and reduced infiltration of TAM into
cancer tissues. NEDD8 correlates with CCL2 expression in human lung adenocarcinoma
tissue and is thus thought to affect cancer progression [94].

2.5. Kidney Cancer

The most common tissue phenotype of kidney cancer is renal cell carcinoma (RCC),
which accounts for 3–4% of adult cancers in the United States [72]. Most total RCCs (70%)
are classified as clear cell RCC (ccRCC) derived from proximal tubular cells [95]. Since
ccRCC is immunogenic, immunotherapy targeting interferon α and IL-2 was the main treat-
ment target in RCC in the past. However, in recent years, immune checkpoint inhibitors
have become more important [96,97]. Thus, chemokines, such as CCL2, originally discov-
ered as a leukocyte chemotactic factor, can play an important role in RCC progression.

Increased expression of CCL2 in the cancer tissues of ccRCC patients significantly
worsened overall survival [98,99]. Additionally, increased MDSCs in the peripheral blood
and cancer tissue of ccRCC patients had a positive correlation with CCL2 expression [100].
CCL2 promotes angiogenesis and supports the progression of malignant tumors [12].
CCL2 was not directly involved in ccRCC cell proliferation in vitro, but tumor proliferation,
angiogenesis, and macrophage infiltration were suppressed in CCL2-knockout mice [99].

The involvement of chemokines other than CCL2 has also been reported in ccRCC. In
our study, the secretion of CCL20 from TAM-like cells enhanced the migration ability of
ccRCC cells via Akt activation [101]. This suggests that CCL2 derived from ccRCC mobilizes
TAM, whereas CCL20 derived from TAM promotes the progression of ccRCC [102]. Thus,
it may be necessary to block multiple chemokines to control the TME of ccRCC.
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2.6. Bladder Cancer

Bladder cancer is a common urethral malignancy with a lifetime morbidity risk of
1.1% in men and 0.27% in women [103]. Risk factors for bladder cancer include smoking
and benzene chemicals, but the largest factor is aging [104]. Previously, the only drug
therapy for inoperable metastatic bladder cancer was primary platinum-based drug therapy.
However, the effectiveness of secondary drug therapy with anti-PD-1 and anti-PD-L1
antibodies has recently been established [105,106]. Thus, understanding the TME (including
chemokines) will be important in the treatment of bladder cancer in the future.

Autocrine CCL2 enhances the infiltration and migration of the bladder cancer cell
line MBT2 by PKC activation and tyrosine phosphorylation [107]. The noncoding RNA
transcript 1 (associated with lymph node metastasis) trimethylates H3K4 in bladder cancer
cells. This increases CCL2 secretion in bladder cancer cells, mobilizes TAMs to cancer
tissue, and promotes lymph node metastasis [108]. Moreover, cisplatin-resistant bladder
cancer cells recruit MDSCs by secreting chemokines, including CCL2, to avoid attack from
cytotoxic T lymphocytes [109]. These facts indicate that CCL2 blockade may be effective
in both chemotherapy-based first-line therapy and immune checkpoint inhibitor-based
second-line therapy in the treatment of bladder cancer.

2.7. Colorectal Cancer

Colorectal cancer (CRC) is a common cancer in both men and women [72]. Approxi-
mately 70–90% of CRC occurs because of the adenoma–cancer pathway; 10–20%, because
of the serrated neoplasma pathway; and the remaining small proportion, 2–7%, because of
microsatellite instability [110]. Recurrence and metastasis in CRC are the leading causes of
death in patients, and chemotherapy resistance is a major therapeutic challenge.

Angiogenesis is an essential process in CRC progression, and the VEGF–VEGF receptor
pathway blockade by bevacizumab is a major target in drug therapy [111]. However, in
some cases of CRC, E26 transformation-specific mutant 5 of the ETS family is activated,
and CCL2 is secreted to promote angiogenesis and acquire resistance to bevacizumab [112].
Type I γ phosphatidylinositol phosphate kinase (PIPKI γ) plays an important role in
multiple biological processes and enhances PD-L1 expression in cancer cells to evade
anticancer immunity [113]. PIPKI γ is highly expressed in the cancer tissues of CRC patients
with poor prognosis, increases CCL2 expression through Akt-STAT3 signal activation, and
recruits TAMs to the TME [114].

2.8. Other Cancers

The CCL2-CCR2 axis is also involved in the metastasis and progression of various
cancers. Ovarian cancer cells secrete transforming growth factor (TGF-β) and act on
human peritoneal mesothelial cells to secrete CCL2 and induce their own activation via the
p38/MAPK pathway [115]. In a mouse model of ovarian cancer, adipocyte-derived CCL2
activated the PI3K/Akt/mTOR pathway to promote the metastasis of cancerous cells, but
this pathway can be blocked by metformin [116]. In cervical cancer, Schwann cells were
mobilized into the cancer tissue, and metastasis was promoted by increasing the MMP
secretion of cancer cells via CCL2, causing serum CCL2 to increase [117].

Malignant melanoma is a malignant tumor with strong immunogenicity. CCL2-
neutralizing antibodies or v-raf murine viral oncogene homolog B1 inhibitors targeted
CCL2 and resulted in marked inhibition of tumor growth in mouse models by suppressing
CCL2 gene expression [118]. CCL2 expressed in circulating fibrous cells is involved in
the recruitment of Ly6C monocytes and metastasizes B16F10 cells to the lung [119]. In a
mouse model, stress-loaded norepinephrine suppresses blood CCL2 levels and macrophage
infiltration into cancer tissues, and β-epinephrine receptors may be targets for melanoma
treatment [120]. CCR2 inhibitors enhanced the therapeutic effect of anti-PD-1 antibodies in
several mouse tumor models [121]. CCL2 acts on CCR2 to advance the tumor, whereas, in
CCR4, it acts to recruit cytotoxic T lymphocytes and exert an anticancer effect [122]. This
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indicates that several chemokines have multiple receptors and are intricately involved in
both inflammation and cancer progression, and the suppression of both.

3. Conclusions

Many studies have reported the importance of TME in the progression of various
cancers, and many clinical trials targeting TME have been conducted (Table 1). However,
presently, no clinical trial has reported a sufficient therapeutic effect by a single inhibition
of the CCL2-CCR2 axis. Cytotoxic T lymphocytes directly attack cancer cells, and immune
checkpoint inhibitors (e.g., anti-PD-1/anti-PD-L1 antibodies) control them to exert excellent
therapeutic effects. Even in clinical practice, combination therapy targeting both cancer
cells and the TME has shown good therapeutic results [123].

Table 1. Clinical trials targeting TME-related cells.

Target Cells Drug Target Factor Clinical Trial
Number Tumor Concomitant Drug

TAM, MDSC

BMS-813160 CCL2–CCR2/5

NCT03184870
NCT03496662
NCT03767582
NCT04123379

PDAC, CRC
PDAC
PDAC

NSCLC, HCC

NIVO, Nab-PTX, GEM, etc.
NIVO, Nab-PTX, GEM

NIVO, Vaccine
NIVO

PF-04136309 CCL2–CCR2 NCT02732938
NCT01413022

PDAC
PDAC

Nab-PTX, GEM
FOLFIRINOX

CNTO 888 CCL2–CCR2 NCT00992186 CRPC No

PLX-3397 CSF-1R NCT02452424
NCT02777710

NSCLC, etc.
PDAC, CRC

PEMB
Durvalumab

RG-7155 CSF-1R
NCT02323191
NCT01494688
NCT02760797

TNBC, etc.
Sarcoma, etc.
TNBC, etc.

ATEZ
PTX

anti CD40 antibody

AMG-820 CSF-1R NCT02713529 PDAC, NSCLC PEMB

BMS-986253 CXCL8-CXCR1/2
NCT03689699
NCT04050462
NCT04123379

HSPC
HCC

NSCLC, HCC

NIVO, Degarelix
NIVO, Cabiralizumab

NIVO

AZD5069 CXCL8-CXCR1/2 NCT03177187 CRPC Enzalutamide

RO7009789 CD40 NCT02588443 PDAC Nab-PTX, GEM

Hu5F9-G4 CD47 NCT02953509 Non-Hodgkin’s
Lymphoma

Magrolimab, Rituximab,
GEM, Oxaliplatin

IPI-549 PI3Kγ
NCT03961698
NCT02637531

TNBC, RCC
NSCLC, etc

ATEZ, Nab-PTX
NIVO

CD8+ cell
ALK4230 IL-2 NCT04592653 Solid tumor PEMB

REGN6569 GITR NCT04465487 SCC Cemiplimab

Treg Mogalimumab CCL17/22-CCR4 NCT02946671 NSCLC, etc. NIVO

RO7296682 CD25 NCT04642365 Solid tumor ATEZ

CAF MD3100 CXCL12-CXCR4 Preclinical PDAC No

TME, tumor microenvironment; TAM, tumor-associated macrophage; MDSC, myeloid-derived suppressor cell; Treg, regulatory T cell; CAF,
cancer-associated fibroblasts; CCL, CC chemokine ligand; CCR, CC chemokine receptor; CSF-1R, colony-stimulating factor-1 receptor;
CXCL, CXC chemokine ligand; CXCR, CXC chemokine receptor; PI3kγ, phosphatidylinositol 3-kinase-γ; IL-2, interleukin 2; GITR,
glucocorticoid-induced TNF-related protein; PDAC, pancreatic ductal adenocarcinoma; CRC, colorectal cancer; NSCLC, non-small-cell
lung carcinoma; HCC, hepatocellular carcinoma; CRPC, castration-resistant prostate cancer; TNBC, triple-negative breast cancer; NIVO,
nivolumab; PTX, paclitaxel; GEM, gemcitabine; FOLFIRINOX, leucovorin + fluorouracil + irinotecan + oxaliplatin; PEMB, pembrolizumab;
ATEZ, atezolizumab.

This is because cancer progression in the TME is caused by a complex network reg-
ulated by various intrinsic and external factors. Thus, effective treatment is expected to
target multiple factors rather than just blocking the CCL2-CCR2 axis. In fact, the clinical
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trials targeting many chemokines also involve a combination with immune checkpoint
inhibitors, molecular-targeted drugs, and anticancer drugs. In summary, the CCL2-CCR2
axis is important for both cancer cells and the TME, but further elucidation of its physiologi-
cal functions is essential for the development of sufficient anticancer therapy by controlling
the CCL2-CCR2 axis.
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