The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk—A Systematic Review
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Assessment of Platelet Function
3.2. Monitoring the Anticoagulant Effects
3.3. Bleeding
3.4. Surgical Procedures
3.5. Von Willebrand Factor
3.6. Other Uses of T-TAS
3.7. Summary
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kaikita, K.; Hosokawa, K.; Dahlen, J.R.; Tsujita, K. Total Thrombus-Formation Analysis System (T-TAS): Clinical Application of Quantitative Analysis of Thrombus Formation in Cardiovascular Disease. Thromb. Haemost. 2019, 119, 1554–1562. [Google Scholar] [PubMed] [Green Version]
- Periayah, M.H.; Halim, A.S.; Saad, A.Z.M. Mechanism action of platelets and crucial blood coagulation pathways in hemostasis. Int. J. Hematol. Oncol. Stem Cell Res. 2017, 11, 319. [Google Scholar]
- Simurda, T.; Dobrotova, M.; Skornova, I.; Sokol, J.; Kubisz, P.; Stasko, J. Successful Use of a Highly Purified Plasma von Willebrand Factor Concentrate Containing Little FVIII for the Long-Term Prophylaxis of Severe (Type 3) von Willebrand’s Disease. Semin. Thromb. Hemost. 2017, 43, 639–664. [Google Scholar] [PubMed] [Green Version]
- Sakamoto, Y.; Koami, H.; Miike, T. Monitoring the coagulation status of trauma patients with viscoelastic devices. J. Intensive Care 2017, 5, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Syska, K.; Golański, J. Laboratory methods for evaluating effectiveness of clopidogrel and other antiplatelet drugs blocking the P2Y12 receptor. J. Lab. Diagn. 2012, 48, 323–332. [Google Scholar]
- Minami, H.; Nogami, K.; Ogiwara, K.; Furukawa, S.; Hosokawa, K.; Shima, M. Use of a microchip flow-chamber system as a screening test for platelet storage pool disease. Int. J. Hematol. 2015, 102, 157–162. [Google Scholar] [CrossRef]
- Ghirardello, S.; Lecchi, A.; Artoni, A.; Panigada, M.; Aliberti, S.; Scalambrino, E.; La Marca, S.; Boscarino, M.; Gramegna, A.; Properzi, P.; et al. Assessment of Platelet Thrombus Formation under Flow Conditions in Adult Patients with COVID-19: An Observational Study. Thromb Haemost. 2021, 121, 1087–1096. [Google Scholar] [PubMed]
- Heijnen, H.; van der Sluijs, P. Platelet secretory behaviour: As diverse as the granules … or not? J. Thromb. Haemost. 2015, 13, 2141–2151. [Google Scholar] [CrossRef]
- Tsujii, N.; Nogami, K.; Yoshizawa, H.; Sakai, T.; Fukuda, K.; Ishiguro, A.; Shima, M. Assessment of Platelet Thrombus Formation under Flow Conditions in Patients with Acute Kawasaki Disease. J. Pediatr. 2020, 226, 266–273. [Google Scholar] [CrossRef]
- Idemoto, Y.; Miura, S.-I.; Norimatsu, K.; Suematsu, Y.; Hitaka, Y.; Shiga, Y.; Morii, J.; Imaizumi, S.; Kuwano, T.; Iwata, A.; et al. Evaluation of the antithrombotic abilities of non-vitamin K antagonist oral anticoagulants using the Total Thrombus-formation Analysis System. Heart Vessels 2017, 32, 309–316. [Google Scholar] [CrossRef]
- Ożegowska, K.; Mantaj, U.; Rojewska, P.; Osiński, M.; Pawelczyk, L. Can the Total Thrombus-formation Analysis System (T-TAS) better predict coagulation disorders than conventional laboratory measurements in patients with polycystic ovary syndrome? Pol. Arch. Intern. Med. 2020, 130, 1114–1117. [Google Scholar]
- Osiński, M.; Mantaj, U.; Kędzia, M.; Gutaj, P.; Wender-Ożegowska, E. Poor glycaemic control contributes to a shift towards prothrombotic and antifibrinolytic state in pregnant women with type 1 diabetes mellitus. PLoS ONE 2020, 15, e0237843. [Google Scholar] [CrossRef]
- Yamamoto, K.; Ito, T.; Nagasato, T.; Shinnakasu, A.; Kurano, M.; Arimura, A.; Arimura, H.; Hashiguchi, H.; Deguchi, T.; Maruyama, I.; et al. Effects of glycemic control and hypoglycemia on Thrombus formation assessed using automated microchip flow chamber system: An exploratory observational study. Thromb. J. 2019, 17, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schuette, C.; Steffens, D.; Witkowski, M.; Stellbaum, C.; Bobbert, P.; Schultheiss, H.-P.; Rauch, U. The effect of clopidogrel on platelet activity in patients with and without type-2 diabetes mellitus: A comparative study. Cardiovasc. Diabetol. 2015, 14, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hosokawa, K.; Ohnishi, T.; Sameshima, H.; Miura, N.; Ito, T.; Koide, T.; Maruyama, I. Analysing responses to aspirin and clopidogrel by measuring platelet thrombus formation under arterial flow conditions. Thromb. Haemost. 2013, 109, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamaguchi, Y.; Moriki, T.; Igari, A.; Ohnishi, T.; Hosokawa, K.; Murata, M. Studies of a microchip flow-chamber system to characterize whole blood thrombogenicity in healthy individuals. Thromb. Res. 2013, 132, 263–270. [Google Scholar] [CrossRef] [PubMed]
- Taune, V.; Wallén, H.; Ågren, A.; Gryfelt, G.; Sjövik, C.; Wintler, A.M.; Malmström, R.E.; Wikman, A. Whole blood coagulation assays ROTEM and T-TAS to monitor dabigatran treatment. Thromb. Res. 2017, 153, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, K.; Ohnishi-Wada, T.; Sameshima-Kaneko, H.; Nagasato, T.; Miura, N.; Kikuchi, K.; Koide, T.; Maruyama, I.; Urano, T. Plasminogen activator inhibitor type 1 in platelets induces thrombogenicity by increasing thrombolysis resistance under shear stress in an in-vitro flow chamber model. Thromb. Res. 2016, 146, 69–75. [Google Scholar] [CrossRef]
- Miike, T.; Sakamoto, Y.; Narumi, S.; Yoshitake, K.; Sakurai, R.; Nakayama, K.; Inoue, S. Influence of high-dose antithrombin on platelet function and blood coagulation. Acute Med. Surg. 2021, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, K.; Ohnishi, T.; Kondo, T.; Fukasawa, M.; Koide, T.; Maruyama, I.; Tanaka, K.A. A novel automated microchip flow-chamber system to quantitatively evaluate thrombus formation and antithrombotic agents under blood flow conditions. J. Thromb. Haemost. 2011, 9, 2029–2037. [Google Scholar] [CrossRef]
- . Sugihara, H.; Idemoto, Y.; Kuwano, T.; Nagata, Y.; Morii, J.; Sugihara, M.; Ogawa, M.; Miura, S.-I.; Saku, K. Evaluation of the Antithrombotic Effects of Rivaroxaban and Apixaban Using the Total Thrombus-Formation Analysis System®: In Vitro and Ex Vivo Studies. J. Clin. Med. Res. 2016, 8, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Yamazaki, M.; Ohnishi, T.; Hosokawa, K.; Yamaguchi, K.; Yoneyama, T.; Kawashima, A.; Okada, Y.; Kitagawa, K.; Uchiyama, S. Measurement of residual platelet thrombogenicity under arterial shear conditions in cerebrovascular disease patients receiving antiplatelet therapy. J. Thromb. Haemost. 2016, 14, 1788–1797. [Google Scholar] [CrossRef]
- Arima, Y.; Kaikita, K.; Ishii, M.; Ito, M.; Sueta, D.; Oimatsu, Y.; Sakamoto, K.; Tsujita, K.; Kojima, S.; Nakagawa, K.; et al. Assessment of platelet-derived thrombogenicity with the total thrombus-formation analysis system in coronary artery disease patients receiving antiplatelet therapy. J. Thromb. Haemost. 2016, 14, 850–859. [Google Scholar] [CrossRef] [PubMed]
- Zheng, K.L.; Wallen, H.; Aradi, D.; Godschalk, T.C.; Hackeng, C.M.; Dahlen, J.R.; Ten Berg, J.M. The Total Thrombus Formation (T-TAS) platelet (PL) assay, a novel test that evaluates whole blood platelet thrombus formation under physiological conditions. Platelets 2021, 7, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Hosokawa, K.; Ohnishi, T.; Sameshima, H.; Miura, N.; Koide, T.; Maruyama, I.; Tanaka, K.A. Comparative evaluation of direct thrombin and factor Xa inhibitors with antiplatelet agents under flow and static conditions: An in vitro flow chamber model. PLoS ONE 2014, 9, e86491. [Google Scholar] [CrossRef] [Green Version]
- Norimatsu, K.; Miura, S.; Suematsu, Y.; Shiga, Y.; Yano, M.; Hitaka, Y.; Kuwano, T.; Morii, J.; Yasuda, T.; Ogawa, M.; et al. Assessment of the circadian variation in the anticoagulant effect of rivaroxaban using a novel automated microchip flow-chamber system for the quantitative evaluation of thrombus formation. IJC Heart Vessels 2014, 4, 218–220. [Google Scholar] [CrossRef] [Green Version]
- Ishii, M.; Kaikita, K.; Ito, M.; Sueta, D.; Arima, Y.; Takashio, S.; Izumiya, Y.; Yamamoto, E.; Yamamuro, M.; Kojima, S.; et al. Direct Oral Anticoagulants Form Thrombus Different From Warfarin in a Microchip Flow Chamber System. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Clifford, C.R.; Jung, R.G.; Hibbert, B.; Chong, A.Y.; Lordkipanidzé, M.; Tanguay, J.-F.; So, D.Y.F. Dual antiplatelet therapy (PEGASUS) vs. dual pathway (COMPASS): A head-to-head in vitro comparison. Platelets 2021, 15, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Skalski, B.; Rywaniak, J.; Szustka, A.; Żuchowski, J.; Stochmal, A.; Olas, B. Anti-Platelet Properties of Phenolic and Nonpolar Fractions Isolated from Various Organs of Elaeagnus rhamnoides (L.) A. Nelson in Whole Blood. Int. J. Mol. Sci. 2021, 22, 3282. [Google Scholar] [CrossRef]
- Lis, B.; Rywaniak, J.; Jedrejek, D.; Szustka, A.; Stochmal, A.; Olas, B. Anti-platelet activity of phytocompounds in various dandelion organs in human whole blood model in vitro. J. Funct. Foods 2021, 80, 1–8. [Google Scholar] [CrossRef]
- Shimamura, M.; Kaikita, K.; Nakagami, H.; Kawano, T.; Ju, N.; Hayashi, H.; Nakamaru, R.; Yoshida, S.; Sasaki, T.; Mochizuki, H.; et al. Development of anti-thrombotic vaccine against human S100A9 in rhesus monkey. Sci. Rep. 2021, 11, 1–7. [Google Scholar] [CrossRef]
- Ogawa, S.; Slime, F.; Dunn, A.L.; Bolliger, D.; Ohnishi, T.; Hosokawa, K.; Tanaka, K.A. Evaluation of a novel flow chamber system to assess clot formation in factor VIII-deficient mouse and anti-factor IXa-treated human blood. Haemophilia 2012, 18, 926–932. [Google Scholar] [CrossRef] [PubMed]
- Pasi, K.J.; Rangarajan, S.; Georgiev, P.; Mant, T.; Creagh, M.D.; Lissitchkov, T.; Bevan, D.; Austin, S.; Hay, C.R.; Hegemann, I.; et al. Targeting of Antithrombin in Hemophilia A or B with RNA i Therapy. NEJM 2017, 377, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Nogami, K.; Yada, K.; Kawamura, T.; Ogiwara, K.; Furukawa, S.; Shimonishi, N.; Takeyama, M.; Shima, M. Evaluation of clinical severity in patients with type 2N von Willebrand disease using microchip-based flow-chamber system. Int. J. Hematol. 2020, 111, 369–377. [Google Scholar] [CrossRef]
- Yaoi, H.; Shida, Y.; Ogiwara, K.; Hosokawa, K.; Shima, M.; Nogami, K. Role of red blood cells in the anemia-associated bleeding under high shear conditions. Haemophilia 2017, 23, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Takashio, S.; Kaikita, K.; Nishi, M.; Morioka, M.; Taiki Higo, T.; Shiose, A.; Doman, T.; Horiuchi, H.; Fukui, T.; Tsujita, K. Detection of acquired von Willebrand syndrome after ventricular assist device by total thrombus-formation analysis system. ESC Heart Fail. 2020, 7, 3235–3239. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, Y.; Yada, K.; Ogiwara, K.; Furukawa, S.; Shimonishi, N.; Shima, M.; Nogami, K. A microchip flow-chamber assay screens congenital primary hemostasis disorders. Pediatr. Int. 2021, 63, 160–167. [Google Scholar] [CrossRef]
- Oimatsu, Y.; Kaikita, K.; Ishii, M.; Mitsuse, T.; Ito, M.; Arima, Y.; Sueta, D.; Takahashi, A.; Iwashita, S.; Yamamoto, E.; et al. Total Thrombus-formation Analysis System Predicts Periprocedural Bleeding Events in Patients With Coronary Artery Disease Undergoing Percutaneous Coronary Intervention. J. Am. Heart Assoc. 2017, 6, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Nakanishi, N.; Kaikita, K.; Ishii, M.; Kuyama, N.; Tabata, N.; Ito, M.; Yamanaga, K.; Fujisue, K.; Hoshiyama, T.; Kanazawa, H.; et al. Hemodialysis-related low thrombogenicity measured by total thrombus-formation analysis system in patients undergoing percutaneous coronary intervention. Thromb. Res. 2021, 200, 141–148. [Google Scholar] [CrossRef]
- Ito, M.; Kaikita, K.; Sueta, D.; Ishii, M.; Yu Oimatsu, Y.; Arima, Y.; Iwashita, S.; Takahashi, A.; Hoshiyama, T.; Hisanori Kanazawa, H.; et al. Total Thrombus-Formation Analysis System (T-TAS) Can Predict Periprocedural Bleeding Events in Patients Undergoing Catheter Ablation for Atrial Fibrillation. J. Am. Heart Assoc. 2016, 5, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakanishi, N.; Kaikita, K.; Ishii, M.; Kuyama, N.; Tabata, N.; Ito, M.; Yamanaga, K.; Fujisue, K.; Hoshiyama, T.; Kanazawa, H.; et al. Development and assessment of total thrombus-formation analysis system-based bleeding risk model in patients undergoing percutaneous coronary intervention. Int. J. Cardiol. 2021, 325, 121–126. [Google Scholar] [CrossRef]
- Mitsuse, T.; Kaikita, K.; Ishii, M.; Oimatsu, Y.; Nakanishi, N.; Ito, M.; Arima, Y.; Sueta, D.; Iwashita, S.; Fujisue, K.; et al. Total Thrombus-Formation Analysis System can Predict 1-Year Bleeding Events in Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2020, 27, 215–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Ghaithi, R.; Mori, J.; Nagy, Z.; Maclachlan, A.; Hardy, L.; Philippou, H.; Hethershaw, E.; Morgan, N.V.; Senis, Y.A.; Harrison, P. Evaluation of the Total Thrombus-Formation System (T-TAS): Application to human and mouse blood analysis. Platelets 2019, 30, 893–900. [Google Scholar] [CrossRef]
- Atari, B.; Ito, T.; Nagasato, T.; Ohnishi, T.; Hosokawa, K.; Yasuda, T.; Maruyama, I.; Kakihana, Y. A modified microchip-based flow chamber system for evaluating thrombogenicity in patients with thrombocytopenia. Thromb. J. 2020, 18, 1–9. [Google Scholar] [CrossRef]
- Ichikawa, S.; Tsukahara, K.; Kikuchi, S.; Minamimoto, Y.; Kimura, Y.; Okada, K.; Matsuzawa, Y.; Konishi, M.; Maejima, N.; Iwahashi, N.; et al. Impact of Total Antithrombotic Effect on Bleeding Complications in Patients Receiving Multiple Antithrombotic Agents. Circ. J. 2019, 83, 1309–1316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogawa, S.; Szlam, F.; Ohnishi, T.; Molinaro, R.J.; Hosokawa, K.; Tanaka, K.A. A comparative study of prothrombin complex concentrates and fresh frozen plasma for warfarin reversal under static and flow conditions. Thromb Haemost. 2011, 106, 1215–1223. [Google Scholar] [CrossRef] [PubMed]
- Słojewski, M. Operacja czy zabieg—Dylemat semantyczny. Przegląd Urologiczny 2010, 62, 1–4. [Google Scholar]
- Sueta, D.; Kaikita, K.; Okamoto, N.; Arima, Y.; Ishii, M.; Ito, M.; Oimatsu, Y.; Iwashita, S.; Takahashi, A.; Nakamura, E.; et al. A novel quantitative assessment of whole blood thrombogenicity in patients treated with a non-vitamin K oral anticoagulant. Int. J. Cardiol. 2015, 197, 98–100. [Google Scholar] [CrossRef]
- Kikuchi, S.; Tsukahara, K.; Ichikawa, S.; Abe, T.; Minamimoto, Y.; Kimura, Y.; Akiyama, E.; Nakayama, N.; Okada, K.; Matsuzawa, Y.; et al. Platelet-Derived Thrombogenicity Measured by Total Thrombus-Formation Analysis System in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Circ. J. 2020, 84, 975–984. [Google Scholar] [CrossRef] [Green Version]
- Sueta, D.; Kaikita, K.; Okamoto, N.; Yamabe, S.; Ishii, M.; Arima, Y.; Ito, M.; Oimatsu 1, Y.; Mitsuse, T.; Iwashita, S.; et al. Edoxaban Enhances Thromboprophylaxis by Physiotherapy After Total Knee Arthroplasty—The Randomized Controlled ESCORT-TKA Trial. Circ. J. 2018, 82, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Ishii, M.; Kaikita, K.; Mitsuse, T.; Nakanishi, N.; Oimatsu, Y.; Yamashita, T.; Nagamatsu, S.; Tabata, N.; Fujisue, K.; Sueta, D.; et al. Reduction in thrombogenic activity and thrombocytopenia after transcatheter aortic valve implantation—The ATTRACTIVE-TTAS study. Int. J. Cardiol. Heart Vasc. 2019, 23, 1–7. [Google Scholar] [CrossRef]
- Ogawa, S.; Ohnishi, T.; Hosokawa, K.; Szlam, F.; Chen, E.P.; Tanaka, K.A. Haemodilution-induced changes in coagulation and effects of haemostatic components under flow conditions. Br. J. Anaesth. 2013, 111, 1013–1023. [Google Scholar] [CrossRef] [Green Version]
- Ågren, A.; Holmström, M.; Schmidt, D.E.; Hosokawa, K.; Blombäck, M.; Hjemdahl, P. Monitoring of coagulation factor therapy in patients with von Willebrand disease type 3 using a microchip flow chamber system. Thromb. Haemost. 2017, 117, 75–85. [Google Scholar] [PubMed]
- Mazzeffi, M.; Hasan, S.; Abuelkasem, E.; Meyer, M.; Deatrick, K.; Taylor, B.; Kon, Z.; Herr, D.; Tanaka, K. Von Willebrand Factor-GP1bα Interactions in Venoarterial Extracorporeal Membrane Oxygenation Patients. J. Cardiothorac. Vasc. Anesth. 2019, 33, 2125–2132. [Google Scholar] [CrossRef]
- Nogami, K.; Ogiwara, K.; Yada, K.; Shida, Y.; Takeyama, M.; Yaoi, H.; Minami, H.; Furukawa, S.; Hosokawa, K.; Shima, M. Assessing the clinical severity of type 1 von Willebrand disease patients with a microchip flow-chamber system. J. Thromb. Haemost. 2016, 14, 667–674. [Google Scholar] [CrossRef]
- Bykowska, K. Classification and diagnosis of von Willebrand disease. Hematologia 2013, 4, 24–34. [Google Scholar]
- Daidone, V.; Barbon, G.; Cattini, M.G.; Pontara, E.; Romualdi, C.; Di Pasquale, I.; Hosokawa, K.; Casonato, A. Usefulness of the Total Thrombus-Formation Analysis System (T-TAS) in the diagnosis and characterization of von Willebrand disease. Haemophilia 2016, 22, 949–956. [Google Scholar] [CrossRef] [PubMed]
- Ogiwara, K.; Nogami, K.; Hosokawa, K.; Ohnishi, T.; Matsumoto, T.; Shima, M. Comprehensive evaluation of haemostatic function in von Willebrand disease patients using a microchip-based flow chamber system. Haemophilia 2015, 21, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Miike, T.; Sakamoto, Y.; Sakurai, R.; Ohta, M.; Goto, A.; Imahase, H.; Yahata, M.; Umeka, M.; Koami, H.; Yamada, K.C.; et al. Effects of hyperbaric exposure on thrombus formation. Undersea Hyperb. Med. 2016, 43, 233–238. [Google Scholar] [PubMed]
- Ono, Y.; Wang, Y.; Suzuki, H.; Okamoto, S.; Ikeda, Y.; Murata, M.; Poncz, M.; Matsubara, Y. Induction of functional platelets from mouse and human fibroblasts by p45NF-E2/Maf. Blood 2012, 120, 3812–3821. [Google Scholar] [CrossRef] [Green Version]
- Simurda, T.; Vilar, R.; Zolkova, J.; Ceznerova, E.; Kolkova, Z.; Loderer 4, D.; Neerman-Arbez, M.; Casini, A.; Brunclikova, M.; Skornova, I.; et al. A novel nonsense mutation in FGB (c. 1421G> A; p. Trp474Ter) in the beta chain of fibrinogen causing hypofibrinogenemia with bleeding phenotype. Biomedicines 2020, 8, 605. [Google Scholar] [CrossRef] [PubMed]
Study | Population | T-TAS Tests | Outcome |
---|---|---|---|
Minami, 2015 | patients with δ-SPD (n = 3), healthy people (n = 20) | PL-chip | T-TAS detecting functional disorders of platelets such as δ-SPD |
Ghirardello, 2021 | patients with COVID-19 (n = 61), healthy people (n = 32) | PL-chip | The impaired clot formation in COVID-19 patients occurs in the early stages of the disease and correlates with the severity of the disease |
Tsujii, 2020 | patients with acute KD (n = 33) | PL-chip | PTF has an early onset and exhibits poor stability in patients with acute KD |
Indemoto, 2017 | patients with cardiovascular diseases treated AC (n = 78), non-AC (n = 25) | PL-chip and AR-chip | T-TAS enables efficient assessment of anticoagulant activity. |
Ożegowska, 2020 | patients with PCOS (n = 39), healthy women (n = 11) | AR-chip | PCOS patients have higher AUC30 values |
Osiński, 2020 | pregnant women with T1DM (n = 21), healthy pregnant women (n = 15) | AR-chip | MPV, D-dimer and T-TAS measurements can be used to diagnose the prothrombotic state |
Yamamoto, 2019 | patients with type 2 diabetes (n = 10), people without diabetes (n = 10) | 1. PL-chip and AR-chip 2. PL-chip | T-TAS, determined the reduction of thrombogenicity associated with comprehensive diabetes care and the increase of thrombogenicity associated with hypoglycemia |
Hosokawa, 2013 | patient with heart disease treated: aspirin (n = 20), aspirin and clopidogrel (n = 19), healthy people (n = 33) | PL-chip | T-TAS in conjunction with conventional platelet function tests and can be used to analyze residual thrombogenicity |
Yamaguchi, 2013 | healthy people (n = 31) | PL-chip and AR-chip | T-TAS can be used to monitor the prevention of thrombotic diseases |
Taune, 2017 | patients treated with dabigatran (n = 30) | AR-chip | T-TAS can be used to detect differences in haemostasis in patients treated with dabigatran |
Hosokawa, 2016 | healthy people (n = 6), mice: WT (n = 47) and PAI-1 deficient (n = 47) | AR-chip | The arterial shear flow likely influences the anticoagulant efficacy of t-PA |
Miike et al., 2021 | healthy people (n = 10) | PL-chip and AR-chip | Using the POCT methods (T-TAS and ROTEM) it was possible to determine the dose-dependent effect of antithrombin |
Study | Population | T-TAS Tests | Outcome |
---|---|---|---|
Hosokawa, 2011 | healthy people (n = 33) | AR-chip | T-TAS quantifies white thrombus formation |
Sugihara, 2016 | healthy people (n = 20) and patients with AF: treated with rivaroxaban (n = 6), apixaban (n = 10) | PL-chip and AR-chip | T-TAS is useful for monitoring anticoagulant therapy with FXa inhibitors |
Yamazaki, 2016 | patients with cerebrovascular diseases treated with antiplatelet therapy (n = 94) | PL-chip | T-TAS allows the assessment of platelet inhibition in patients with cerebrovascular disease treated with antiplatelet drugs |
Arima, 2015 | patients with CAD: not treated with antiplatelet drugs (n = 56), treated with aspirin (n = 69), aspirin and clopidogrel (n = 149) | PL-chip and AR-chip | The T-TAS parameter PL24-AUC10 can be used to evaluate antiplatelet therapy in patients with CAD |
Zheng et al., 2021 | patients with CAD undergoing PCI treated DAPT with clopidogrel (n = 22), prasugrel (n = 15), ticagrelor (n = 20) | PL-chip | T-TAS can be used in patients treated with antiplatelet drugs to determine primary haemostatic capacity |
Hosokawa, 2014 | healthy people (n = 15) | AR-chip | T-TAS can be used for dose adjustment and selection of the optimal therapy with anticoagulants |
Norimatsu, 2014 | patient with PAF | PL-chip and AR-chip | T-TAS can be used to evaluate the effect of anticoagulants such as NOAC |
Ishii, 2017 | patients with AF undergoing RFCA: treated with warfarin (n = 29), dabigatran (n = 19), rivaroxaban (n = 47), apixaban (n = 25) | AR-chip | The T-TAS parameter AR10-AUC30 can be used to monitor the effect of anticoagulants such as warfarin and DOACs |
Clifford et al., 2021 | healthy people (n = 24) | PL-chip and AR-chip | The T-TAS technology made it possible to compare the therapies of the PEGASUS and COMPASS in vitro trials with each other |
Skalski et al., 2021 | healthy people (n = 8) | PL-chip | Using the PL-chip (T-TAS), it was possible to demonstrate the anticoagulant potential of four fractions isolated from sea buckthorn |
Lis et al., 2021 | healthy people (n = ?) | PL-chip | T-TAS and flow cytometry enabled the identification of the fraction (C) with the greatest antiplatelet properties |
Shimamura et al., 2021 | rhesus monkeys (n = 4) | PL-chip | The use of T-TAS in this study made it possible to demonstrate the anticoagulant activity of the vaccine in monkeys |
Study | Population | T-TAS Tests | Outcome |
---|---|---|---|
Ogawa et al., 2012 | mice FVIII-deficient/wild-type healthy people (n = 6) | AR-chip | Observed dense networks of fibrin fibres surrounding platelets in normal blood and coarse fibrin structures with large pores in FIX-inhibited blood. |
Nakajima et al., 2020 | patients with type 2N vWD (n = 5) healthy people (n = 20) | PL-chip, AR-chip | The AR-chip enables the prediction of bleeding tendency and the determination of the effectiveness of therapy in patients with type 2N vWD. |
Yaoi et al., 2017 | patient with type 1 vWD (n = 5) healthy people (n = 10) | PL-chip | PL-chip enables the identification of impaired haemostasis in the presence of anemia |
Takashio et al., 2020 | patients with end-stage HF (n = 4) patients treated with aspirin and warfarin (n = 8) | PL-chip, AR-chip | AR10-AUC30 may apply to stratify the risk of bleeding or thromboembolic disease |
Nakajima et al., 2021 | patients with VWD (n = 22) and PFDs (n = 4) healthy people (n = 20) | PL-chip, AR-chip | T-TAS may be useful in detecting patients with primary hemostatic disorders |
Oimatsu et al., 2017 | patients with CAD undergoing PCI (n = 313) | PL-chip, AR-chip | PL24-AUC10 may be a marker for perioperative bleeding in patients with CAD undergoing PCI |
Ito et al., 2016 | patients with AF (n = 128) | AR-chip | AR10-AUC30 measured enables the assessment of the efficacy of warfarin and NOAC in patients with AF after catheter ablation |
Nakanishi et al., 2021 | patients underwent PCI (n = 300) | AR-chip | AR10-AUC30 with ARC-HBR allows better prediction of bleeding risk in patients undergoing PCI |
Nakanishi et al., 2021 | hemodialysis patients undergoing PCI (n = 33), patients with eGFR <60 mL/min/1.73 m2 undergoing PCI (n = 124) and patients with eGFR ≥60 undergoing PCI (n = 143) | PL-chip, AR-chip | T-TAS can be used to monitor thrombogenicity to predict the risk of bleeding in hemodlialised patients undergoing PCI |
Mitsuse et al., 2020 | patients with CAD undergoing CAG or PCI (n = 561) | PL-chip, AR-chip | AR10-AUC30 may be useful in predicting 1-year bleeding episodes in CAD patients |
Al Ghaithi et al., 2019 | patients with coagulation disorders (n = 37), healthy people (n = 22) and wild-type mice (n = 5) | PL-chip, AR-chip | T-TAS can be used to monitor anticoagulant therapy and to test platelet function in patients |
Ichikawa et al., 2019 | patients with CAD (n = 145) | PL-chip, AR-chip | AR4-AUC30 can be used to predict bleeding complications in stable CAD patients receiving oral anticoagulants and antiplatelet agents |
Ogawa et al., 2011 | patients treated warfarin (n = 6), healthy people (n = 7) | AR-chip | T-TAS probably illustrates the overall hemostatic activity |
Atari et al., 2020 | patients who required platelet transfusions (n = 10) | PL-chip, AR-chip, HD chip | The new HD chip can determine the risk of bleeding as well as detect recovery of haemostasis after platelet transfusion |
Study | Population | T-TAS Tests | Outcome |
---|---|---|---|
Sueta, 2015 | patients undergoing TKA (n = 20) | PL-chip, AR-chip | The T-TAS parameter AR10-AUC30 can be used to determine the efficacy of the edoxaban |
Sueta, 2018 | patients undergoing TKA (n = 38) | AR-chip | T-TAS parameter–AR10-AUC30 in determining the haemorrhagic risk after TKA surgery |
Ishii, 2019 | patients undergoing TAVI (n = 21) | AR-chip | T-TAS may be useful in analyzing post-TAVI hemorrhagic complications |
Kikuchi, 2020 | patients undergoing PPCI (n = 127) | PL-chip | The T-TAS parameter which is PL18-AUC10 during PPCI reached high values which was associated with impaired reperfusion and large infarct size |
Ogawa, 2013 | patients before and after CPB (n = 15), healthy people (n = 12) | AR-chip | The hemodilution procedure causes the blood flow to influence the formation of a thrombus and the subsequent therapy with the use of hemostatic ingredients |
Study | Population | T-TAS Tests | Outcome |
---|---|---|---|
Ågren, 2017 | patient with vWD-3 (n = 10), healthy people (n = 10) | AR-chip | T-TAS revealed abnormalities in thrombus formation that depends on platelets in vWD-3 |
Mazzeffi, 2019 | patients with VA ECMO (n = 20), healthy people (n = 20) | PL-chip | Reduced platelet adhesion and aggregation in VA ECMO patients may be due to the loss or dysfunction of the vWF GP1ba receptor |
Nogami, 2016 | patients with vWD-1 (n = 50), healthy people (n = 30) | PL-chip, AR-chip | T-TAS enables the discrimination and prediction of BS in patients with vWD type 1 |
Daidone, 2016 | patients with vWD (n = 30), healthy people (n = 20) | PL-chip, AR-chip | T-TAS may be a global pretest for vWD |
Ogiwara, 2015 | patients with vWD (n = 5), healthy people (n = 20) | PL-chip, AR-chip | Analysis with PL-chip and AR-chip can be used to assess the clinical symptoms of vWD and to monitor the effectiveness of treatment |
Study | Population | T-TAS Tests | Outcome |
---|---|---|---|
Mikke, 2016 | healthy people (n = 10) | PL-chip | T-TAS made it possible to determine the decrease in thrombus formation capacity in samples subjected to hyperbaric pressure |
Ono, 2012 | cell cultures | PL-chip | IMKs can be made from fibroblasts, paving the way for further research into the mechanisms of MK differentiation and the production of platelets in this way |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sikora, J.; Karczmarska-Wódzka, A.; Bugieda, J.; Sobczak, P. The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk—A Systematic Review. Int. J. Mol. Sci. 2021, 22, 8605. https://doi.org/10.3390/ijms22168605
Sikora J, Karczmarska-Wódzka A, Bugieda J, Sobczak P. The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk—A Systematic Review. International Journal of Molecular Sciences. 2021; 22(16):8605. https://doi.org/10.3390/ijms22168605
Chicago/Turabian StyleSikora, Joanna, Aleksandra Karczmarska-Wódzka, Joanna Bugieda, and Przemysław Sobczak. 2021. "The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk—A Systematic Review" International Journal of Molecular Sciences 22, no. 16: 8605. https://doi.org/10.3390/ijms22168605
APA StyleSikora, J., Karczmarska-Wódzka, A., Bugieda, J., & Sobczak, P. (2021). The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk—A Systematic Review. International Journal of Molecular Sciences, 22(16), 8605. https://doi.org/10.3390/ijms22168605