17,20S(OH)2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model
Abstract
:1. Introduction
2. Results
2.1. 17,20S(OH)2pD Decreases Dermal Thickness
2.2. 17,20S(OH)2pD Suppresses Total Collagen Content in the BLM Fibrosis Model
2.3. 17,20S(OH)2pD Modulates the Mediators of the TGF-β1 Pathway
2.4. 17,20S(OH)2pD Modulates Cytokines in the BLM Model of Fibrosis
3. Discussion
4. Materials and Methods
4.1. Induction of Skin Fibrosis in Mice
4.2. Histology Analysis
4.3. Quantitative Real-Time PCR
4.4. Analysis of Total Collagen
4.5. Quantitation of Serum Calcium
4.6. Flow Cytometry
4.7. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pattanaik, D.; Brown, M.; Postlethwaite, B.C.; Postlethwaite, A.E. Pathogenesis of systemic sclerosis. Front. Immunol. 2015, 6, 272. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, S.; Chen, S.J.; Wu, M.; Warner-Blankenship, M.; Ning, H.; Lakos, G.; Mori, Y.; Chang, E.; Nihijima, C.; Takehara, K.; et al. Smad-independent transforming growth factor-beta regulation of early growth response-1 and sustained expression in fibrosis: Implications for scleroderma. Am. J. Pathol. 2008, 173, 1085–1099. [Google Scholar] [CrossRef] [Green Version]
- Wynn, T.A.; Ramalingam, T.R. Mechanisms of fibrosis: Therapeutic translation for fibrotic disease. Nat. Med. 2012, 18, 1028–1040. [Google Scholar] [CrossRef] [Green Version]
- Postlethwaite, A.E.; Shigemitsu, H.; Kanangat, S. Cellular origins of fibroblasts: Possible implications for organ fibrosis in systemic sclerosis. Curr. Opin. Rheumatol. 2004, 16, 733–738. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, J.C.; Rogers, D.S.; Simon, R.H.; Sisson, T.H.; Thannickal, V.J. Plasminogen activation induced pericellular fibronectin proteolysis promotes fibroblast apoptosis. Am. J. Respir. Cell. Mol. Biol. 2008, 38, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Finch, A.R.; Caunt, C.J.; Perrett, R.M.; Tsaneva-Atanasova, K.; McArdle, C.A. Dual specificity phosphatases 10 and 16 are positive regulators of EGF-stimulated ERK activity: Indirect regulation of ERK signals by JNK/p38 selective MAPK phosphatases. Cell Signal 2012, 24, 1002–1011. [Google Scholar] [CrossRef]
- Wang, Q.L.; Tao, Y.Y.; Xie, H.D.; Liu, C.H.; Liu, P. Fuzheng Huayu recipe, a traditional Chinese compound herbal medicine, attenuates renal interstitial fibrosis via targeting the miR-21/PTEN/AKT axis. J. Integr. Med. 2020, 18, 505–513. [Google Scholar] [CrossRef] [PubMed]
- Raghow, R.; Postlethwaite, A.E.; Keski-Oja, J.; Moses, H.L.; Kang, A.H. Transforming growth factor-beta increases steady state levels of type I procollagen and fibronectin messenger RNAs posttranscriptionally in cultured human dermal fibroblasts. J. Clin. Investig. 1987, 79, 1285–1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakamura, M.; Tokura, Y. Expression of SNAI1 and TWIST1 in the eccrine glands of patients with systemic sclerosis: Possible involvement of epithelial-mesenchymal transition in the pathogenesis. Br. J. Dermatol. 2011, 164, 204–205. [Google Scholar] [CrossRef] [PubMed]
- Watsky, M.A.; Weber, K.T.; Sun, Y.; Postlethwaite, A. New insights into the mechanism of fibroblast to myofibroblast transformation and associated pathologies. Int. Rev. Cell Mol. Biol. 2010, 282, 165–192. [Google Scholar] [PubMed]
- Postlethwaite, A.E.; Keski-Oja, J.; Moses, H.L.; Kang, A.H. Stimulation of the chemotactic migration of human fibroblasts by transforming growth factor beta. J. Exp. Med. 1987, 165, 251–256. [Google Scholar] [CrossRef] [Green Version]
- Fang, F.; Marangoni, R.G.; Zhou, X.; Yang, Y.; Ye, B.; Shangguang, A.; Qin, W.; Wang, W.; Bhattacharyya, S.; Wei, J.; et al. Toll-like receptor 9 signaling is augmented in systemic sclerosis and elicits transforming growth factor beta-dependent fibroblast activation. Arthritis Rheumatol. 2016, 68, 1989–2002. [Google Scholar] [CrossRef] [PubMed]
- Batteux, F.; Kavian, N.; Servettaz, A. New insights on chemically induced animal models of systemic sclerosis. Curr. Opin. Rheumatol. 2011, 23, 511–518. [Google Scholar] [CrossRef]
- Isik, S.; Ozuguz, U.; Tutuncu, Y.A.; Erden, G.; Berker, D.; Acar, K.; Aydin, Y.; Akbaba, G.; Helvaci, N.; Guler, S. Serum transforming growth factor-beta levels in patients with vitamin D deficiency. Eur. J. Intern. Med. 2012, 23, 93–97. [Google Scholar] [CrossRef]
- Vacca, A.; Cormier, C.; Piras, M.; Mathieu, A.; Kahan, A.; Allanore, Y. Vitamin D deficiency and insufficiency in 2 independent cohorts of patients with systemic sclerosis. J. Rheumatol. 2009, 36, 1924–1929. [Google Scholar] [CrossRef] [PubMed]
- Braun-Moscovici, Y.; Furst, D.E.; Markovits, D.; Rozin, A.; Clements, P.J.; Nahir, A.M.; Balbir-Gurman, A. Vitamin D, parathyroid hormone, and acroosteolysis in systemic sclerosis. J. Rheumatol. 2008, 35, 2201–2205. [Google Scholar] [CrossRef]
- Calzolari, G.; Data, V.; Carignola, R.; Angeli, A. Hypovitaminosis D in systemic sclerosis. J. Rheumatol. 2009, 36, 2844–2845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gambichler, T.; Chrobok, I.; Hoxtermann, S.; Kreuter, A. Significantly decreased serum 25-hydroxyvitamin d levels in a large german systemic sclerosis cohort. J. Rheumatol. 2011, 38, 2492–2494. [Google Scholar] [CrossRef]
- Usategui, A.; Criado, G.; Del Rey, M.J.; Fare, R.; Pablos, J.L. Topical vitamin D analogue calcipotriol reduces skin fibrosis in experimental scleroderma. Arch. Dermatol. Res. 2014, 306, 757–761. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Cheng, T.; Luan, Q.; Liao, T.; Nie, C.L.; Zheng, X.; Xie, X.G.; Gao, W.Y. Vitamin D: A novel therapeutic approach for keloid, an in vitro analysis. Br. J. Dermatol. 2011, 164, 729–737. [Google Scholar] [CrossRef]
- Zhang, Z.; Yu, X.; Fang, X.; Liang, A.; Yu, Z.; Gu, P.; Zeng, Y.; He, J.; Zhu, H.; Li, S.; et al. Preventive effects of vitamin D treatment on bleomycin-induced pulmonary fibrosis. Sci. Rep. 2015, 5, 17638. [Google Scholar] [CrossRef] [Green Version]
- Artaza, J.N.; Norris, K.C. Vitamin D reduces the expression of collagen and key profibrotic factors by inducing an antifibrotic phenotype in mesenchymal multipotent cells. J. Endocrinol. 2009, 200, 207–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerr, P.; Vollath, S.; Palumbo-Zerr, K.; Tomcik, M.; Huang, J.; Distler, A.; Beyer, C.; Dees, C.; Gela, K.; Distler, O.; et al. Vitamin D receptor regulates TGF-beta signalling in systemic sclerosis. Ann. Rheum. Dis. 2015, 74, e20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Etten, E.; Mathieu, C. Immunoregulation by 1,25-dihydroxyvitamin D3: Basic concepts. J. Steroid Biochem. Mol. Biol. 2005, 97, 93–101. [Google Scholar] [CrossRef]
- Marcus, J.F.; Shalev, S.M.; Harris, C.A.; Goodin, D.S.; Josephson, S.A. Severe hypercalcemia following vitamin D supplementation in a patient with multiple sclerosis: A note of caution. Arch. Neurol. 2012, 69, 129–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maruotti, N.; Cantatore, F.P. Vitamin D and the immune system. J. Rheumatol. 2010, 37, 491–495. [Google Scholar] [CrossRef]
- Slominski, A.; Semak, I.; Zjawiony, J.; Wortsman, J.; Li, W.; Szczesniewski, A.; Tuckey, R.C. The cytochrome P450scc system opens an alternate pathway of vitamin D3 metabolism. FEBS J. 2005, 272, 4080–4090. [Google Scholar] [CrossRef] [Green Version]
- Slominski, A.T.; Janjetovic, Z.; Fuller, B.E.; Zmijewski, M.A.; Tuckey, R.C.; Nguyen, M.N.; Sweatman, T.; Li, W.; Zjawiony, J.; Miller, D.; et al. Products of vitamin D3 or 7-dehydrocholesterol metabolism by cytochrome P450scc show anti-leukemia effects, having low or absent calcemic activity. PLoS ONE 2010, 5, e9907. [Google Scholar] [CrossRef]
- Slominski, A.; Semak, I.; Wortsman, J.; Zjawiony, J.; Li, W.; Zbytek, B.; Tuckey, R.C. An alternative pathway of vitamin D metabolism. Cytochrome P450scc (CYP11A1)-mediated conversion to 20-hydroxyvitamin D2 and 17,20-dihydroxyvitamin D2. FEBS J. 2006, 273, 2891–2901. [Google Scholar] [CrossRef] [Green Version]
- Zmijewski, M.A.; Li, W.; Zjawiony, J.K.; Sweatman, T.W.; Chen, J.; Miller, D.D.; Slominski, A.T. Photo-conversion of two epimers (20R and 20S) of pregna-5,7-diene-3beta, 17alpha, 20-triol and their bioactivity in melanoma cells. Steroids 2009, 74, 218–228. [Google Scholar] [CrossRef] [Green Version]
- Terao, M.; Yang, L.; Matsumura, S.; Yutani, M.; Murota, H.; Katayama, I. A vitamin D analog inhibits Th2 cytokine- and TGFbeta -induced periostin production in fibroblasts: A potential role for vitamin D in skin sclerosis. Dermatoendocrinol 2015, 7, e1010983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, A.M.; Takagawa, S.; Fresco, R.; Zhu, X.; Varga, J.; DiPietro, L.A. Diminished induction of skin fibrosis in mice with MCP-1 deficiency. J. Investig. Dermatol. 2006, 126, 1900–1908. [Google Scholar] [CrossRef] [Green Version]
- Yamamoto, T.; Nishioka, K. Role of monocyte chemoattractant protein-1 and its receptor,CCR-2, in the pathogenesis of bleomycin-induced scleroderma. J. Investig. Dermatol. 2003, 121, 510–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Z.; Marepally, S.R.; Goh, E.S.Y.; Cheng, C.Y.S.; Janjetovic, Z.; Kim, T.K.; Miller, D.D.; Postlethwaite, A.E.; Slominski, A.T.; Tuckey, R.C.; et al. Investigation of 20S-hydroxyvitamin D3 analogs and their 1alpha-OH derivatives as potent vitamin D receptor agonists with anti-inflammatory activities. Sci. Rep. 2018, 8, 1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slominski, A.T.; Li, W.; Bhattacharya, S.K.; Smith, R.A.; Johnson, P.L.; Chen, J.; Nelson, K.E.; Tuckey, R.C.; Miller, D.; Jiao, Y.; et al. Vitamin D analogs 17,20S(OH)2pD and 17,20R(OH)2pD are noncalcemic and exhibit antifibrotic activity. J. Investig. Dermatol. 2011, 131, 1167–1169. [Google Scholar] [CrossRef] [Green Version]
- Asano, Y.; Ihn, H.; Kubo, M.; Jinnin, M.; Mimura, Y.; Ashida, R.; Tamaki, K. Clinical significance of serum matrix metalloproteinase-13 levels in patients with localized scleroderma. Clin. Exp. Rheumatol. 2006, 24, 394–399. [Google Scholar]
- Bin, S.; Li, H.D.; Xu, Y.B.; Qi, S.H.; Li, T.Z.; Liu, X.S.; Tang, J.M.; Xie, J.L. BMP-7 attenuates TGF-beta1-induced fibroblast-like differentiation of rat dermal papilla cells. Wound Repair Regen. 2013, 21, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Alessi, D.R.; Andjelkovic, M.; Caudwell, B.; Cron, P.; Morrice, N.; Cohen, P.; Hemmings, B.A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996, 15, 6541–6551. [Google Scholar] [CrossRef] [Green Version]
- Murray, L.A.; Hackett, T.L.; Warner, S.M.; Shaheen, F.; Argentieri, R.L.; Dudas, P.; Farrell, F.X.; Knight, D.A. BMP-7 does not protect against bleomycin-induced lung or skin fibrosis. PLoS ONE 2008, 3, e4039. [Google Scholar] [CrossRef] [PubMed]
- Kurzinski, K.; Torok, K.S. Cytokine profiles in localized scleroderma and relationship to clinical features. Cytokine 2011, 55, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Fujimoto, M.; Kikuchi, K.; Takehara, K. Elevated serum levels of interleukin 4 (IL-4), IL-10, and IL-13 in patients with systemic sclerosis. J. Rheumatol. 1997, 24, 328–332. [Google Scholar]
- Hasegawa, M.; Fujimoto, M.; Kikuchi, K.; Takehara, K. Elevated serum tumor necrosis factor-alpha levels in patients with systemic sclerosis: Association with pulmonary fibrosis. J. Rheumatol. 1997, 24, 663–665. [Google Scholar] [PubMed]
- Shamskhou, E.A.; Kratochvil, M.J.; Orcholski, M.E.; Nagy, N.; Kaber, G.; Steen, E.; Balaji, S.; Yuan, K.; Keswani, S.; Danielson, B.; et al. Hydrogel-based delivery of Il-10 improves treatment of bleomycin-induced lung fibrosis in mice. Biomaterials 2019, 203, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Keane, M.P.; Belperio, J.A.; Burdick, M.D.; Strieter, R.M. IL-12 attenuates bleomycin-induced pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2001, 281, L92–L97. [Google Scholar] [CrossRef]
- Lei, L.; Zhao, C.; Qin, F.; He, Z.Y.; Wang, X.; Zhong, X.N. Th17 cells and IL-17 promote the skin and lung inflammation and fibrosis process in a bleomycin-induced murine model of systemic sclerosis. Clin. Exp. Rheumatol. 2016, 34 (Suppl. 100), S14–S22. [Google Scholar]
- Desallais, L.; Avouac, J.; Frechet, M.; Elhai, M.; Ratsimandresy, R.; Montes, M.; Mouhsine, H.; Do, H.; Zagury, J.F.; Allanore, Y. Targeting IL-6 by both passive or active immunization strategies prevents bleomycin-induced skin fibrosis. Arthritis Res. Ther. 2014, 16, R157. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez-Mateo, G.T.; Fernandez-Millara, V.; Bellon, T.; Liappas, G.; Ruiz-Ortega, M.; Lopez-Cabrera, M.; Selgas, R.; Aroeira, L.S. Paricalcitol reduces peritoneal fibrosis in mice through the activation of regulatory T cells and reduction in IL-17 production. PLoS ONE 2014, 9, e108477. [Google Scholar] [CrossRef] [PubMed]
- Gu, L.; Xu, Q.; Cao, H. 1,25(OH)2D3 Protects Liver Fibrosis Through Decreasing the Generation of TH17 Cells. Med. Sci. Monit. 2017, 23, 2049–2058. [Google Scholar] [CrossRef] [Green Version]
- Irani, M.; Seifer, D.B.; Grazi, R.V.; Irani, S.; Rosenwaks, Z.; Tal, R. Vitamin D decreases serum VEGF correlating with clinical improvement in vitamin D-deficient women with PCOS: A randomized placebo-controlled trial. Nutrients 2017, 9, 334. [Google Scholar] [CrossRef] [Green Version]
- Ciprandi, G.; Murdaca, G.; Colombo, B.M.; de Amici, M.; Marseglia, G.L. Serum vascular endothelial growth factor in allergic rhinitis and systemic lupus erythematosus. Hum. Immunol. 2008, 69, 510–512. [Google Scholar] [CrossRef]
- Murdaca, G.; Gerosa, A.; Paladin, F.; Petrocchi, L.; Banchero, S.; Gangemi, S. Vitamin D and microbiota: Is there a link with allergies? Int. J. Mol. Sci. 2021, 22, 4288. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.; Janjetovic, Z.; Tuckey, R.C.; Nguyen, M.N.; Bhattacharya, K.G.; Wang, J.; Li, W.; Jiao, Y.; Gu, W.; Brown, M.; et al. 20S-hydroxyvitamin D3, noncalcemic product of CYP11A1 action on vitamin D3, exhibits potent antifibrogenic activity in vivo. J. Clin. Endocrinol. Metab. 2013, 98, E298–E303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Condition | IL-1β | IL-2 | IL-3 | IL-5 | IL-6 | IL-10 |
PG + Saline | 20 ± 5 | 14 ± 4 | 9 ± 2 | 8.0 ± 3 | 11 ± 4 | 33 ± 18 |
PG + BLM | 161 ± 25 p < 0.00002 | 32 ± 12 p < 0.006 | 14 ± 2 p < 0.004 | 11 ± 1.0 p < 0.04 | 12 ± 2 p = 0.3 | 47 ± 7 p = 0.13 |
BLM + 1720S (OH)2pD 15 μg/kg | 157 ± 50 p = 0.5 | 30 ± 16 p = 0.4 | 10 ± 2 p < 0.02 | 9.4 ± 0.8 p < 0.02 | 7 ± 3 p < 0.007 | 20 ± 7 p < 0.002 |
Condition | IL-12p40 | IL-12p70 | IL-13 | IL-17 | Eotaxin | G-CSF |
PG + Saline | 36 ± 21 | 304 ± 80 | 337 ± 162 | 12 ± 3 | 571± 313 | 14 ± 4 |
PG + BLM | 42 ± 15 p = 0.32 | 514 ± 135 p < 0.02 | 442 ± 27 p = 0.12 | 15 ± 3 p = 0.07 | 1510 ± 333 p < 0.0009 | 32 ± 12 p < 0.006 |
BLM + 1720S (OH)2pD 15 μg/kg | 97 ± 49 p < 0.03 | 341 ± 67 p < 0.03 | 178 ± 52 p < 0.0002 | 12 ± 2 p < 0.04 | undetectable | 30 ± 16 p = 0.4 |
Condition | KC | MCp -1 | MIP-1α | TNF-α | GM-CSF | |
PG + Saline | 9 ± 2 | 8.0 ± 3 | 30.1 ± 13 | 187 ± 66 | 39 ± 17 | |
PG + BLM | 14 ± 2 p < 0.004 | 11 ± 1.0 p < 0.04 | 62 ± 24 p < 0.01 | 264 ± 75 p = 0.06 | 47 ± 17 p = 0.23 | |
BLM + 1720S (OH)2pD 15 µg/kg | 10 ± 2 p < 0.02 | 9.4 ± 0.8 p < 0.02 | 7 ± 3 p < 0.007 | 137 ± 73 p < 0.01 | undetectable |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown Lobbins, M.L.; Scott, I.-S.O.; Slominski, A.T.; Hasty, K.A.; Zhang, S.; Miller, D.D.; Li, W.; Kim, T.-K.; Janjetovic, Z.; Patel, T.S.; et al. 17,20S(OH)2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model. Int. J. Mol. Sci. 2021, 22, 8926. https://doi.org/10.3390/ijms22168926
Brown Lobbins ML, Scott I-SO, Slominski AT, Hasty KA, Zhang S, Miller DD, Li W, Kim T-K, Janjetovic Z, Patel TS, et al. 17,20S(OH)2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model. International Journal of Molecular Sciences. 2021; 22(16):8926. https://doi.org/10.3390/ijms22168926
Chicago/Turabian StyleBrown Lobbins, Monica L., Imara-Safi O. Scott, Andrzej T. Slominski, Karen A. Hasty, Sicheng Zhang, Duane D. Miller, Wei Li, Tae-Kang Kim, Zorica Janjetovic, Tejesh S. Patel, and et al. 2021. "17,20S(OH)2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model" International Journal of Molecular Sciences 22, no. 16: 8926. https://doi.org/10.3390/ijms22168926
APA StyleBrown Lobbins, M. L., Scott, I. -S. O., Slominski, A. T., Hasty, K. A., Zhang, S., Miller, D. D., Li, W., Kim, T. -K., Janjetovic, Z., Patel, T. S., Myers, L. K., & Postlethwaite, A. E. (2021). 17,20S(OH)2pD Can Prevent the Development of Skin Fibrosis in the Bleomycin-Induced Scleroderma Mouse Model. International Journal of Molecular Sciences, 22(16), 8926. https://doi.org/10.3390/ijms22168926